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ABSTRACT
We study the problem of computing optimal bundles given
agents’ preferences over individual items when agents de-
rive satisfaction from the entire bundle under constraints on
the size k of the bundle. Building on the notion of Con-
dorcet winning sets by Gehrlein [16], we extend common
Condorcet consistent voting rules from the single winner vot-
ing setting to that of forming bundles of size k. Our main
technical contribution involves designing efficient algorithms
for computing (approximately)-optimal bundles for multi-
winner extensions of the following voting rules: Copeland,
Minimax, Ranked Pairs, and Schulze.

1. INTRODUCTION
Product bundling, or more generally, the practice by which

a central designer combines multiple independent entities to
offer a single discernible bundle is a notion that is frequently
encountered in a number of environments. For instance,
cable television companies often bundle channels together,
publishers offer a platter of academic journals, and insurance
policies are typically a combination of several benefits. A
natural problem that the ‘seller’ faces in such scenarios is
that of bundle selection, i.e., how to choose a finite set of
items from a large candidate pool.

Condorcet Consistency for Sets of Candidates. The
current work is motivated by the following behavioral con-
siderations that constrain the selection problem: (i) agents
find it natural to express preferences over individual items
and not combinations of items, (ii) agents derive satisfac-
tion from all items in the bundle as opposed to just one
representative member, and (iii) agents evaluate the bundle
by comparing its members to items that were not selected
for the bundle. In this work, we address these concerns by
designing social choice mechanisms to construct bundles of
exactly k candidates based on natural generalizations of the
notion of Condorcet consistency.

The driving force behind our social choice mechanisms
is Gehrlein’s generalization of Condorcet winners to k-sized
committees such that“each member of the committee defeats
every non-committee candidate on the basis of a simple ma-
jority rule” [16]. We provide an alternative interpretation
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for this property in terms of comparisons between neighbor-
ing bundles that allows us to define a majority graph on
sets of alternatives. Based on this, we present a framework
to derive natural relaxations of Condorcet consistent mecha-
nisms that depend only on (weighted) tournament graphs to
multi-winner settings including Copeland, Maximin, Ranked
Pairs, and Schulze.

Gehrlein’s [16] notion of Condorcet consistency has been
the subject of an extensive body of literature [5, 8, 18, 25].
This has resulted in extensions of well-studied Condorcet
consistent mechanisms such as the Dodgson and Kemeny
rules [25], as well as the Copeland and Maximin rules [8]
(see [18] for a recent survey); the latter two rules are also the
subject of this work. Our framework allows us to derive the
extensions of Copeland and Maximin studied in [8] as well as
the first extensions of the Ranked Pairs and Schulze rules for
selecting k-sized bundles. Moreover, all of the above papers
focus mainly on studying the properties of Condorcet sets
and their various relaxations and not on the computation of
Condorcet winning bundles. Unlike the single-winner set-
ting, computing optimal bundles of size k is a non-trivial al-
gorithmic problem, and in some cases, even NP-Hard. Bear-
ing this in mind, we approach this problem via a compu-
tational lens and develop the first efficient algorithms for
selecting (approximately-)optimal bundles for various Con-
dorcet consistent bundling mechanisms.

1.1 Our contributions
The problem studied in this work is that of selecting a

set of k items or candidates based only on agents’ prefer-
ences over individual candidates. Conceptually, the main
contribution of this work is a new framework for extending
Condorcet consistent mechanisms from the single-winner to
the bundling setting in a manner that is compatible with
Gehrlein’s [16] definition. Our approach allows us to gener-
alize tournament graph based voting rules such as Copeland,
Maximin, Ranked Pairs, and Schulze to the problem of se-
lecting k-sized bundles when Condorcet winners do not exist.

Since the number of bundles of size k is exponential in k,
our definitions do not lead to any computational insights.
Therefore, we supplement our black-box approach by pre-
senting efficient algorithms for computing winning bundles
as well as hardness results for some rules. Our main techni-
cal contributions are as follows.

1. Copeland: Efficient algorithms for computing the win-
ning bundle when there are no ties in the tournament
graph. In the case of ties, we consider the exten-
sion Copelandα [12] and present NP-Hardness proofs for
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α = {0, 1}. We also provide approximation algorithms
for the problem of computing bundles with the highest
Copelandα score: specifically, a 1

2
-approximation algo-

rithm for all α ∈ [0, 1].

2. Maximin: we show that the decision version correspond-
ing to the problem of computing a Maximin winning bun-
dle is NP-Complete. For any given instance, we then re-
lax the size of the bundle and provide an approximation
algorithm, which returns a bundle of size at most 2k that
is as good as the optimum Maximin bundle of size k, i.e.,
its Maximin objective is at least that of the optimum
Maximin bundle of size k.

3. Ranked Pairs: we give an efficient algorithm for com-
puting the winning bundle.

4. Schulze: an efficient algorithm for computing the win-
ning bundle.

Discussion of Related Work
Our problem is fundamentally different from proportional
representation [10, 21, 24]. In that literature, an agent’s sat-
isfaction with a committee is determined only by the rank of
her favorite candidate in that committee, i.e., a representa-
tive elected candidate. On the contrary, our model is moti-
vated by applications where agents care about all members
of the bundle or committee. Therefore, we are interested in
computing bundles where every item is preferred by a large
number of agents and each individual agents influences the
selection of more than just one item in the bundle.

A more recent line of work has examined multi-winner
voting through the lens of utility maximization, where each
agent derives some utility from each item in the bundle and
the goal is to select bundles to maximize the aggregate util-
ity. These include generalizations of specific single-winner
voting rules such as Borda [10], budgeted approaches to-
wards proportional representation [21, 23], and the highly
general proportional multi-representation or group recom-
mendation framework [27]. All of these mechanisms are
in some senses generalizations of positional scoring rules,
whereas we are interested in Condorcet consistent rules. An-
other popular line of research concerns the design of multi-
winner elections based on approval voting [19, 4, 3], where
agent have 0-1 preferences over the items.

Our setting is also different from generalizations of Con-
dorcet consistency for committees based on proportional
representation [11] where a majority of the agents prefer
(only) their favorite item in the bundle to each item not
present in the bundle.

Our approach bears similarities to the extensive literature
on combinatorial voting [20]. However, it is not always fea-
sible for agents to express preferences over every potential
bundle of items. In the same vein as the literature on com-
pact preference representation languages, we take the ap-
proach of eliciting agents’ preferences over individual items
and extend them to preferences over bundles. At the core
of our approach is the notion of ‘local dominance’, i.e., the
mechanism cannot improve upon the outcome by switching
an item in the bundle with another item that is not in the
bundle, from the perspective of a majority of the agents.
Such a notion has also been explored in the combinatorial
voting literature as local Condorcet winners [9, 28] that beat
“neighboring” alternatives by pairwise majority.

Gehrlein’s notion of a Condorcet set has received consider-
able attention over the years. Ratliff [25] provided an equiv-
alent definition of Condorcet committees and defined Dodg-
son and Kemeny committees as extensions to their single
winner counterparts. In [8], the authors propose a slight re-
laxation of Gehrlein’s definition, known as weak Condorcet
consistency where no member of the committee is defeated
by a member outside the committee by pairwise majority
as well as extensions to the Copeland and Maximin rules to
selecting committees of size k under this definition. Subse-
quent work [5, 18] has studied the stability of these rules as
screening rules. Our work builds on the model in [8] and
provides the first computational results for the extensions
of Copeland and Maximin rules proposed in that work by
presenting an efficient algorithm for computing the optimal
Copeland bundle and an approximation algorithm for Max-
imin.

2. PRELIMINARIES
In our setting, N is a set of agents and A is a set of

candidates. Formally, we are given a preference profile
P⃗ = (Pi)i∈N , where each Pi is a strict ranking over the items
in A. A bundle B of size k is any subset B ⊆ A, |B| = k of
candidates. We use Ak to denote the set of all bundles of
size k. Our objective is to select from Ak an optimal consen-
sus bundle of size k in polynomial time; to achieve this, we
will extend several Condorcet consistent mechanisms from
single-winner elections to the multi-winner setting.

The Condorcet criterion for single-winner elections can be
described through the notion of a tournament graph on the
alternatives A. The tournament graph T contains the di-
rected edge (x, y) if a majority of agents prefer alternative x
to y. Based on this definition, an alternative x ∈ A is said to
be a Condorcet winner for single-winner elections if and only
if it has outgoing edges to every other alternative y in the
tournament graph T , i.e., for every alternative y ̸= x, more
users prefer x to y. We also define W to be the weighted
complete graph over candidates such that the weight on the
edge (x, y) is N(x, y) that denotes the number of agents who
prefer x to y.

2.1 Condorcet Consistent Bundling
How do we go about extending the idea of a Condorcet

winner when we require a bundle of alternatives? One such
paradigm was proposed by Fishburn [14, 15] who defined a
Condorcet committee to be a bundle B such that for every
other bundle B′ of the same size, a majority of the users
prefer B to B′. Unfortunately, such a direct comparison
between bundles may be incompatible with item preferences.
For example, suppose that in a given instance, agent i’s
preferences are x ≻ y ≻ a ≻ b. Such information is often
insufficient to conclude whether this agent prefers bundle
{x, b} or {y, a}. Moreover, comparing a given bundle B with
every other bundle of the same size is perhaps inconsistent
with how real users behave. With this in mind, we ask the
following question:

Using only item preferences, when does a major-
ity of the agents prefer one bundle to another?

One simple and intuitive answer to this question is ‘when
the bundles are neighbors’, i.e., the bundles differ only in
one item. Formally, given two bundles B and B′ that differ
only in one item, we say that B locally dominates B′ if a
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majority of the users prefer the item (B \ B′) to the item
(B′ \B). We use NB(B,B′) to denote the number of agents
who prefer B to its neighbor B′.

Using local dominance as a basis, we can now define a ma-
jority graph that leads to a natural extension of Condorcet
winners. Specifically, let T (k) denote the unweighted, di-
rected local majority graph whose vertex set is Ak, i.e., the
set of all bundles of size k. For every pair of neighboring bun-
dles B, B′ such that B locally dominates B′, T (k) comprises
of a directed edge from B to B′. For convenience one can
interpret T (k) to be the bundling analog of the tournament
graph T on alternatives. However, unlike the tournament
graph, T (k) is not complete and only comprises of edges be-
tween bundles that differ in exactly one item. We now define
our notion of Condorcet winners.

Definition 1. Given an input parameter k, a bundle B
of size k is said to be a Condorcet winning bundle if and
only if B has an outgoing edge to every neighboring bundle
B′ in T (k).

It is not hard to see that (i) such a Condorcet winning
bundle may not always exist and is unique when it does,
and (ii) when k = 1, this reduces to the classic definition of
a Condorcet winner. One popular definition of a Condorcet
winning set in the literature was proposed by Gehrlein [16];
according to this definition, a set B ⊆ A is said to be a
Condorcet winning committee if ∀x ∈ B and any given y /∈
B, a majority of the users prefer x to y. Our notion turns
out to be equivalent to Gehrlein’s classic definition.

Proposition 1. If B is a Condorcet winning bundle of
size k, then for every x ∈ B and y /∈ B, a majority of the
agents prefer x to y. Therefore, Definition 1 is equivalent to
the definition of a Condorcet committee proposed in [16].

Note that although the definition of Condorcet consis-
tency considered in this paper was already known from [16],
our main contribution can be viewed as providing a con-
venient interpretation for this notion, that allows us to pro-
vide natural extensions to well-studied Condorcet consistent
mechanisms.

2.2 Condorcet Consistent Mechanisms for
Bundling

Recall the definition of the local majority graph for bun-
dles of size k, T (k). In a similar spirit, we define a weighted
majority graph W (k), which is a directed graph whose ver-
tex set is Ak, and where for every pair of neighboring
bundles, there are edges (B,B′) and (B′, B) with weights
NB(B,B′), NB(B′, B) respectively. We now define a rule-
of-thumb for extending many Condorcet consistent rules to
the multi-winner setting.

Generic Template for Extending Condorcet Consistent
Rules.

The precise definition of a Condorcet consistent voting
rule is ‘a rule that outputs a Condorcet winning alter-
native when it exists’. However, a number of Condorcet
mechanisms are essentially functions whose output depends
only on the (weighted) tournament graph. Consider any
single-winner mechanism whose output depends only on T
(equivalently, the weighted tournament graph W ): a natu-
ral extension of such rules to the multi-winner setting is to

consider the exact same definition as before but applied on
the (weighted) majority graph for bundles T (k) (equivalently

W (k)). If the original rule is Condorcet consistent, then such
an extension also selects a Condorcet winning bundle when
one exists. This is the generic template that we will use to
define extensions of popular voting rules such as Copeland,
Minimax, Ranked Pairs, and Schulze.

Definition 2. (Copelandk) The Copelandk rule selects a
bundle B∗ (of size k) with the maximum number of outgoing

edges in T (k).

Definition 3. (Maximink) The Maximink rule selects a
bundle B∗ (of size k) that maximizes the minimum weight of

any outgoing edge in W (k), over all bundles of size k, i.e.,

B∗ ∈ arg min
B∈Ak

max
(B′,B)∈W (k)

NB(B′, B).

We remark that our definitions of Copelandk and
Maximink were previously defined in [8, 18], where they were
referred to as the NED and SEO rules respectively.

Definition 4. (Ranked Pairsk) The winner of this mech-
anism is determined by the following procedure: sort the
edges of W (k) by decreasing order of their weights. Con-
struct a directed graph RP (k) with the same vertex set and
whose edge set is initially empty. Go over the sorted edges
of W (k) and add them to RP (k) as long as it does not create
a cycle. Once this concludes, the winner is the bundle in
RP (k) that has no incoming edges.

We conclude by pointing out that all the three mecha-
nisms above reduce to their well-studied single-winner coun-
terparts when k = 1. When there exists a Condorcet winner,
all of these mechanisms return only that bundle, i.e., they
are consistent with the Condorcet criterion for bundling as
per Definition 1. Finally, while Copelandk is not well-defined
when there are ties among candidates (an equal number of
users preferring two candidates), the presence of ties does
not in any affect our Maximin and Ranked Pairs definitions.
In Section 3.1, we propose a parameterized generalization of
the Copeland bundling rule that allows us to explicitly factor
in ties. The Schulze extension is provided in Section 3.4

Computation of Condorcet Winning Bundles.
Even though the number of bundles of size k is exponen-

tial in k, we show how to compute the Condorcet winning
bundle (when it exists) via a simple algorithm, specifically
the algorithm presented in Theorem 1 for computing opti-
mal Copeland bundles. Since the algorithm is Condorcet
consistent, it always results in a Condorcet winning bundle
when it exists.

3. EFFICIENT ALGORITHMS FOR COM-
PUTING OPTIMAL BUNDLES

In this section, we present our main technical results,
polynomial time algorithms for computing optimal and
approximately-optimal bundles based on the Copeland,
Maximin, Ranked Pairs, and Schulze rules.

3.1 Copeland and Copelandk(α)

Copeland is among the most popular of Condorcet con-
sistent mechanisms; we are able to provide an efficient al-
gorithm for computing the Copelandk bundle as per Defi-
nition 2 as long as the tournament graph T does not have
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any ties, i.e., there exist no pair of items such that an equal
number of agents prefer both these alternatives. A trivial
condition that ensures the absence of ties is the presence of
an odd number of agents in N .

When the tournament graph contains ties, the Copelandk

mechanism is no longer well defined. To handle such in-
stances, we consider a generalization of Copelandk referred
to as the Copelandk(α) voting rule, originally defined in [12]
for the singer-winner setting, where α ∈ [0, 1] denotes the
‘weight’ given to ties. We extend the Copelandk(α) defi-
nitions to the bundling setting and present algorithms to
compute approximately optimal bundles of size k.

We begin with a simple claim that provides an alternative
characterization of the optimal Copelandk bundle and then
move on to our main computational results.

Proposition 2. A bundle B∗ is a Copelandk winner if
and only it maximizes the number of pairwise defeats of
the items that are not present in the bundle i.e., B∗ ∈
arg maxB∈Ak

|x ∈ B, y /∈ B : (x, y) ∈ T |.

It follows from Proposition 2 that the problem of finding
a Copelandk winner can be mathematically formulated as
the problem of finding the maximum sized cut (B,A \ B)
in the tournament graph T with |B| = k, i.e., the cut that
maximizes the number of edges going from B to A \B.

Pertinent Notation for Computational Results For-
mally, given a bundle B, let B̄ = (A\B). Let out(i) denote
the outdegree of a node i in T . Let out(B) denote the num-

ber of outgoing edges from B in the graph T (k) and suppose
that τ(i) is the number of candidates tied with i and sim-
ilarly, τ(B) is the number of neighboring bundles B′ of B
such that an equal number of users prefer B \B′ to B′ \B,
i.e., τ(B) is the number of ties containing B. Then, for
any 0 ≤ α ≤ 1, the Copeland(α) score of a candidate i is
out(i) +ατ(i) [12], and we define the Copelandk(α) score of
a bundle B to be out(B) + ατ(B).

We now present a surprisingly simple algorithm (Al-
gorithm 1) that (i) returns a Copelandk winning bun-
dle when there are no ties (Theorem 1), (ii) returns a
Copelandk(α) winning bundle for α = 0.5, and (iii) is a
min(2α, 1

2α
)-approximation to the optimum Copelandk(α)

bundle of size k for any α ∈ [0, 1]. (Theorem 3).

Algorithm 1 CopelandWinner

1: Input: A profile P⃗ over A, parameter k.
2: Let T be the tournament graph whose nodes are the

candidates in A.
3: Arrange the candidates in decreasing order of their

Copeland(α) score out(i) + α ∗ τ(i).
4: Pick the first k candidates with the largest Copeland(α)

score to form bundle B∗.
5: Output: The bundle B∗.

Theorem 1. CopelandWinner (Algorithm 1) computes
the Copelandk winning bundle in polynomial time when there
are no ties in the tournament graph.

Observe that when there are no ties in the tournament
graph T , the algorithm returns the same bundle B∗ irre-
spective of the value of α.

Proof. Let δ(A,B) denote the number of (cut) edges go-
ing from A to B in the tournament graph T . We prove that

the bundle returned by CopelandWinner for profile P⃗ , i.e.,
B∗, maximizes δ(B∗, B̄∗) as long as T does not contain any
ties. The proof of correctness then follows from Proposi-
tion 2. Now, for any bundle B of fixed size k, we have,∑

i∈B

out(i) = δ(B, B̄) + δ(B,B) = δ(B, B̄) +

(
k

2

)
.

The last term equals
(
k
2

)
as there are exactly that many

pairs of candidates within a set of k nodes and for every i, j ∈
B, exactly one of (i, j) or (j, i) belongs to the tournament
graph. Therefore, for any B, δ(B, B̄) =

∑
i∈B out(i) −

(
k
2

)
.

As the latter term is a constant, we can conclude that any
set that maximizes the total out-degree of its members must
also maximize the number of cut edges.

3.1.1 Computational Results for Copelandk(α)

Building on our proof of Theorem 1, it is not hard to see
that one can efficiently compute a Copelandk(0.5) winning
bundle using Algorithm 1 for α = 0.5 when there are ties.
Unfortunately, as the following claim indicates, we are not
so lucky for other cases. In particular, we show that the
decision version of Copelandk(α) is NP-Complete for α ∈
{0, 1}.

Claim 2. For α ∈ {0, 1}, it is NP-Complete to determine
if there exists a bundle of size k whose Copelandk(α) score
is at least l, for some input parameter l.

Proof. We begin with Copelandk(α) given α = 0, for
which the reduction follows from the well known Max-
DICUT problem [1] (with given size of parts), where given
a directed graph G, and a number ℓ, we are asked if there
exists a set B of k nodes such that δ(B, B̄) is at least ℓ. For
any given instance of this problem with unweighted graph
G, we can use the classic result of McGarvey [6] to construct

a polynomially large profile P⃗ whose tournament graph cor-
responds to G. After this, it is not hard to see that the
Copelandk(0) winner must also maximize the cut value.

Moving on to Copelandk(α) for α = 1, we turn to the
oneway bisection problem [13], where we are given a di-
rected graph G with N vertices, and we are asked whether
there exists a set S of size N

2
with no incoming cut edges,

i.e., δ(S̄, S) = 0. Once again, given G, we reduce it to the

Copeland
N
2 (α) problem with the same tournament graph,

where for some number l, we are asked whether there is a
bundle B of size N

2
such that δ(B, B̄) + τ(B, B̄) is at least l.

It is not hard to verify the following statement: there exists
a set S of size N

2
with no incoming cut edges if and only

if the value of the Copeland
N
2 (1) objective function for the

winning bundle is exactly (N
2

)2.
We conclude by observing that given a bundle, it is easy

to compute its Copelandk(α) score.

Since we cannot efficiently compute the winning bundle
for the above values of α, it is natural to ask whether we
can compute bundles that are approximately as good as the
optimum bundles. In Theorem 3, we provide two approxima-
tion algorithms for this task: the first algorithm is somewhat
involved but provides a consistent 1

2
-approximation irrespec-

tive of the value of α, whereas the second approach is much
simpler and results in improved approximations as long as
α ∈ (0.25, 1). Formally, a bundle B of size k is said to be
a c-approximation for c ≤ 1 to the optimum Copelandk(α)
bundle B∗ if
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out(B) + ατ(B) ≥ c (out(B∗) + ατ(B∗))

Theorem 3. The following results hold for any given val-
ues of α, k

1. We can compute in polynomial time a bundle B of size
k whose Copelandk(α) score is a 1

2
-approximation to that

of the optimum Copelandk(α) bundle.

2. There is a greedy algorithm that computes a min(2α, 1
2α

)-

approximation to optimum Copelandk(α) bundle of size
k.

Notice that while the greedy algorithm does not provide
good approximations as α → 0, in the range α ∈ (0.25, 1) the
guarantee provided is better than that of the consistent 0.5-
approximation. Moreover, at α = 0.5, we get the optimum
bundle of size k, which matches our previous observation.

Proof. (Part 1): We prove the first part of our
theorem using a direct reduction from our problem to the
Max DICUT with given sizes of parts (GSP) problem [1].
Given α, construct a complete weighted directed graph G
as follows. For any two alternatives x, y, define the weight
of the edge (x, y) in G, w(x, y) = 1, if a strict majority of
the voters prefer x to y and zero if a strict majority prefer
y. Define w(x, y) = w(y, x) = α when an equal number
of voters prefer x and y (to the other alternative). Now
the problem of finding a Copelandk(α) winning bundle is
equivalent to the problem of finding a cut B of size k in
the graph G maximizing the weight of the outgoing cut
edges. This is the Max DICUT with GSP problem for
which a 2-approximation algorithm based on LP rounding
was provided in [1].

(Part 2) Given an instance (profile of votes), let B de-
note the optimum Copelandk(0.5) bundle, which we know
from Theorem 1, can be computed efficiently. We make
two simple claims: first, for every α ∈ [0.5, 1], B is a 1

2α
-

approximation to the optimum Copelandk(α) bundle B∗ of
the same size k; second, for every α ∈ [0, 0.5], B is a 2α-
approximation to the optimum Copelandk(α) bundle B∗ of
the same size k. We begin by showing the first claim for
α ≥ 0.5,

out(B∗) + ατ(B∗) ≤ 2α(out(B∗) + 0.5τ(B∗))

≤ 2α(out(B) + 0.5τ(B))

≤ 2α(out(B) + ατ(B)).

The first inequality and third inequalities are due to α
being larger than or equal to 0.5. The second inequality
comes from the fact that B is the optimum bundle for the
Copelandk(0.5) objective. Therefore, for α ≥ 0.5, the objec-
tive value of B is at most a factor 2α smaller than that of
B∗. Next consider the case when 0 < α ≤ 0.5.

out(B∗) + ατ(B∗) ≤ out(B∗) + 0.5τ(B∗)

≤ out(B) + 0.5τ(B)

=
1

2α
(2αout(B) + ατ(B))

≤ 1

2α
(out(B) + ατ(B)).

The last inequality follows from the fact that 2α ≤ 1 in
the given range. This completes the theorem.

3.2 Maximin
We now move on to the Maximin voting rule for bundles

as defined in Definition 3. Since the rule is consistent with
the generalized Condorcet criterion, we can efficiently com-
pute the Maximink bundle when a Condorcet winner of size
k actually exists. Unfortunately, as we show in the following
claim, the decision problem corresponding to the computa-
tion of a Maximink winner is NP-Complete for the general
case. Concretely, we define Dec-Maximink to be the deci-
sion problem of whether exists a bundle B of size k such
that every outgoing edge from B in W (k) has a weight of at
least ℓ for some input parameter ℓ.

Claim 4. The Dec-Maximink problem is NP-Complete.

Proof. We first consider a variant of the oneway bisec-
tion problem, that we term ‘Restricted Oneway Bisection’
and show that this problem is NP-Complete via a reduction
to the original oneway bisection problem [13]. Following
this, we show a simple reduction from the (decision version
of the) problem of computing a Maximink bundle to the
restricted oneway bisection problem.

Restricted Oneway Bisection Let G = (N,E) be any
digraph of n vertices where for every pair of vertices u, v,
either (i) (u, v) ∈ E, (v, u) /∈ E, (ii) (v, u) ∈ E, (u, v) /∈ E,
or (iii) (u, v) /∈ E, (v, u) /∈ E. Given an instance of a graph
G that satisfies the above constraints, we are asked whether
there exists a set S ⊆ N , |S| = n

2
with no incoming edges,

i.e., δ(S̄, S) = 0.

Lemma 5. The Restricted Oneway Bisection is NP-
Complete.

Proof sketch. Consider the following reduction from the
oneway bisection problem to its restricted variant. We are
given an arbitrary instance of the oneway bisection problem,
a digraph H = (M,F ) with m vertices, and edges F . We
construct an instance of Restricted Oneway Bisection given
by a graph G = (N,E) with 2m vertices as follows: for
every vertex u ∈ M , add two vertices u1, u2 to N . For every
pair of vertices u, v, (i) if (u, v) ∈ F , (v, u) /∈ F , add edges
(u1, v1), (u1, v2), (u2, v2), (u2, v1) to E, and (ii) if (u, v) ∈ F
and (v, u) ∈ F , add edges (u1, v1), (v1, u2), (u2, v2), (v2, u1)
to E. We claim that there is a set T of size m

2
with no

incoming edges in H if and only if there is a set S of size m
with no incoming edges in G.

⇒ It is easy to check that if there exists a set T of size m
2

in H with no incoming edges, then there is a set S of size m
with no incoming edges in G as follows: for all u ∈ T , add
u1, u2 to S.

⇐ Now, suppose S is a set of size m with no incoming
edges in G, we show that there exists a set T of size m

2
with

no incoming edges in H. Consider the set T constructed as
follows: (i) if u1 ∈ S and u2 ∈ S, add u to T , (ii) from the
remaining vertices in S, pick exactly half of them arbitrarily
and add the corresponding vertices in M to T . It is easy to
check that T is of size m

2
and has no incoming edges in H.

We leave out the details in the interest of space.
2

We now prove the claim by providing a reduction from
Restricted Oneway Bisection to Dec-Maximink. Let an arbi-
trary instance of the restricted oneway bisection problem be
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given by a digraph G = (N,E). We construct an instance of
Maximink by first defining the weighted tournament graph
W over the individual alternatives N and then deriving a
profile of R agents’ preferences based on this graph. If
(u, v) ∈ E and (v, u) /∈ E, add edges (u, v) and (v, u) to W
with weights R

2
+ 1 and R

2
− 1 respectively. For every other

pair u, v add edges (u, v) and (v, u) with weights R
2

each.
Using the exact same idea as in the proof of McGarvey’s
Theorem [6], it is easy to construct a profile of R agents
whose preferences give rise to this (weighted) tournament
graph. Here R will be polynomial in the number of alterna-
tives |N | = n. Given this profile of agents’ preferences, the
Dec-Maximink problem involves answering whether there is
a bundle B of size k such that every outgoing edge from B
in W (k) is of size at least R

2
.

We claim that there exists a set S of size n
2

with no in-
coming edges in G if and only there exists a bundle B of
size n

2
such that for every x ∈ B, y /∈ B, N(x, y) ≥ R

2
, and

therefore every outgoing edge from this bundle in W (k) must
have a weight of at least R

2
.

⇒ Suppose that there exists such a set S. Consider the
bundle B = S, and assume for the sake of contradiction that
there exists an outgoing edge (B,B′) of weight less than R

2
.

Moreover, let x and y be the nodes that are present in B
and B′ respectively but not in the other bundle. Then, by
construction of B, it must be that (y, x) ∈ G, a contradiction
to our assumption that S has no incoming edges.
⇐ Suppose that there exists a bundle B of size n

2
such

that every outgoing edge is at least R
2

. Then, consider the
set S = B. Suppose that S has an incoming edge (x, y), x /∈
S, y ∈ S. Consider the bundle B′ = B − {y} + {x}. Then,
by construction of B, it must be the case that the weight
on the edge (B,B′) in W (k) is R

2
− 1, a contradiction to our

assumption on the value of the maximin objective of B. We
conclude by observing that given a bundle B, it is easy to
compute its maximin objective in polynomial time.

Approximation Algorithms for Maximink: In this
section, we circumvent the hardness result by using a dif-
ferent notion of approximation. Specifically, we relax the
constraint that bundle size is exactly k and compute a bun-
dle whose size is at most 2k and whose Maximin objective
(defined below) is at least as good as that of the optimum
Maximink bundle. Such size-relaxing approximation algo-
rithms are quite common in many optimization problems
including Knapsack [26] and Cut problems [2] and capture
situations where the central authority (for example a ca-
ble provider) has some flexibility in deciding the size of the
bundle.

Formally, given any bundle B of size k, we define its
Maximink score to be the minimum weight over all outgoing
edges from B in the graph W (k). Our result follows.

Theorem 6. We can compute in polynomial time a bun-
dle B of size k ≤ s ≤ 2k such that its Maximins score is at
least that of the Maximink score of the optimum bundle B∗

of size k.

In other words, the computed bundle B is ‘as good’ as the
bundle that we seek (B∗) , except with respect to a different
(weighted) majority graph. That is, suppose that w∗ is the
largest number such that at least w∗ users prefer the opti-
mum bundle B∗ to every other neighboring bundle in W (k).
Then the above theorem guarantees that in the graph W (s),

at least w∗ users prefer B to every other neighboring bundle
of size s.

Proof. Notation Let W denote the weighted tourna-
ment graph on A (W = W (1)). For any parameter 1 ≤ w ≤
N , let G(w) denote an unweighted, directed subgraph of
W consisting only of the edges (i, j) such that N(i, j) < w.
Finally, define C(w) to be the graph of Strongly Connected
Components in G(w). For every Ci ∈ C(w), the set of all
components that can be reached from Ci are its successors,
and the set of all components from which Ci can be reached
are its predecessors. The algorithm is defined in Figure 1.

1. Iterate over w = N + 1 to 1 (this step can be made
efficient using a binary search)

2. For each w, compute G(w) and C(w). For every compo-
nent Ci ∈ C(w) containing more than k nodes, remove
Ci and all of its predecessors from C(w).

3. Let T = T1, . . . , Tr denote a topological sorting of C(w)
(remember that C(w) is a directed acyclic graph)

4. Let ℓ be the largest index s.t. |Tr ∪ Tr−1 ∪ . . .∪ Tℓ| < k

5. The winning bundle of weight w, WB(w) is said
to be the union of nodes inside the components
Tr, Tr−1 . . . , Tℓ−1. (Define T0 = ∅).

6. Let wmax be the largest value of w for which
WB(wmax) has a size of k or more. Return B =
WB(wmax).

Figure 1: Algorithm MaximinApprox

Consider the optimum bundle B∗ and suppose that
its Maximink score is w∗. Then, in the graph G(w∗),
δ(B∗, B̄∗) = 0. This is the idea that we will use in our
approximation algorithm, namely to find an appropriate w
and a set B that has no outgoing cut edges in G(w).

Lemma 7. For any component Ci ∈ C(w∗), if some node
i ∈ Ci belongs to the optimum bundle B∗, then every node
in Ci is in the optimum bundle B∗.

Proof. Suppose that this is not the case and there exists
j ∈ Ci which is not in the optimum bundle. By the definition
of a strongly connected component, there must be a path
from i to j in Ci and by definition of G(w∗), this path only
uses edges whose weight in W is strictly smaller than w∗.
Therefore, there must be at least one cut edge from B∗ to
A\B∗ having a weight smaller than w∗, a contradiction.

Lemma 8. For any component Ci ∈ C(w∗), if Ci ⊆ B∗,
then every component Cj that is a successor of Ci must also
be in the optimum bundle.

Proof. This follows from the fact that in G(w∗), there
exists a path from some node i ∈ Ci to some node j ∈ Cj

using only edges smaller than w∗. Therefore, if Cj is not
contained in B∗, then there must once again exist a cut
edge smaller than w∗ going out of B∗, a contradiction.

Corollary 9. For any component Ci ⊆ C(w∗) that has
strictly more than k nodes, neither Ci nor any of its prede-
cessors can belong to B∗.
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The corollary comes from Lemma 7 and the fact that Ci can-
not be in the optimum bundle. The above corollary justifies
the pruning step, where we remove all components larger
than k and their predecessors.

Lemma 10. The bundle B′ = WB(w∗) satisfies the con-

ditions of the theorem, i.e., s′ = |B′| < 2k and its Maximins′

score is at least w∗.

Proof. Suppose that C̄(w∗) denotes all the strongly con-
nected components of G(w∗) after the pruning step (remov-
ing the large components). Then, by Corollary 9, clearly
B∗ ⊆ C̄(w∗), and therefore, the components still remain-
ing in C̄(w∗) contain at least k nodes in total. Moreover,
for each component Ci ∈ C̄(w∗), Ci contains at most k
nodes. Therefore, look at the topological sort T = T1, . . . Tr

of C̄(w∗) where for any Ti and Tj with i < j, there is
no edge in G(w∗) going from Tj to Ti. Therefore, since
B′ = Tr ∪Tr−1 ∪ . . .∪Tℓ ∪Tℓ−1, it is clear that there are no
edges going across the cut from B′ in G(w∗). All the edges
going across the cut in W have weight at least w∗ and so,

the Maximins′ -score of B′ is at least w∗. Moreover, by def-
inition the union of Tr to Tℓ contains strictly smaller than
k nodes and Tℓ−1 contains at most k nodes, therefore, B′

contains at most 2k − 1 items.

Now, we are ready to complete the proof of the theo-
rem. Suppose that the algorithm outputs the bundle B′

with |B| ≥ k as per Lemma 10, then we are done. If this
is not the case, then as per the definition of MaximinAp-
prox, it is only possible that wmax > w∗. Using the same
argument as in Lemma 10, we infer that the output bun-
dle B can contain between k and 2k nodes. By definition,
δ(B, B̄) = 0 in the graph G(wmax), which means that the
Maximims score of B is wmax, which in turn is not smaller
than w∗, the Maximink score of B∗.

3.3 Ranked Pairs
Although we defined the Ranked Pairsk mechanism in a

constructive manner, the construction provided in Defini-
tion 4 is not efficient. Our main contribution in this section
is a polynomial time algorithm for computing the winner of
the Ranked Pairsk mechanism.

Observe the Ranked Pairsk mechanism is somewhat
ambiguously defined in Definition 4; indeed, the mechanism
could result in a different output depending on which edge
we pick in the tournament graph W (k) in each round. For
convenience, we now define a rule for breaking ties consis-
tently in each iteration of the Ranked Pairsk mechanism
so that it yields a unique winning bundle. Following this,
we present a simple algorithm that computes the unique
winning bundle with respect to this tie-breaking rule. Given
two neighboring bundles B,B′ of the same size, define the
symmetric difference B⊕B′ to be the ordered pair of nodes
(x, y) such that x ∈ B but not B′ and y ∈ B′ but not B.

Tie-Breaking Rule: For every pair of candidates (nodes)
x, y ∈ A, we assign a rank r(x, y) to the edge (x, y), which is
distinct from r(y, x). Now, the Ranked Pairsk mechanism as
per Definition 4 can be refined as follows: in each iteration,
suppose that there are multiple edges of W (k) that satisfy
the criteria for selection, then pick all pairs of neighboring
bundles (B,B′) with the smallest value of r(B ⊕ B′); go
through these chosen pairs in some arbitrary order and add
them to G as long as no cycle is induced.

Theorem 11. RankedPairsWinner (Algorithm 2) re-
turns the unique winning bundle corresponding to the Ranked
Pairsk mechanism with our previously defined tie-breaking
rule in polynomial time.

Algorithm 2 RankedPairsWinner

1: Input: A profile P⃗ over A, parameter k.
2: Run the traditional ranked pairs algorithm for the k = 1

case and let H be the final DAG obtained.
3: Consider the topological ordering T = T1, T2, . . . , Tm of

H
4: Output: The optimum bundle B∗ = T1 ∪ T2 ∪ . . .∪ Tk.

Proof. Although our algorithm is rather simple, the
proof is somewhat involved so we proceed carefully begin-
ning with some notation. Consider the non polynomial time
ranked pairs mechanism in Definition 4 along with our tie-
breaking rule, and suppose that Gt is the graph constructed
by the mechanism at the end of iteration t−1. Similarly, de-
fine Ht to be the state of the directed acyclic graph obtained
at the end of iteration t − 1 of the traditional ranked pairs
algorithm, that is used in Algorithm 2. Note that while the
vertices of Gt are the set of k-sized bundles, Ht’s vertex set
is the set of alternatives in A. We now show the following
equivalence between Gt and Ht. For the rest of this proof,
we assume that the traditional ranked pairs mechanism for
the k = 1 case also breaks ties in favor of edges with a
smaller rank r(x, y).

Lemma 12. For every iteration t, there exists a path be-
tween x and y in Ht if and only if there exists a path between
every two neighboring bundles B, B′ with B ⊕ B′ = (x, y)
in Gt.

Proof. The proof proceeds by induction on the iterations
T = 1, 2, . . . , t, . . .. Remember that during each iteration
t, both of the algorithms consider the same (x, y) in the
tournament graph. The original Ranked Pairs algorithm
adds the edge (x, y) to Ht if there is no path from y to x
in Ht. Our bundling algorithm adds edges between every B
and B′ with B⊕B′ = (x, y) as long as there is no path from
B′ to B in Gt.

The base step is easy to show. Suppose that (x1, y1) is
the edge considered in the first iteration, then H2 simply
consists of this one edge. G2 has an edge between every pair
of neighboring bundles with B ⊕ B′ = (x, y) as this cannot
induce any cycles. The lemma statement is true trivially
true for t = 1, 2.

Now suppose that the induction hypothesis is true for Ht,
Gt, and in the tth iteration, the edge (x, y) is under consid-
eration. If (x, y) is not added, then Ht+1 = Ht which means
that according to the induction hypothesis, for every B,B′

whose symmetric difference is (x, y), there must be a path
from B′ to B. Therefore, Gt+1 = Gt as well.

Next, suppose that there is a path between some i and j
in Ht+1 but not Ht. Since (x, y) was the only edge added
in this iteration, this means that there must have been a
path between i → x and y → j in Ht. Let Bi and Bj be
any two bundles whose symmetric difference is (i, j). Then,
from the induction hypothesis, in Gt, there must have been
a path from Bi to B and B′ to Bj where B = Bi−{i}+{x},
and B′ = Bj − {j} + {y}. Since B and B′ are neighboring
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bundles, Gt does not contain any path from B′ to B because
otherwise Ht would have a path from y to x which was know
is not the case. Therefore, in the tth iteration an edge from
B to B′ is added to Gt and therefore, Gt+1 does contain a
path from Bi to Bj .

In the opposite direction, suppose that in Gt+1, there is a
path from some Bi to Bj with Bi ⊕Bj = (i, j) that was not
present in Gt. Then we need to prove that ∃ a path from i
to j in Ht+1. First suppose that the path is simply a direct
edge, then it can only be the case that i = x and j = y and
therefore there is a path from i → j in Ht+1 by definition.
We can also infer that for any B,B′ with a direct edge in
Gt+1, the edge B ⊕B′ also exists in Ht+1.

Next, suppose that the path can be described as
BiB1B2, . . . , BrBj , where (Bl, Bl+1) in the path is a pair
of neighboring bundles with a direct edge between them.
Construct a new directed graph Z as follows: the node set
of this graph is A and for each Bl, Bl+1 in the above path, Z
consists of the directed edge (Bl ⊕Bl+1). Moreover, we are
allowed to add multiple copies of any edge, i.e., if we have
(Bl1 ⊕ Bl1+1) = (Bl2 ⊕ Bl2+1) = (x, y), the edge (x, y) is
present twice in Z. From what we inferred in the previous
paragraph, it is easy to see that every (x, y) ∈ Z also belongs
to Ht+1 and we conclude that Z is acyclic as well. Without
loss of generality, remove all the nodes in Z with zero in-
degree and out-degree.

Finally, we claim that except for i and j, for every candi-
date p ∈ Z, its indegree must equal its out degree. Why is
this true? Suppose that Bl+1 \ Bl = {p}, and p /∈ Bi, Bj ,
then in some future edge (say (Bl′ , Bl′+1) for l′ > l), we must
substitute p for some other candidate, i.e., Bl′ \Bl′+1 = {p}.
If p ∈ Bi, then in some past edge (say (Bl′′ , Bl′′+1), we
must have substituted some other candidate for p, i.e.,
Bl′+1 \ Bl′′ = {p}. Since every candidate in Z except i, j
has the same indegree as out-degree, we can form a path (an
Eulerian trail) from i to j in Z. Since every edge in Z is also
present in Ht+1, we conclude that there exists a path from
i → j in Ht+1. This completes the proof.

Lemma 12 is the main workhorse driving our proof of the
theorem. Suppose that G is the final directed acyclic graph
on bundles obtained by the Ranked Pairsk Mechanism as
per Definition 4. Then, it is enough for us to show that the
bundle B∗ = T1∪T2∪. . .∪Tk (as defined in Algorithm 2) has
no incoming edges in G. Note that H and G can be viewed
as the final graphs in the sequences Ht and Gt respectively.
By definition of the topological sort, for any j > k, we know
that there is no path from Tj to Ti in H for every i ∈ [1, k].
Since Lemma 12 is an if and only if statement, this means
that in G, there is no path from some bundle B to B∗, where
B ⊕ B∗ = (Tj , Ti) for all Ti ∈ B∗. We conclude that there
are no incoming edges into B∗ in the graph G, and so it is
the Ranked Pairsk winning bundle.

3.4 Schulze
We now extend the Schulze mechanism to the problem

of computing optimum bundles of size k. Let B,B′ be any
pair of bundles of size k. Suppose that the strength of a path
p = B,B1, . . . , Bℓ, B

′ in W (k) is the minimum weight of an
edge along the path p. Let SB(B,B′) be the maximum

strength of any path from B to B′ in W (k). Therefore,
for every pair of bundles B,B′ in W (k), we can define the
quantity SB(B,B′).

Definition 5. The Schulzek mechanism selects a bundle
B∗ (of size k) such that for every bundle B′ of the same
size, we have that SB(B∗, B′) ≥ SB(B′, B∗).

Existence As with the traditional Schulze method, we ar-
gue that the relationships guaranteed by SB() are transitive.
Specifically if SB(B1, B2) > SB(B2, B1) and SB(B2, B3) >
SB(B3, B2), then SB(B1, B3) > SB(B3, B1). To see why,
note that SB(B1, B3) ≥ min(SB(B1, B2), SB(B2, B3)) =
min(f, g) (say). By contradiction, if SB(B3, B1) ≥
min(f, g), then B3 has a path to B2 that is at least min(f, g)
and B2 also has a path to B1 that is at least min(f, g), which
contradicts our assumption that SB(B1, B2) > SB(B2, B1)
and SB(B2, B3) > SB(B3, B2). By this transitivity, we get
that the set of Schulzek winners is non-empty.

Our main result is a simple algorithm to compute a
Schulzek winning bundle. Before stating the result, we
abuse notation and define S(x, y) for any pair of alterna-
tives x, y ∈ A to be the maximum strength of any path
from x to y in W .

Theorem 13. For any instance and parameter k, we can
compute a Schulzek optimal bundle B∗ in polynomial time.

Algorithm: Consider the following unweighted, directed
graph G on the set of alternatives A: for any x, y, there
exists an edge from x to y if S(x, y) > S(y, x). By the tran-
sitivity of the function S(), the graph is clearly acyclic. The
algorithm proceeds by repeatedly removing a vertex from G
that has no incoming edges until we remove k nodes to form
a bundle B∗. It is not hard to deduce that δ(B̄∗, B∗) = 0 in
G.

To show that B∗ is the winning bundle, we only need to
prove that for any other bundle B, S(B∗, B) ≥ S(B,B∗).
Suppose by contradiction that this is not the case, then there
must exist some x ∈ B∗ \ B and y ∈ B \ B∗ such that
S(y, x) > S(x, y). However, this contradicts the fact that
δ(B̄∗, B∗) = 0. Therefore, B∗ is optimal.

4. CONCLUSIONS
Building on previous notions of Condorcet winning com-

mittees [8, 16, 25], we provide a generic template for extend-
ing Condorcet consistent social choice rules to the bundling
setting. Although our definitions are inspired by previous
works, the main focus of this paper is on computationally
efficient methods to output optimal bundles based on ex-
tensions of popular Condorcet consistent methods such as
Copeland, Ranked Pairs, and Schulze, and approximately
optimal solutions for Copelandα and Maximin generaliza-
tions, where it is NP-Hard to compute the optimum bun-
dles. Our work presents the first known polynomial time
algorithm for committee selection based on Condorcet’s cri-
terion and indicates that it is possible to select bundles that
explicitly appeal to a majority of the population in contrast
to previous work where the focus was on utilitarian welfare
maximization [10].
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