
Efficient Near-optimal Algorithms for Barter Exchange

Zhipeng Jia Pingzhong Tang Ruosong Wang Hanrui Zhang
Institute of interdisciplinary information sciences

Tsinghua University
{jzp13, wrs13, zhang-hr13}@mails.tsinghua.edu.cn, kenshinping@gmail.com

ABSTRACT
We study polynomial-time clearing algorithms for the barter
exchange problem. We put forward a family of carefully de-
signed approximation algorithms with desirable worst-case
guarantees. We further apply a series of novel heuristics to
implement these algorithms. We demonstrate via kidney ex-
change data sets that these algorithms achieve near-optimal
performances while outperforming the state-of-the-art ILP
based algorithms in running time by orders of magnitude.
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1. INTRODUCTION
Barter exchange is a fundamental form of economic mech-

anism that allows agents to swap goods among each other
without money transfers. Over the past decades, designing
economically desirable (e.g., Pareto efficient and strategy-
proof) barter exchange has been a topic of intensive research,
investigated under a variety of important domains, including
house allocation [50, 1, 2], kidney exchange [44, 47, 3, 53],
military contract [51] and lately lung [34] and digital good
exchanges [29].

When considering implementation in practice, most of
these mechanisms involve a non-trivial optimization prob-
lem, making the implementation itself a challenging compu-
tation problem [3, 32, 34].

Take the design and implementation of kidney exchange
for example. In the simplest kidney exchange setting (with-
out altruistic chains) [3], a patient with kidney disease is
paired with an incompatible donor. While the pair donate a
kidney to help some other compatible patient in the system,
they obtain a compatible kidney in return. Both patients
receive a compatible kidney in the end, leading to improve-
ments in social welfare. Nowadays, kidney exchange has been
serving as an important alternative in addition to cadaver
donations and has been fielded in a number of countries such
as the US, UK, Netherlands and South Korea [22].

The implementation problem (aka. the clearing problem),
described theoretically, is to find a set of vertex-disjoint cy-
cles that covers the maximum number of edges in a directed
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graph. Each vertex in the graph represents a patient-donor
pair and each arc represents compatibility between the pairs.
A cycle of length L requires 2L people in simultaneous surg-
eries. For logistic feasbility imposed by simultaneous surg-
eries and to reduce the loss of last-minute dropping out, in
practice, cycle length in the solution is required to be less
than or equal to 3 [3]. Abraham et al. [3] show that finding
a Pareto optimal solution under the cycle length constraint
is NP-hard for any finite L. Similar hardness results are ob-
tained in the domains of lung [34] and digital good exchanges
[29].

There has been a rich literature on optimal algorithms of
the clearing problem described above. Due to various hard-
ness results [3, 13, 14, 35], existing research has been focus-
ing on super-polynomial-time algorithms, mostly based on
integer linear programming (ILP), that would return in an
acceptable amount of time at practical scales. To name a
few, Abraham et al. [3] propose the first clearing algorithm
that enables nationwide kidney exchanges, and a recent work
by Dickerson et al. [22] puts forward a compact ILP formu-
lation that brings about drastic improvements on running
time. For a comprehensive survey on ILP based clearing al-
gorithms, we refer interested readers to [22].

While these ILP algorithms currently suffice for clearing
markets at nationwide scales, there are a number of rea-
sons to look for even faster algorithms. As Dickerson et. al.
pointed out, first of all, advances in medical procedures may
increase the cycle and chain caps, leading to harder prob-
lems that cannot be solved using current algorithms. Sec-
ondly, opportunities exist for cross-border databases, leading
to much larger instances. Thirdly, the NP-hardness nature
makes it possible to encounter hard instances that cannot be
cleared in a reasonable amount of time by the ILP algorithms
– this is one of our major motivations to consider polyno-
mial time approximation algorithms. Last but not least, on
exchange domains with online arrivals and departures, the
algorithms for the dynamic clearing problems, e.g., [12], may
make multiple calls to the static algorithms. As a result, im-
provements on the static algorithm may make big differences
on the dynamic domain.

In this paper, orthogonal to previous approaches, we aim
to tackle those challenges by design polynomial-time, near-
optimal algorithms for the clearing problem. By near-optimality,
we refer to algorithms that both have desirable worst-case
guarantees in theory and yield near-optimal solutions by em-
pirical evaluations. While it may be useful for readers to
think of kidney exchange as a running example through-
out the paper, we remark that the algorithmic framework
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we propose is general and can be adapted to general barter
exchange domains.

1.1 Related work
Since the introduction and clear characterization of kidney

exchange [42, 46, 48, 49, 45], a great deal of work has been
focusing on exact solutions of static exchange market [22,
3, 7, 18, 30, 31, 37, 41], most of which are based on Integer
Programming formulations of the market. Anderson et al.
presented a novel approach to deal with chains in [6].

Sometimes the stochastic settings are a more accurate
model for reality. In a real life exchange procedure, an edge
suggested by first step tests may actually be proven not to
exist by more careful tests before transplantation. However,
since the final test is costly and time-consuming, we can-
not afford to test all patient-donor pairs beforehand. We
therefore aim for algorithms which maximize the expected
number of agents covered by valid cycles based on first step
test results only. Stochastic settings of kidney exchange are
also extensively studied [5, 16, 17, 25, 40].

Another attempt to model the reality resulted in the dy-
namic settings, where agents arrive and depart online, and
we try to maximize the overall number of matched agents.
Various concrete models are studied, and fruitful results
have been acquired [4, 10, 12, 23, 27, 53, 15].

Economic aspects of kidney exchange, such as truthfulness
and fairness, are considered as well. Truthful mechanisms,
where agents (hospitals) have no incentive to report partial
or erroneous information about the patients, are studied in
[11, 48, 52, 8]. Different kinds of fairness are discussed in [32,
26], as well as corresponding algorithms.

Mak-Hau surveyed most of Integer Programming based
methods in [36] and Dickerson presented a unified picture
for various models and settings of kidney exchange [21].

1.2 Our contribution
Our contribution can be summarized as follows:

• We first revisit the so called k-Set-Packing prob-
lem, a relevant computation problem being relatively
well studied, and provide a blackbox reduction from
the clearing Problem to the k-Set-Packing problem.
In particular, we show that an α-approximation algo-
rithm for L-Set-Packing implies an [1 + (α− 1)L/2]-
approximation algorithm for the clearing problem when
the cycle length constraint is L, based on recent effi-
cient local search algorithms for k-Set-Packing [19].
Specifically, this reduction gives a (3/2+ε)-approximation
polynomial algorithm when L = 3 and a (7/3 + ε)-
approximation polynomial algorithm when L = 4.

• There are a number of difficulties that prevent us from
directly deploying the algorithms above to the domain
of Barter exchange. To implement the algorithms, we
introduce a set of powerful heuristics, including a fam-
ily of greedy algorithms to provide a good initial so-
lution for the local search algorithms and a useful sam-
pling technique to select cycles. Combining these heuris-
tics with a modified local search algorithm, we obtain a
highly efficient, near optimal algorithm for the general
barter exchange problem. Furthermore, we also show
how to handle altruistic chains under our framework
with negligible overheads.

• We empirically evaluate our algorithms on standard
kidney exchange data sets. Comparing to the state-of-
the-art ILP based algorithms, our algorithms return
near-optimal solutions (no less than 98% of the opti-
mal solutions) within running time faster by orders of
magnitude.

In summary, all the evidences above suggest that our al-
gorithms are strong candidates to be deployed in the nation-
wide kidney exchanges.

2. PRELIMINARIES
We formally define the abstract barter exchange problem

as follows.

Definition 1 (L-Exchange Problem). Given a directed
graph G = (V,E), the goal of L-Exchange is to find a set of
disjoint cycles of length not exceeding L, covering the maxi-
mum number of edges.

The k-Set-Packing problem mentioned in the introduc-
tion is formally defined as follow.

Definition 2 (k-Set-Packing problem). Given a set
U and a family F ⊆ 2U of subsets of U where for each
V ∈ F , |V | ≤ k, the k-Set-Packing problem is to find a
maximum size subfamily of F consisting of pairwise disjoint
sets.

k-Set-Packing in its essence is a similar problem to L-
Exchange, except that it seeks to maximize the number
of disjoint cycles chosen, instead of edges covered. In [19],
a family of approximation algorithms for k-Set-Packing is
presented, summarized in the following theorem.

Theorem 1 (Theorem 1.2 of [19]). For any ε > 0
and any integer k ≥ 3 there is a polynomial time (k+1+ε)/3-
approximation algorithm for k-Set-Packing.

3. BLACKBOX REDUCTION VIA K-SET-
PACKING

In this section, we try to construct an approximation algo-
rithm for L-Exchange, which calls an approximation algo-
rithm for L-Set-Packing as a subroutine, such that the bet-
ter bound the latter algorithm achieves, the better bound for
L-Exchange. Hence based on Theorem 1, we can construct
a family of approximation algorithms for L-Exchange with
desirable bounds.

The main challenge here is to carry the approximation
ratio of number of cycles chosen to that of the number of
edges covered without significant loss. Suppose we have an
α-approximation algorithm for L-Set-Packing at hand. To
solve for an L-Exchange instance, one seemingly plausible
approach is to treat each cycle of length not exceeding L as
a feasible set, and run the algorithm for L-Set-Packing di-
rectly. However, there are obvious hard instances, on which
the optimal solution consists of t L-cycles, while our algo-
rithm generates t/α 2-cycles. The overall approximation ra-
tio is at least αL/2, which is not satisfactory.

Instead of treating cycles of different lengths equally in
the reduction, we enumerate the maximal number of cycles
of each length, and make multiple calls to the approximation
algorithm for L-Set-Packing to get the most accurate ap-
proximation. Intuitively, a limitation of the numbers of small
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cycles prevents the approximation for L-Set-Packing to re-
turn a solution full of, say, 2-cycles, and thus yields a better
approximation ratio. A detailed construction is given below.

Lemma 1. If there is a polynomial time α(L)-approximation
for L-Set-Packing, then there is a polynomial time β(L)-
approximation for L-Exchange, where β(L) = 1 + (α(L)−
1)L/2.

Proof. Given an α(L)-approximation algorithm for L-
Set-Packing, we construct explicitly a β(L)-approximation
algorithm for L-Exchange.

Suppose in an optimal solution of some L-Exchange in-
stance G = (V,E), the number of l-cycles is cl for 2 ≤ l ≤ L,
and the optimal size is therefore s∗ =

∑
2≤l≤L l · cl. We

enumerate d2, . . . , dL−1 ∈ [n], intuitively the maximal num-
bers of 2-, 3-, . . . , (L − 1)-cycles permitted in the solution,
and construct L-Set-Packing instances I(d2, . . . , dL−1) =
(V (d2, . . . , dL−1),F(d2, . . . , dL−1)) as follows:

Let V (d2, . . . , dL−1) = V ∪A2,d2 ∪A3,d3 ∪ · · · ∪AL−1,dL−1

where Al,dl = {al,1, . . . , al,dl} is the set of added dummy
vertices for l-cycles, with V , A2,d2 , . . . , AL−1,dL−1 mutually
disjoint. We construct F(d2, . . . , dL−1) as follows:

• For each l-cycle (v1, . . . , vl) (where l < L) in G, we add
{v1, . . . , vl, al,i} into F(d2, . . . , dL−1) for each i ∈ [dl].

• For each L-cycle (v1, . . . , vL), we just add {v1, . . . , vL}
into F(d2, . . . , dL−1).

Note that the number of l-cycles will not exceed
(
n
l

)
=

O(nl). The construction of I(d2, . . . , dL−1) can thus be done
in O(nL) time.

We then run the α(L)-approximation for L-Set-Packing
on all these instances I(d2, . . . , dL−1), and return the best
outcome (i.e., with the maximal number of vertices covered).

Now we analyze the approximation ratio of the algorithm
mentioned above. Let s′ be the outcome of our algorithm
and s(d2, . . . , dL−1) be that on I(d2, . . . , dL−1). Since c2, . . . ,
cL−1 ∈ [n], clearly s′ ≥ s(c2, . . . , cL−1). Denote the num-
bers of edges covered by the cycles in the optimal solu-
tion by (x1, . . . , xc), sorted in ascending order, where c =∑

2≤l≤L cl. So s∗ =
∑
i∈[c] xi. Note that a natural one-to-

one mapping between (c2, . . . , cL) and (x1, . . . , xc) follows
directly from the defintion. Let

X(c2, . . . , cL) =
∑

1≤i≤dc/α(L)e

xi,

then s(c2, . . . , cL−1) ≥ X(c2, . . . , cL), and so we have

β(L) ≤ max
c2,...,cL

{
s∗

X(c2, . . . , cL)

}
.

Obviously the extreme case is when xi = 2 for all i ≤
dc/α(L)e and xi = L otherwise, which gives

β(L) ≤ 2c/α(L) + Lc(1− 1/α(L))

2c/α(L)
= 1 +

(α(L)− 1)L

2
.

In total, we make O(nL) calls to the polynomial time ap-
proximation algorithm for L-Set-Packing, and spendO(nL)
time to construct the instance each time. The overall run-
ning time of our constructed algorithm is therefore polyno-
mial.

Theorem 2. For any ε > 0, there is a polynomial time
(1 + L(L− 2)/6 + ε)-approximation for L-Exchange.

Proof. Theorem 1 suggests that for any ε > 0, there
is a polynomial time ((L + 1 + ε)/3)-approximation for L-
Set-Packing. It follows directly from Lemma 1 that for
any ε > 0, there is a polynomial time (1 + L(L− 2)/6 + ε)-
approximation for L-Exchange.

Corollary 1. For any ε > 0, there is a polynomial time
(3/2 + ε)-approximation for 3-Exchange.

Corollary 2. For any ε > 0, there is a polynomial time
(7/3 + ε)-approximation for 4-Exchange.

4. IMPLEMENTING THE CLEARING AL-
GORITHMS

As mentioned, the kidney exchange marketplace looks like
an instance of 3-Exchange, as defined in Definition 1, ex-
cept for the existence of altruistic donors. Altruistic donors,
first discussed in [39, 49], behave just like normal patient-
donor pairs, except that they do not expect an incoming
kidney. They may thus initiate chains of donations instead
of cycles. Unlike cycles, operations involved in chains can be
performed sequentially, as observed in [43]. Also according
to Ashlagi et al. [9] and Ding et al. [28], such chains are
very effective in the market, especially when the chance for
exchange is sparse. For these practical reasons, we consider
chains with much larger sizes in real life kidney exchange.
So the real problem is: How to find a family of 2- and 3-
cycles, and chains initiated by altruistic donors of reason-
able lengths, to cover as many edges (i.e., transplants) as
possible?

In the remainder of the section, we show how to combine a
number of novel heuristics with the algorithm constructed in
the previous section, in order to obtain an applicable clear-
ing algorithm for the real life kidney exchange problem de-
scribed above, fast and near-optimal.

4.1 Overview of the framework
The algorithm for k-Set-Packing stated in Theorem 1,

which we call as a subroutine in the approximation algo-
rithm for L-Exchange, proceeds in a manner well known
as Local Search. Basically, it maintains a solution and tries
to augment it constantly, by replacing up to t existing cycles
in the current solution with t+1 cycles (where t is a param-
eter controlling the approximation ratio), by adding some
unused cycles to the solution and possibly removing some
used ones. More precisely, it picks an unused cycle, adds it
to the solution, and removes all other cycles currently in the
solution which overlap with the added one. If no cycle is
removed, clearly it successfully improved the solution, and
the algorithm iterates to the next round. Otherwise there
would be some vertices freed from cycles removed from the
solution. It then continues searching for unused cycles to
cover these freed vertices, till it sees an improvement of the
solution, or reaches the limitation that t cycles have been re-
moved, so this branch of searching fails and it retracts. The
algorithm terminates when it becomes impossible to replace
t cycles with t+ 1.

Several issues make a straightforward application of this
algorithm practically unfavorable:

• The Local Search process can actually start from any
feasible solution. Presumably it is much more efficient
to generate a heuristic initial solution first, and apply
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Local Search to augment it, than to search everything
out from scratch.

• A single round of searching takes Ω(nt) time, which is
unacceptable (in spite of being polynomial in n) when
t is large, not to mention that we have to enumerate
the maximum number of cycles and make a call for
each group of limitation.

• The Local Search scheme does not specify any order
of searching while an appropriate order might make a
huge difference in practice.

• Chains cannot be effectively handled by a straightfor-
ward implementation of Local Search.

We therefore retain the framework of Local Search, as well
as adopting manifold heuristics in order to tackle the is-
sues above. We expound these heuristics in the rest of this
section, and give explanations why they work. The overall
framework is roughly as follows: We first try to handle chains
and remove altruistic agents, such that we consider only cy-
cles henceforth. Then we generate a coarse solution as fast
as possible, and subsequently apply a modified version of
Local Search procedure to make the solution more accurate.
See Algorithm 1.

Algorithm 1: The Local Search framework

Data: a compatibility graph G, subroutines
ClearChains, InitSolution, LocalSearch

Result: a near optimal solution to the clearing problem
defined by G

1 Let C = ClearChains(G).
2 Let G′ = G \

⋃
C∈C C.

3 Let S0 = InitSolution(G′).
4 Let S = LocalSearch(G′,S0).
5 Return C ∪ S.

4.2 Greedy by Product of Degrees
One nice property of the Local Search framework is that

it may start from any existing solution instead of having to
build one from scratch. Exploiting this property, we try to
find an appropriate way to generate an initial solution, in or-
der to speed up the entire algorithm. Naturally, we want the
generation to be fast, but not necessarily so accurate, since
we always count on the Local Search procedure to accom-
plish that part of the task. For such a purpose, we introduce
the Greedy paradigm that turns out to be extremely effective
in practice.

The Greedy paradigm is indeed simple as it sounds: We
simply order all cycles and try them one by one. We add each
cycle into the solution whenever it does not bring a conflict.
Here, the key of Greedy is to choose a good ordering. Here
we present two orderings that work well in practice: Product
of Degrees (PoD) ordering and LP ordering, together with
an important sampling heuristic which notably improves the
running time and accuracy of Greedy with LP ordering.

Let din(v) and dout(v) denote the in-degree and out-degree
of vertex v. The Product of Degrees ordering, as its name
indicates, sorts all vertices in ascending order of the prod-
uct of their in-degree (plus 1) and out-degree (plus 1), i.e.,
(din(v) + 1) · (dout(v) + 1), and tries to cover them one by

one. An ordering of cycles is implicitly defined by the cover-
ing procedure. The PoD ordering is first implicitly applied
in [35]. It is based on the following simple idea: It is harder
to find a cycle covering a vertex with a smaller product of
in-degree and out-degree, so if we do not cover it as early as
possible, very likely it would never be covered.

In practice, there are two ways of covering in Greedy by
PoD: first searching for 2-cycles and then 3-cycles, and vice
versa. The better outcome is chosen as the output of Greedy
with PoD.

Greedy with the PoD ordering runs extremely fast, yet its
performance is surprisingly good.

On the theoretical side, the Greedy paradigm, realized
with any ordering, is a 3-approximation for 3-Exchange,
as stated in the following theorem.

Theorem 3. The Greedy paradigm realized with any or-
dering is a 3-approximation for 3-Exchange.

Proof. Denote the number of 2- and 3-cycles in the mar-
ket graph G by c = |C|. Let π : [c]→ C be any permutation
of 2- and 3-cycles of G. Recall that the Greedy paradigm
proceeds by checking π(1), . . . , π(c) one by one and adding
a cycle whenever possible. Let C∗ be an optimal solution for
G. We show that in the solution generated by Greedy, there is
at least one vertex in each C ∈ C∗ covered. Suppose not, i.e.,
there is some C, none of whose vertices is covered. Clearly
there is some iC ∈ [c] such that π(iC) = C. When Greedy
reaches C = π(iC), clearly none of its vertices is covered, so
the algorithm would add the entire C into the solution, a
contradiction. Now since there are at most 3 vertices in each
cycle, the Greedy paradigm is a 3-approximation.

As a corollary, we note that Greedy with the PoD ordering
is itself a 3-approximation for 3-Exchange, which becomes
more powerful combined with Local Search.

4.3 Greedy by solutions of LP relaxation
Another natural yet powerful ordering is the LP relaxation

ordering. That is, we solve the relaxed LP of the instance,
and order cycles in descending order of the corresponding LP
variables. The LP ordering is first implemented by Dickerson
[20].

The relaxed LP of an instance G = (V,E) is:

maximize :
∑
C∈C |C| · xC

subject to :
∑
C:v∈C xC ≤ 1, for all v ∈ V,

xC ≥ 0, for all C ∈ C,

where C is the set of all feasible cycles and |C| denotes the
size of a cycle C ∈ C.

Clearly the solution to the relaxed LP of an instance is
greater than or equal to the solution to the barter exchange
formulation itself, but sure the LP solution provides evi-
dences about which cycles are more “important” than oth-
ers. In fact, at least two messages can be derived from the
fact that the variable corresponding to a particular cycle is
large: A large solution to the relaxed LP relies heavily on
the cycle, and the cycle overlaps with few other important
cycles in the relaxed LP. Both messages indicate that we
should assign the cycle a relatively high priority.

We use Gurobi to solve the relaxed LP. A simple trick
here is to solve the dual form of the LP instead of the primal
form, for it is harder for most LP solvers to deal with huge
number of variables.
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Experiments show that LP relaxation ordering often yields
slightly better initial solutions than that with PoD ordering,
with a notably larger consumption of time, since we have to
solve the relaxed LP first to run the Greedy procedure based.
Also, as a corollary of Theorem 3, Greedy by LP relaxation
itself is a 3-approximation for 3-Exchange.

4.4 Sampling heuristic
LP ordering is not yet perfectly preferable, in that the

time consumption is too great (though negligible compared
to that needed by an exact algorithm), especially considering
we are just generating an initial solution. We hence further
adopt the sampling heuristic to reduce the running time,
while boosting the accuracy as a surprisingly byproduct.

The sampling heuristic is just as simple as the two order-
ings. We pick 3-cycles at random, and consider only 3-cycles
we picked in the relaxed LP. In other words, we fix the LP
variables of other cycles to be 0, that is to say, practically we
do not create variables for them at all. (We still consider all
2-cycles, since the number of 2-cycles is always reasonable.)

It is kind of surprising that such a simple heuristic reduces
significantly the running time of LP approximation while
even improving the accuracy. Here is our explanation: Sup-
pose there are c 3-cycles in total, and we are to approximate
the optimal solution of the original graph by the optimal
solution in a subgraph generated by picking 3-cycles uni-
formly at random. Conceivably, to get a perfectly accurate
solution with probability of 0.5, we may need 0.9c uniformly
random 3-cycles, while, say, a 0.9-approximation of the op-
timum requires only 0.1c uniformly random 3-cycles, as the
marginal utility of 3-cycles decreases intuitively. Also, as the
number of 3-cycles decreases, the graph becomes sparser,
which implies that the solution to the relaxed LP should be-
come more concentrated, as there are less conflicts between
3-cycles. Clearly, the more concentrated the solution is, the
better approximation we will get for the sampled subgraph.
As the rate at which the approximation becomes more ac-
curate overruns that at which the optimum of the sampled
subgraph decreases, the overall accuracy rises, in a certain
interval of density of the sampled graph.

In practice, we pick 3-cycles in a more delicate way instead
of just picking them uniformly at random. In picking each
cycle, we first pick a uniformly random patient (vertex), and
then pick one of unselected cycles covering it, uniformly at
random. We try sampling with 0.1c and 0.01c 3-cycles. Both
parameters work well.

With the sampling heuristic, the speed of Greedy by so-
lutions of LP relaxation becomes comparable with that of
Greedy with PoD ordering, though the latter is still about 10
times faster. Given the utter efficiency of Greedy with PoD
ordering, such a running time seems totally acceptable, even
under the most challenging requirements of practical pur-
poses.

4.5 Speedups of Local Search

To craft a faster version of Local Search, first we note:

• Our objective is to maximize the number of edges (or
vertices) covered, but not the number of cycles selected
as in the original version in [19].

• The enumeration of numbers of cycles, as stated in
the proof of Lemma 1, amplifies the running time to
an overwhelming extent.

The two facts above lead directly to a first step in our
modification of Local Search: In the search procedure, we
seek to replace at most t covered vertices, but not cycles,
with t + 1. And subsequently, we no longer need to enu-
merate the numbers of cycles. Recall that the enumeration
is introduced to handle the issue, that cycles of different
“weights” are treated equally in the original version of Local
Search, but we are now directly maximizing the number of
covered vertices.

In each round of the search, we choose a starting cycle
not in the current solution, start the search by adding the
cycle and removing overlapping cycle(s) from the solution,
and try to append other cycles into the solution to cover
the vertices freed from the removed cycle(s), and hopefully
some more vertices previously not covered. The choice of the
starting cycle follows several rules, listed in descending order
of priority:

1. All cycles covering no non-free vertices should be added
into the solution immediately.

2. When all cycles cover at least one non-free vertex,
cycles covering the least number of non-free vertices
should be tried first.

3. If there are multiple such cycles, ones undergone the
least number of former attempts should be tried first.

4. If there are multiple such cycles, and they all cover 1
non-free vertices, ones whose covered non-free vertex
is currently covered by a 2-cycle (instead of a 3-cycle)
should be tried first.

5. If there are multiple such cycles, under the condition of
rule 4, ones whose covered non-free vertex, say v, has
the minimum din(v) · dout(v) (no “plus 1” here) should
be tried first.

6. If there are still multiple such cycles, then pick any one
of them.

Once we have chosen the starting cycle and begin to search,
we keep track of a set of freed vertices from removed cycles,
to be covered by unused cycles. We consider cycles that cover
3 freed vertices first, then those which cover 2 freed vertices.
Those that cover only 1 freed vertex are ignored in the cur-
rent stage. We try each cycle in the order described above,
remove all (if any) overlaping cycles, and continue search-
ing to cover the remaining (and possibly some new) freed
vertices. We count the number of vertices freed from cycles
removed in the search. Once the number reaches a prede-
fined threshold, which means we have freed too many ver-
tices and gone too far, we declare an immediate failure and
return. Also, for similar reasons, we give up and return when
the depth of the search exceeds some predetermined thresh-
old. An attempt fails if it reaches the above two thresholds,
or it fails to cover all freed vertices. On the global level,
when a certain number of consecutive attempts of starting
cycles fail, we assert that a further improvement is extremely
difficult to find, and terminate the entire Local Search pro-
cedure.

4.6 Dealing with chains
One remaining issue is to deal with chains initiated by

altruistic donors. Our approach is similar to what was pro-
posed in [28]. The approach is quite simple: We try all altru-
istic vertices one by one, and pick the longest chains possible.
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After chain selection, all vertices covered by chosen chains,
as well as altruistic vertices, are removed from the graph,
and so we consider only 2- and 3-cycles from now on.

To improve efficiency and accuracy, we further adopt a
heuristic inspired by the ideas discussed in previous sections.
In choosing chains, we consider only patients with small
PoDs.1 More specifically, we sort all vertices in ascending
order of their PoDs, and consider only the first r fraction of
the vertices, where r is a predetermined parameter.

Equipped with the heuristic above, our algorithm handles
chains in negligible time, with negligible sacrifice of over-
all accuracy compared to exact solutions. See the following
section for experimental results.

5. EMPIRICAL EVALUATIONS

5.1 Experiment setup
We evaluated our algorithms on three kidney datasets: the

kidney data available on PrefLib.org [38], [24]; the US data
and China data used in [33].

For comparison of running time and evaluation of approx-
imation ratio, we also ran the state-of-the-art PICEF algo-
rithm [22] which can give the optimal solution.

All the experiments are conducted on a server with 4 CPU
cores and 28GB RAM.

5.2 Results
Figure 1 and Figure 3 show running time and approxi-

mation ratio of the proposed Local Search framework with
initial solutions via Greedy by solutions of LP relaxation.
Figure 2 and Figure 4 show running time and approxima-
tion ratio of the proposed Local Search framework with ini-
tial solutions via Greedy by PoD.

From the figures we see that both of our algorithms are
clearly faster by orders of magnitude than PICEF. Both al-
gorithms achieve better than 90%-approximation under all
settings. Particularly, when initial solutions are produced
via Greedy by solutions of LP relaxation, the Local Search
framework achieves 99%-approximation without chains, and
98%-approximation with chains. On the other hand, Local
Search with initial solutions via Greedy by PoD is notably
faster, yet attaining an acceptably satisfactory approxima-
tion ratio. In words, Greedy by solutions of LP relaxation
accomplishes a balance between running time and approxi-
mation ratio, and fits for most practical purposes, especially
when accuracy is desired. Greedy by PoD, which further
speeds the algorithm up with a reasonable loss of accuracy,
is more favorable when speed is the most significant concern.

Also, as shown in Table 1, the sampling heuristic does
make a huge difference in practice. As the sampling ratio
decreases from 1 to 0.01, the approximation ratio rises from
0.981 to 0.995, and the running time decreases from 59.419
to 1.132. However, an even smaller sampling ratio, 0.001,
decreases the approximation ratio. We choose 0.01 as the
sampling ratio in practice to achieve the best approximation
ratio.
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Figure 1: Running time (the charts on the left) and approxima-
tion ratio (the charts on the right) of the proposed Local Search
framework with initial solutions via Greedy by solutions of LP
relaxation in the settings of having no chains. In the charts show-
ing approximation ratio, the red part indicates the approxima-
tion ratio of initial solutions, and the yellow part indicates the
improvement after applying Local Search.
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Figure 2: Running time and approximation ratio of the proposed
Local Search framework with initial solutions via Greedy by PoD
in the settings of having no chains. Drawn in the same way as
Figure 1.
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Figure 3: Running time and approximation ratio of the proposed
Local Search framework with initial solutions via Greedy by solu-
tions of LP relaxation in the settings of having chains on PrefLib
data. Drawn in the same way as Figure 1.

Sampling
ratio

Approximation
ratio

Running time
(in seconds)

1 0.981 59.419
0.1 0.987 4.283
0.01 0.995 1.132
0.001 0.994 0.561

Table 1: Comparison of different sampling ratios for Greedy by
solutions of LP relaxation. Run on PrefLib data of 1024 patients
in the settings of having no chains.
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Figure 4: Running time and approximation ratio of the proposed
Local Search framework with initial solutions via Greedy by PoD
in the settings of having chains on PrefLib data. Drawn in the
same way as Figure 1.
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