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ABSTRACT
Demand-side response (DR) is emerging as a crucial tech-
nology to assure stability of modern power grids. The un-
certainty about the cost agents face for reducing consump-
tion imposes challenges in achieving reliable, coordinated
response. In recent work, Ma et al. [13] introduce DR as a
mechanism design problem and solve it for a setting where
an agent has a binary preparation decision and where, con-
tingent on preparation, the probability an agent will be able
to reduce demand and the cost to do so are fixed. We gen-
eralize this model to allow uncertainty in agents’ costs of re-
sponding, and also multiple levels of effort agents can exert
in preparing. For both cases, the design of contingent pay-
ments now affects the probability of response. We design a
new, truthful and reliable mechanism that uses a “reward-
bidding”approach rather than the“penalty-bidding”approach.
It has good performance when compared to natural bench-
marks. The mechanism also extends to handle multiple units
of demand response from each agent.
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1. INTRODUCTION
The task of maintaining an exact balance of the supply

and demand in power systems is increasingly challenging,
due to the increasing penetration of intermittent renewable
generation [24, 25], and the presence of more volatile types of
loads, such as those from electric vehicle charging [21]. This
has lead to an increasing interest in demand-side response
(DR), in which consumers commit to temporarily reduce
or shift consumption away from periods where generation
capacity does not meet the aggregate demand [15].

In contrast to the operating reserves on the supply side,
where the cost and ability for a generator to increase power
output can be known with high precision when planning one
day ahead, consumers on the demand side face uncertainty
about their future costs for reducing consumption. Consider
an industrial factory which uses electricity for the produc-
tion line, transporting raw materials, and cooling. Its ability
to respond to a DR event may depend on the production pro-
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cedure, time of day when called for DR, customer requests,
and weather conditions, thus is highly uncertain. This im-
poses challenges on selecting and incentivizing a subset of
the consumers to meet a total reduction target with high
probability (what we call the “global reliability constraint”),
without selecting too many consumers to prepare or leading
to excessive economic disruption.

Ma et al. [13] introduce reliable DR as a two period mech-
anism design problem, where the planner is the electricity
grid (or DR aggregator) and the agents are consumers inter-
ested in offering DR services. In the planning period (period
zero) consumers may opt-in to a DR scheme and make re-
ports to the mechanism based on their probabilistic informa-
tion on their costs and abilities to respond. A subset of these
consumers are selected and asked to prepare for demand re-
duction. Later, in the event DR is required (period one),
based on the resolved uncertainty, selected consumers can
decide on whether to follow-through and respond to receive
a reward, or not to respond and pay a penalty.

Two truthful and reliable “penalty-bidding” mechanisms
with fixed rewards are proposed in [13], where agents are
selected in decreasing order of their maximum acceptable
penalties in the event of non-response. The model on agents’
types (each agent can choose to prepare for DR in period
zero at a fixed preparation cost, and if so, in period one,
she will be able to reduce, with some fixed probability, one
unit of consumption at a fixed opportunity cost), however,
does not reflect the reality that with higher rewards and
penalties agents will be incentivized to respond with higher
probabilities. We generalize the model in the following ways:

(i) Uncertain costs: having prepared in period zero, agents
are still uncertain about the costs they will face, and
will decide on whether to respond in period one after
the actual costs are realized. Agents are more likely to
respond when the rewards and penalties are high.

(ii) Multi-effort-level: agents may have multiple levels of
effort they can exert when preparing to respond. Higher
rewards and penalties may induce a higher preparation
level, resulting in a higher probability of responding.

(iii) Multi-unit: each agent is able to reduce a varying
amount of consumption, and has probabilistic informa-
tion about its values for different consumption levels.

The dependence of the global reliability constraint on both
agents’ types and the payments contingent on agents’ re-
sponses introduces tensions among selecting a small set of
agents, satisfying the reliability constraint, and truthfully
eliciting information from the agents. We will see that the
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“penalty-bidding”mechanisms [13] do not generalize to achieve
reliable, dominant-strategy demand response.

Our main contribution is to design a new, truthful and
reliable mechanism for this generalized setting that uses a
“reward-bidding” approach. In particular, the mechanism
adopts a fixed penalty for non-response for all selected agents,
and agents are selected in increasing order of their minimum
acceptable rewards given this penalty. Thus, the mechanism
implements the idea of reward bidding. The reward offered
to a selected agent is large enough that it will choose to
prepare to reduce demand, and follow-through with high
probability. This is not possible with penalty-bidding mech-
anisms, because of a subtle interaction between incentive
constraints and the need to select a set of agents such that
the reliability constraint will be satisfied.

For the multi-unit scenario, we generalize the mechanism
by introducing linear payment schedules where rewards and
penalties are defined per unit of consumption. We also show
that we can handle the possibility of multiple levels of prepa-
ration efforts in both the single and multi-unit scenarios.

We demonstrate in simulation that the reward-bidding
mechanism achieves close to the first best (i.e. assuming
the mechanism knows agent types and therefore how reli-
able they would be given certain payments) with regard to
the number of selected agents. We also benchmark against
a spot auction in which a reverse auction is used to achieve
a required reduction in consumption. The reward-bidding
mechanism achieves the same reliability with lower expected
total payments, and much less variance in payments.

1.1 Related Work
Some prior work that considers uncertainty in agent types

includes: research on promoting utilization of shared re-
sources in the context of coordination problems [12], max-
imizing social welfare in a setting with uncertainty about
agent actions [18], and maximizing an airline’s expected rev-
enue in a setting where passengers have uncertainty about
whether or not they may fly and thus refund menus can be
useful [7]. Also related is work on dynamic mechanism de-
sign with dynamic agent type [3, 4, 5, 16]. But none of this
prior work has the objective to satisfy a probabilistic con-
straint on the joint actions taken by the agents. Most closely
related is a paper that introduced the problem of mechanism
design for reliable demand response [13]. The present work
significantly generalizes this by allowing for uncertain op-
portunity costs, multiple effort levels, and varying units of
possible consumption reduction.

A number of works on demand response have discussed
the concept of aggregation of multiple agents, both aggre-
gation of small intermittent generators, and aggregation of
uncertain demands [25, 24, 22, 20]. Some of these works
propose the use of scoring rules to incentivize truthful re-
ports about expected future generation or consumption [23,
1, 20]. Unlike a scoring rule approach, in this work the re-
wards and penalties of selected agents are determined by the
market, from the reports made by other agents. This guar-
antees that rewards are set such that the selected subset of
agents will guarantee the system-wide reliability constraint.

Other prior works on demand response markets (e.g. [11,
9, 17]) consider agents bidding using supply curves, and
study the market equilibria or these settings. They do not,
however take a mechanism design perspective or guarantee
truthful reporting. Pricing mechanisms to incentivize load

shifting have also been studied in [2, 19, 10]. We focus on
achieving reliable DR in one future period, whereas ana-
lyzing load shifting requires modeling of agents’ uncertain
valuations for different consumption profiles over extended
periods of time.

2. PRELIMINARIES
We now model the single-unit DR problem in which each

agent can reduce the same amount of consumption, and de-
fer the model and mechanism for multi-unit DR to Section 4.

Uncertain Costs.
Let N = {1, 2, . . . , n} denote the set of agents, each of

which can prepare for demand response ahead at a cost of
ci > 0. If an agent prepares for demand reduction, her
cost for reducing one unit of consumption will be a random
variable Vi with non-negative support, finite expectation and
cumulative distribution function (CDF) Fi. Vi represents
the uncertain opportunity cost for the loss of electricity, the
exact value of which is not realized until later. The pair
θi = (ci, Fi) defines an agent’s type and is agent i’s private
information. Let θ = (θ1, . . . , θn) denote a type profile. We
assume in our model that an agent can only respond if she
first prepares, and that the opportunity costs of agents are
independently distributed.

Note that the discrete single-unit (vi, pi, ci) model pro-
posed in [13], where an agent can reduce one unit of con-
sumption with probability pi at a cost of vi if she prepares
at the cost of ci, is a special case of the uncertain cost model,
where Vi = vi with probability pi and Vi = −∞ (represent-
ing the hard constraint) with probability 1− pi.

Reliability Target.
Denote M ∈ N+ as the target capacity reduction that

needs to be achieved. The objective of the planner, the
electricity grid or an DR aggregator, is to select a small set
of agents to prepare for DR ahead of time and set the proper
incentive schemes such that the target reduction is met with
probability at least τ ∈ (0, 1). (M, τ) is the system-wide re-
liability target. We make a deep market assumption that
there are enough agents in the economy such that if all are
paid a high enough reward, the reliability target can be met.
This holds for most real DR markets.

Two-period Mechanisms.
We consider demand response mechanisms that run over

two periods with the the following timeline.

Period 0:
• Agents report information to the mechanism, with knowl-

edge of their types.

• The mechanism determines for each selected agent i
the period-one reward ri ≥ 0 for reducing consumption
and penalty zi ≥ 0 in case of non-response.

• With the knowledge of ri and zi, each selected agent
decides whether to prepare for demand response.

Period 1:
• The opportunity costs for responding are realized, and

each agent decides whether or not to do so based on
ri, zi and the realized value of Vi.

• For each selected agent i, the mechanism pays ri upon
response, and charges zi, otherwise.
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We call the pair of action-contingent payments (ri, zi) a
payment schedule for demand response. Note that the mech-
anism is unable to observe selected agents’ choices on prepa-
ration or their realized opportunity costs for reducing.

A demand-response mechanism is dominant strategy in-
centive compatible (DSIC) if truthful reporting maximizes
each agent’s expected utility regardless of the reports of
other agents, and conditioned on the agent making rational
decisions (see Section 2.1). A demand-response mechanism
is individually rational (IR) if each agents’ expected util-
ity for (truthful) participation is non-negative. Informally,
a DSIC mechanism is truthful, and we can say that an IR
mechanism ensures that agents will choose to participate.

Reward and Penalty Bidding.
Consider agent i facing a fixed penalty for non-response.

If her reward for response if zero, she loses in expectation
thus will be unwilling to accept the payment schedule. How-
ever, if she is offered a million dollars for responding, there
is no reason to reject. Intuitively, for any penalty, there is
a minimum acceptable reward and similarly, fixing any re-
ward, there would be a maximum acceptable penalty, for
the agent to be willing to accept the DR payment schedule.

We now informally state the reward-bidding mechanism
that we design in this paper, and also the penalty-bidding
mechanism [13]:

Definition (Reward-bidding - informal). Fixing a uniform
penalty z, the reward-bidding mechanism selects agents in
increasing order of their minimum acceptable rewards until
the reliability target is met, and pays each agent the highest
minimum acceptable reward that she can claim to still be
selected.

Definition (Penalty-bidding - informal). Fixing a uniform
reward r, the penalty-bidding mechanism selects agents in
decreasing order of their maximum acceptable penalties un-
til the reliability target is met, and pays each agent the
lowest maximum acceptable penalty that she can report to
still be selected.

Fixing one of r and z is essential for selecting more reli-
able agents, computing critical payments for truthful infor-
mation elicitation, and incentivizing higher response proba-
bilities. These are not easily achievable in the general two-
dimensional payment space where both r and z depend on
agents’ reports. We defer the detailed discussions to a full
version of this paper.

We now proceed with the analysis of agents’ rational de-
cisions, expected utilities, minimum acceptable rewards and
reliability in the following section.

2.1 Agents’ Decisions, Utilities and Reliability
We first analyze a selected agent’ rational decisions on

preparation and response when she faces a DR payment
schedule (ri, zi). Consider the following cases:
1. If the agent does not prepare, she is unable to respond

and will be charged the penalty, thus her utility is −zi;
2. If the agent does prepare at a cost of ci and decides to re-

spond, she gets paid reward ri but incurs an opportunity
cost of Vi, thus her utility is ri − Vi − ci;

3. If the agent did prepare but decides not to respond, she
will be charged the penalty thus her utility is −zi − ci.

We can see that conditioned on preparation, the utility-
maximizing decision in period one would be to respond if and

ri

ui(ri, zi)

r0
i

(i) ui(ri, zi)

ri

p̃i(ri, zi)
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(b) Varying zi

Figure 1: Expected utility and effective reliability
as functions of the reward ri and the penalty zi.

only if (breaking ties in favor of responding) ri − Vi − ci ≥
−zi − ci ⇔ Vi ≤ ri + zi. Define the reliability of this agent
given the payment schedule as the probability with which
the agent responds, we have

pi(ri, zi) , P [Vi ≤ ri + zi] . (1)

Intuitively, a prepared agent responds only if the opportu-
nity cost is small in comparison with the reward and penalty,
and a higher reward or a higher penalty may increase the
probability with which the agent responds. The expected
utility of a prepared agent at the end of period zero is:

ui(ri, zi) =E [(ri − Vi) · 1{Vi ≤ ri + zi}]
− zi · P [Vi > ri + zi]− ci, (2)

where 1{·} is the indicator function. Fixing zi, the expected
utilities as a function of ri are as illustrated in Figure 1(a)(i).

Minimum Acceptable Rewards.
The following lemma states useful properties of the ex-

pected utility function. The proofs are straightforward and
thus omitted due to the space limit.

Lemma 1. Fixing zi ≥ 0, the expected utility function
ui(ri, zi) satisfies:

1. ui(0, zi) = −E [Vi · 1{Vi ≤ zi}]− ziP [Vi > zi]− ci < 0.

2. limri→+∞ ui(ri, zi) = +∞.

3. ∂
∂ri

ui(ri, zi) = P [Vi ≤ ri + zi] = pi(ri, zi).

4. ui(ri, zi) is monotonically increasing and convex in ri.

5. There exists a unique zero-crossing r0
i (zi) s.t. ui(r

0
i , zi) =

0, see Figure 1(a)(i).

Intuitively, Lemma 1 shows that if an agent is charged a
fixed penalty but paid no reward, her expected utility from
preparing for DR is negative. As the reward increases, her
expected utility continuously increases and crosses zero at
some point r0

i (zi). This is the minimum acceptable reward
that the agent needs to be paid for her to be willing to pre-
pare for DR and also pay a penalty of zi for non-response.
Technically, r0

i (zi) is a function of zi but we omit the argu-
ment when it is obvious from the context.

With fixed reward ri, we can prove parallel properties of
ui(ri, zi) as a function of the penalty zi (see Figure 1(b)(i))
but omit the formal statements due to space limit. ui(ri, zi)
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u2(0, z)

u1(0, z)

r0
1

r0
2

u1(r1, z)

u2(r2, z)

Figure 2: Expected utilities as functions of ri for
agents in Example 1.

is continuously decreasing and convex in zi, has partial deriva-
tive ∂

∂zi
ui(ri, zi) = pi(ri, zi) − 1, and has a unique zero-

crossing z0
i (ri) representing the agent’s maximum acceptable

penalty given reward ri.

Preparation Decisions and Effective Reliability.
Fixing zi > 0, if the agent faces a reward smaller than her

minimum acceptable reward ri < r0
i (zi) (or equivalently, if

an agent faces penalty zi > z0
i (ri) for some reward ri), her

expected utility, preparing or not, would be negative. Thus
an agent offered such a payment schedule would not accept
and never reduce consumption. When agent i faces ri ≥
r0
i (zi) (or equivalently zi ≤ z0

i (ri)), her expected utility from
preparing is non-negative, thus she will accept the payment
schedule and choose in period zero to prepare.

Let Xi(ri, zi) be a random variable indicating the number
of units reduced by agent i, if she is offered the payment
schedule (ri, zi). Xi(ri, zi) is Bernoulli distributed

Xi(ri, zi) ∼ Bernoulli(p̃i(ri, zi)) (3)

with parameter

p̃i(ri, zi) , pi(ri, zi) · 1{ri ≥ r0
i (z)}, (4)

since she reduces consumption by one unit with probability
pi(ri, zi) (see (1)) if and only if she accepts the payment
schedule and prepares, which happens when ri ≥ r0

i (z). We
call p̃i(ri, zi) the effective reliability of agent i if offered the
payment schedule (ri, zi). p̃i(ri, zi) as a function of the re-
ward ri and penalty zi is illustrated in Figure 1(ii).

An important observation from part 3 of Lemma 1 is that
pi(ri, zi) relates to the partial derivatives of ui(ri, zi): the
more reliable an agent is, the more likely that the agent is
going to be paid the reward (not to pay the penalty), thus
the faster ui(ri, zi) increases as the ri increases (the slower
ui(ri, zi) decreases as the zi increases). Thus, an agent’s
effective reliability is fully determined by her expected utility
ui(ri, zi), and ui(ri, zi) fully characterized the parts of an
agent’s type that is relevant to the DR problem.

Before proceeding to the mechanisms, we look at an ex-
ample of two agents with uniformly distributed costs.

Example 1. Consider an economy with two agents whose
opportunity costs are uniformly distributed: V1 ∼ U[0, 8],
V2 ∼ U[0, 20] and let the preparation costs be c1 = 2, c2 = 1.
Fixing the penalty z = 1 for both agents, the expected utili-
ties computed according to (2) are as illustrated in Figure 2.
Solving ui(ri, z) = 0 we get the minimum acceptable rewards
for the two agents: r0

1(z) = 5.93 and r0
2(z) = 7.94

From the distributions of Vi of the two agents, we know
that for any common reward and penalty the probability
that agent 1 responds is higher. This corresponds to the
steeper slope of u1(r1, z). In general, agents with smaller
minimum acceptable rewards are more likely to have a steeper
slope, which corresponds to higher reliability.

3. THE REWARD-BIDDING MECHANISM
We now design a truthful and reliable mechanism for de-

mand response, the reward-bidding mechanism, which fixes
a uniform penalty for non-response and selects agents in in-
creasing order of their minimum acceptable rewards. Note
that reward-bidding is a direct-revelation mechanism, where
an agent’s critical reward payment is determined using not
only the minimum acceptable rewards but also the reliability
information reported by the rest of the agents.

We first provide notations. Consider a post-price mecha-
nism where every agent is offered the same payment sched-
ule (r, z). The random variable for the total reduction by
all agents given (r, z) is

∑
i∈N Xi(r, z), where Xi(r, z) is the

number of units reduced by agent i if offered (r, z), as de-
fined in (3). We know from the deep market assumption and
the monotonicity of the effective reliability p̃i(ri, zi) that for

any fixed z, there exists a minimum uniform reward r(N)(z)
such that the reliability target (M, τ) is met. Formally

r(N)(z) , min

{
r ∈R+ s.t. P

[∑
i∈N

Xi(r, z)≥M

]
≥ τ

}
. (5)

Similarly, for each agent i, we define the minimum sub-
economy uniform reward r(N\{i})(z) as the minimum amount
to offer to all agents but i to achieve the reliability target:

r(N\{i})(z) , min{r ∈ R+ s.t. P
[∑

j∈N\{i}Xj(r, z) ≥M
]
≥

τ}. Note that both r(N)(z) and r(N\{i})(z) depend on (M, τ),
but we omit the arguments when it’s clear from the context.

Definition 1. (Reward-Bidding Mechanism with Penalty
z) The reward bidding mechanism collects reported type

profile θ̂ = (θ̂1, . . . , θ̂n), computes for each agent the mini-
mum acceptable reward r̂0

i (z), and for reliability target (M, τ)

the minimum uniform reward r(N)(z) given z, and the min-

imum sub-economy rewards r(N\{i})(z). Then:

• Selection rule (period zero): select all agents that ac-

cept the minimum uniform reward r(N)(z), i.e. xi(θ̂) =

1 if r̂0
i (z) ≤ r(N)(z) and xi(θ̂) = 0, otherwise.

• Payment rule (evaluated in period zero, payments made

in period one): for selected agents, pay reward ri(θ̂) =

r(N\{i}) upon demand reduction and charge penalty
zi(θ̂) = z for non-response. No payment to or from
unselected agents.

We now examine the outcome of the reward-bidding mech-
anism for the economy introduced in Example 1 to show how
the reward-bidding mechanism works.

Example 1. (continued) Consider a reliability target M =
1, τ = 0.9 and assume agents report truthfully to the reward-
bidding mechanism with penalty z = 1. If agent 1 is offered
reward r = 6.2 > r0

1(z), which agent 2 is unwilling to accept,
agent 1 accepts the payment schedule, prepares, and reduces
with probability p̃1(6.2, 1) = 7.2/8 = 0.9 and meets the

reliability target. Thus r(N)(z) = 6.2 and agent 1 is the
only selected agent.

In the sub-economy N\{1}, we can compute that agent

2 needs to be paid at least rN\{1}(z) = 17 to satisfy the
reliability constraint thus agent 1’s reward determined by
the mechanism would be r1 = rN\{1}(z) = 17. With r1 = 17
and z1 = 2 agent 1 actually always reduces consumption
thus M = 1 is achieved with probability one.
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Theorem 1. The reward-bidding mechanism is DSIC, IR
and always satisfies the reliability target.

Proof. We first prove DSIC and IR. Fix an agent i. For
all possible reports θ̂i that i can make, there are two pos-
sible outcomes: to be selected, face payment (rN\{i}, z), or
not to be selected and face payment zero. Since z is fixed
and rN\{i} depends only on the reports from the rest of the
agents, all payments are independent to i’s own report (i.e.
agent-independence). To prove DSIC, we only need to show
that the mechanism chooses the better outcome between the
two for all agents (i.e. agent-maximization, see [14]).

Observe that rN\{i}(z) ≥ r(N)(z) for all i, since for any

r, P
[∑

j∈N Xj(r, z) ≥M
]
≥ P

[∑
j∈N\{i}Xj(r, z) ≥M

]
al-

ways holds. For i s.t. r0
i (z) ≤ r(N)(z), the expected utility

from the payment schedule (rN\{i}(z), z) is therefore non-
negative thus getting selected is agent-maximizing. For i
s.t. r0

i (z) > r(N)(z), rN\{i}(z) = r(N)(z) holds, since agent i

does not accept (r(N)(z), z), thus P
[∑

j∈N Xj(r
(N), z) ≥M

]
= P

[∑
j 6=iXj(r

(N), z) ≥M
]
. Her expected utility from be-

ing selected and face (rN\{i}(z), z) is negative, therefore not
being selected and getting utility zero is agent-maximizing
for her. IR also follows, since all agents gets at least the
expected utility of not being selected, which is zero.

What is left to prove is that the mechanism always guaran-
tees the reliability target. This is straightforward, observing
that 1) for i s.t. xi(θ̂) = 0, r0

i (z) > r(N) thus p̃i(r
(N), z) = 0,

2) P
[∑

i∈N Xi(r
(N), z) ≥M

]
= P

[∑
i∈S Xi(r

(N), z) ≥M
]

where S = {i ∈ N s.t. xi(θ̂) = 1} is the set of all se-
lected agents, 3) p̃i(pi, zi) is increasing in ri thus so is the
global reliability P

[∑
i∈S Xi(ri, z) ≥M

]
and finally 4) ri =

r(N\{i}) ≥ r(N) for i ∈ S. Thus the probability of achieving
the reliability target M can be bounded by:

P

[∑
i∈S

Xi(ri, z) ≥M

]
= P

[∑
i∈S

Xi(r
(N\{i}), z) ≥M

]

≥P

[∑
i∈S

Xi(r
(N), z) ≥M

]
= P

[∑
i∈N

Xi(r
(N), z) ≥M

]
≥ τ.

This completes the proof of the theorem.

3.1 On Penalty Bidding
We now provide some intuition on why penalty-bidding [13]

does not generalize to achieve the reliability target in a
truthful manner for the uncertain cost scenario. From the
above discussions, we know that the reward-bidding mech-
anism with penalty z selects the smallest set of agents nec-
essary to satisfy the reliability target, in the case that all
agents are offered the same penalty z and reward r. Each
selected agent is then rewarded the highest minimum ac-
ceptable reward that she can report and still be selected—

assuming agent i reports some type θ̂i such that r̂0
i (z) >

r(N\{i}), the r(N) computed based on the new reports be-
comes r(N\{i}) and agent i is therefore no longer selected.

What is crucial is that the probability of meeting the tar-
get is monotone in the varying part of the payment schedule:
for uncertain costs, fixing zi, and increasing ri, the effective
reliability p̃i(zi, ri) weakly increases for all agent types. But
whereas this is the case for fixed reward and varying penalty
under the simple fixed cost model of [13] (i.e. the (vi, pi, ci)

model, fixing r and decreasing z more agents opt-in and non
of them becomes less-reliable), it is not the case for penalty-
bidding under the uncertain costs model. As is illustrated
in Figure 1(b), the effective reliability p̃i(ri, zi) is first in-
creasing in zi, however, once zi exceeds z0

i (r), the agent no
longer accepts the DR payment schedule and the effective
reliability drops to zero.

To get a penalty-bidding mechanism to satisfy the global
reliability constraint without selecting too many agents, we
would need to set the penalty zi for a selected agent i to
be high enough such that the effective reliability is high,
but low enough so the payment schedule would not be re-
jected. This range cannot be easily determined without us-
ing agent i’s own report, but this would, in turn, violate
agent-independence and lose incentive compatibility. In con-
trast, for reward-bidding where there is no non-monotonicity
in the effective reliability. Thus, we only need to guarantee a
large enough set of agents are offered high enough rewards,
and this can be achieved without using agent i’s report to
determine her own payments.

3.2 Computation of Reliability and Payments
We now briefly discuss the evaluation of the reliability

and the computation of the minimum rewards in (5). Let
S be the set of agents s.t. p̃i(r, z) > 0. The total reduction∑
i∈N Xi(r, z) =

∑
i∈S Xi(r, z) is a Poisson-binomial dis-

tributed random variable with CDF: P
[∑

i∈S Xi(r, z) ≤ k
]

=
∑k
`=0

∑
A∈S`

∏
i∈A p̃i(r, z)

∏
j∈Ac(1−p̃j(r, z)), where S` is

the set of all subsets of S of cardinality `, and Ac = S\A [6].
We refer readers to [13] for polynomial algorithms for the ex-
act evaluation of Poisson-binomial CDF.

Upper bounds of r(N)(z) and also r(N−\{i})(z) can be
computed to arbitrary precision by doing a binary search,
starting with some very small and very large r. The re-
liability target is always achieved, and this approximation
does not affect the incentives of the agents, since though the
computation is not exact, the approximation process is still
independent to agent i’s own report.

4. MULTI-UNIT GENERALIZATION
The reward-bidding mechanism applies when agents can

reduce multiple but fixed number of units of consumption.
We generalize agents’ type model for the scenario where
agents may prefer to reduce a varying amount of consump-
tion depending on the realized values and the payments, and
generalize our mechanism to truthfully achieve the reliability
target using a linear incentive scheme. The preparation cost
and multiple-levels of preparation are not modeled for sim-
plicity of notation, however, the model can be generalized
without requiring modifications of the mechanism.

Uncertain Value Functions.
In order to analyze agents’ decisions on reducing a varying

amount of consumption, we need to consider agents’ values
for consuming different quantities. Let Ωi be the set of pos-
sible world states of agent i, e.g. the set of all possible orders
on cakes for agent i which is a bakery. We assume Ωi is finite
for all i for the simplicity of notation. A world state ωi ∈ Ωi
is realized with probability fi(ωi) ∈ (0, 1), and when this is
the case, the value agent i derives from consuming q ∈ R+

units of electricity is v
(ωi)
i (q).

We assume that for all i ∈ N , ωi ∈ Ωi and q ≥ 0, v
(ωi)
i (q)
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is (A1) weakly increasing, (A2) right continuous, and (A3)
bounded from above by some constant W > 0 and by q · T
for some T > 0. Intuitively, (A1) means excessive electricity
can be burnt free of cost; (A2) allows the value functions
to be discontinuous, (e.g. the agent gets some value only
if she can turn on a machine which burns at least q units
of electricity), and (A3) prevents agents from being willing
to consume infinite amounts of electricity or to pay infinite
prices for each unit of electricity.

The set of value functions and the distribution of world
states θi = {v(ωi)

i (q), fi(ωi)}ωi∈Ωi determines an agent’s
type and is agent i’s private information. Each agent knows
her type in period zero, but the actual world state and the
value of consuming electricity, is not realized until period
one. We assume that the realizations of ωi are independent
among agents and cannot be observed by the planner.

Fix the price of each unit of electricity as t > 0. In period

one, when the realized value function for agent i is v
(ωi)
i (q),

the utility of agent i for consuming q units of electricity is

v
(ωi)
i (q)−qt, thus the optimal consumption decision is period

one is q
(ωi)
i (t) , arg maxq∈R+ v

(ωi)
i (q)− qt. The distribution

of ωi induces a distribution of consumption by agent i. Let
Qi(t) be the random variable indicating the number of units
consumed by agent i when the price of electricity is t. We

know that Qi(t) takes value q
(ωi)
i (t) with probability fi(ωi).

Let qi(t) be the expected value of Qi(t) and σi(t) be the
standard deviation of Qi(t). We assume that the grid knows
qi(t) and σi(t) from historical data.

Linear Incentive Payment Schedules.
Consider a linear payment schedule (t, r, z), where elec-

tricity costs t + z per unit, however, an agent is paid r
per unit if her consumption is below qi(t). Similar to the
above discussion, for any agent i with realized world state
ωi facing the payment schedule (t, r, z), there is an optimal

amount of consumption (denoted q
(ωi)
i (t, r, z)) that gives

agent i the highest utility u
(ωi)
i (t, r, z, q

(ωi)
i (t, r, z)). By con-

suming this amount for every realized world state, the ex-
pected utility agent i gets under the linear payment schedule

is ui(t, r, z) =
∑
ωi∈Ωi

fi(ωi) · u(ωi)
i (t, r, z, q

(ωi)
i (t, r, z)).

Similar to Lemma 1, we can prove parallel properties of

q
(ωi)
i (t, r, z) and ui(t, r, z) that agents consume less energy as
z and r increases, and the expected utilities are increasing in
r and decreasing in z. Moreover, there exists a minimum ac-
ceptable reward r0

i (z) such that agent i is willing to accept
the additional per-unit cost z instead of getting the stan-
dard price schedule (t, 0, 0). Facing a DR payment schedule
(t, ri, zi), an agent decides to take it iff. ri ≥ r0

i (z), thus the
random variable indicating agent i’s consumption Q(t, ri, zi)
is equal to Q(t) at all times when ri < r0

i , but takes value

q
(ωi)
i (t, ri, zi) with probability fi(ωi) if ri ≥ r0

i (z).

4.1 Multi-Unit DR Mechanism
For a multi-unit DR mechanism that offers each agent the

choice between a DR payment schedule (t, ri, zi) and the flat
rate (t), to achieve the reliability target (M, τ), we need:

P

[∑
i∈N

Qi(t, ri, zi) ≤
∑
i∈N

qi(t)−M

]
≥ τ (6)

We now analyze the minimum uniform rewards r(N)(z)

and the sub-economy minimum rewards r(N\{i})(z) to meet

the target when the penalty z is fixed. Define r(N)(z) as
the minimum r s.t. (6) can be met when zi = z for all i.

However, defining r(N\{i})(z) as the minimum ri such that

P
[∑

j 6=iQj(t, r, z) ≤
∑
j 6=i qj(t)−M

]
≥ τ, does not guar-

antee P
[∑

j 6=iQj(t, r, z) +Qi(t) ≤
∑
j 6=i qj(t) + qi(t)−M

]
≥ τ because of the uncertainty in Qi(t).

In order to compute r(N\{i})(z) independent of agent i’s
own reported information, we need to find the minimum
reward r such that for all possible distributions of some
random variable Y s.t. E [Y ] = qi(t) and std [Y ] = σi(t),

P
[∑

j 6=iQj(t, r, z) + Y ≤
∑
j 6=i qj(t) + qi(t)−M

]
≥ τ al-

ways holds. We can prove that such r(N\{i})(z) is no smaller

than r(N)(z) for all i. We now define the mechanism.

Definition 2. (Multi-unit DR mechanism with Penalty z)
The multi-unit DR mechanism collects agents’ types, com-
putes r0

i (z), r
(N)(z) and r(N\{i})(z), and offers to each agent

a flat rate (t) and a DR payment schedule (t, ri, z) where

ri = r(N\{i})(z). Given the offered contracts, each agent se-
lects the her preferred contract, decides on the preparation
effort, consumption level, and then the mechanisms pays re-
wards and charges penalties accordingly.

Theorem 2. The Multi-Unit DR Mechanism is DSIC,
IR and always guarantees the reliability target.

The proof of the theorem is similar to that of Theorem 1,
and is omitted due to space limitations.

4.2 Computation of Threshold Payments
We now discuss the computation of the minimum sub-

economy reward r(N\{i})(z). Technically, we are looking for
the minimum reward r such that

min
FY

P

∑
j 6=i

Qj(t, r, z) + Y ≤
∑
j 6=i

qj(t) + qi(t)−M

 ≥ τ
s.t. E [Y ] = qi(t) and std [Y ] = σi(t).

The exact computation is not easy, since we would need
to analyze the distribution of summation of several random
variables and solve a constrained optimization problem in
the functional space (i.e. space of all valid distributions).
However, we can bound the probability and apply Cheby-
shev’s inequality [8] and show that for all ε ∈ R,

P

∑
j 6=i

Qj(t, r, z) + Y ≤
∑
j 6=i

qj(t) + qi(t)−M


≥P

∑
j 6=i

Qj(t, r, z) ≤
∑
j 6=i

qj(t)−M − ε

 · P [Y ≤ qi(t) + ε]

≥
(

1− σ2
i (t)

ε2

)
· P

∑
j 6=i

Qj(t, r, z) ≤
∑
j 6=i

qj(t)−M − ε

 .
By setting ε(τ) s.t. 1 − σ2

i (t)/ε(τ)2 =
√
τ and looking for

minimum r s.t. P
[∑

j 6=iQj(t, r, z) ≤
∑
j 6=i qj(t)−M − ε(τ)

]
≥
√
τ , we find an upper bound r̄(N\{i})(z) of r(N\{i})(z) s.t.

the reliability constraint is guaranteed to be achieved by of-
fering (t, r̄(N\{i})(z), z) to all agents other than i. We can
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set ri to be r̄(N\{i})(z) in the multi-unit DR mechanism, and
know that the reliability constraint can always be met.

5. MULTIPLE EFFORT LEVELS
We can also allow for agents who can exert multiple lev-

els of preparation effort (these affecting the distribution on
period one values). We do this by reducing the multi-effort-
level model to the single level model. In this way, the reward-
bidding mechanism can be directly applied. This can be
done for both the unit-response and multi-unit response sce-
narios, but because of space limitations we only illustrate the
idea in the single-unit case.

Let Ki be the total number of levels of effort that agent i
can choose to exert during preparation. If agent i prepares

at level k at a cost of c
(k)
i , her opportunity cost would be

distributed according to F
(k)
i . Agent i’s type is described by

θi = (θ
(1)
i , . . . , θKi

i ) where θ
(k)
i = (c

(k)
i , F

(k)
i ). This subsumes

the multi-level discrete model, where each agent can prepare

at cost c
(k)
i , which enables her to respond with probability

p
(k)
i at the cost of v

(k)
i for k = 1, . . . ,K.

With the same analysis, we know that given agent i pre-
pares at level k, her expected utility is of the form:

u
(k)
i (ri, zi) =E

Vi∼F
(k)
i

[(ri − Vi) · 1{Vi ≤ ri + zi}]

− zi · PVi∼F
(k)
i

[Vi > ri + zi]− c(k)
i .

Since each agent is informed of the payment schedule
(ri, zi) at period zero, she will choose the preparation ef-
fort level that maximizes her expected utility at (ri, zi). The
equivalent expected utility for agent i facing payment sched-
ule (ri, zi) is therefore:

ūi(ri, zi) , max
k=1,...,Ki

u
(k)
i (ri, zi).

As the upper envelope of a set of increasing and con-
vex functions, ūi(ri, zi) is also increasing and convex. A
payment schedule (ri, zi) induces an optimal effort k∗ =

argmaxk=1,...,Ki
u

(k)
i (ri, zi) and the reliability still corresponds

to the slope of ūi(ri, zi):

pi(ri, zi) = F
(k∗)
i (ri + zi) =

∂

∂ri
u

(k∗)
i (ri, zi) =

∂

∂ri
ūi(ri, zi).

since ūi(ri, zi) = u
(k∗)
i (ri, zi) in a small neighborhood of ri.

This implies that the five properties that we proved in
Lemma 1 also holds for ūi(ri, zi), which can be considered
as the effective expected utility function of agent i and fully
determines the effective reliability of the agent. Therefore,
the multi-effort-level scenario can be reduced to the single-
effort-level case by setting ui(ri, zi) = ūi(ri, zi).

Example 2. Consider an agent with two possible effort

levels. If she exerts the lower effort level at a cost of c
(1)
i = 1,

she is able to respond with probability p
(1)
i = 0.5 at an op-

portunity cost of v
(1)
i = 2. If she exerts the higher level at

a cost c
(2)
i = 4 the opportunity cost stays the same but her

probability of being able to respond is boosted to p
(2)
i = 0.9.

The expected utilities corresponding to the two effort lev-
els when penalty is fixed at z = 1, and the effective expected
utility ūi(ri, z) are as illustrated in Figure 3. We know from

ūi(ri, z) that with ri < (r0
i )

(1)(z) = 5, the agent does not

ri

u
(k)
i (ri, z)

−z − c
(1)
i

−z − c
(2)
i

(r0
i )(1)

(r0
i )(2)

u
(1)
i (ri, z)

u
(2)
i (ri, z)ūi(ri, z)

Figure 3: Expected utilities for different effort levels
and the upper envelope ūi(ri, z) for Example 2.

accept the payment schedule. For 5 ≤ ri < 8.5, where

u
(2)
i (ri, z) crosses u

(1)
i (ri, z), the agent takes the lower effort

level, and therefore responds with probability p̃i(ri, z) = 0.5.
For ri ≥ 8.5, the higher effort level is taken thus agent re-
sponds with probability p̃i(ri, z) = 0.9.

6. SIMULATION RESULTS
In this section we compare, through numerical simulation,

the performance of the reward-bidding mechanism against
the best possible outcome (i.e. the first best without pri-
vate information) and a natural alternative mechanism, the
spot auction, in which demand reduction is purchased from
agents when needed.

6.1 Comparison with the First Best
We compare the number of agents selected by the reward-

bidding mechanism with the “first best”, which assumes that
the mechanism knows the types of agents and therefore how
reliable they would be given certain payments. Throughout
this section, we consider agents whose types follow the expo-
nential model. Each agent faces a fixed preparation cost ci,
and contingent on preparation, the opportunity cost Vi is ex-
ponentially distributed with parameter λi s.t. E [Vi] = λ−1

i .
Facing payment schedule (ri, zi), a prepared agent re-

sponds with probability 1 − e−λi(ri+zi), thus the reliability
of each agent can be boosted infinitely close to one, and the
minimum number of agents needed in the first best would
be equal to M . Let the total number of agents be n = 500
and the types be i.i.d. uniformly distributed: ci ∼ U[0, 1]
and λ−1

i ∼ U[0, 2]. We first assume that the grid charges a
penalty z = 1 in the reward-bidding mechanism and would
like to achieve a target reduction M = 100.

With τ varying from 0.9 to 0.999, the average number
of selected agents over 1000 randomly generated economies
is as shown in Figure 4(a). The horizontal axis “log risk”
− log10(1 − τ) translate τ = 0.9 to 1 and τ = 0.999 to 3.
We can see that more agents are selected when the prob-
ability target τ increases, and the mechanism does well in
comparison with the first best.

Fixing τ = 0.98, the number of agents selected by the
reward bidding mechanism with different z is as shown in
Figure 4(b). The number of agents selected decreases as z
increases, since a higher penalty, and the resulting higher
rewards (since agents have higher minimum acceptable re-
wards when z increases) improves the reliability of each of
the selected agents.

6.2 Comparison With the Spot Auction
We now compare the reward-bidding mechanism with a

benchmark proposed in [13], the spot auction. Without pre-
selection in period zero of which agents should invest effort
and prepare, the spot auction purchases demand reduction
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Figure 4: Comparison between the number of se-
lected agents in reward-bidding and the first best.

from agents in period one in the event that DR is required
using a simple (M+1)st-price auction with a reserve price r,
i.e. the reserve sets an upper bound on the reward payment.

Pure Nash Equilibrium on Preparation.
For an agent who prepared, it is a dominant strategy

for her to bid in period one the realization of her oppor-
tunity cost Vi, since the preparation cost ci is sunk and the
(M+1)st-price auction is truthful. What is not straight-
forward is to decide whether to prepare in period zero. For
this, we study economies with exponential type agents where
ci = c for all i ∈ N . Further, we assume these distribution
types are known and study the performance of the spot auc-
tion under a (complete information) Nash equilibrium of the
preparation game.

Assume w.l.o.g. λ−1
1 ≤ λ−1

2 ≤ · · · ≤ λ−1
n , i.e. agents with

smaller indexes face smaller opportunity costs in expecta-
tion. We prove through analyzing a threshold structure of
the equilibrium that for any reserve r ≥ 0, there exists a
pure Nash equilibrium in which agents prepare if i ≤ m(r)
and do not prepare otherwise, for some 0 ≤ m(r) ≤ n. The
full proof is left for an extended version of the paper.

To obtain the (asymmetric) pure-strategy preparation equi-
librium, we compute via simulation (over one million real-
ized cost profiles) for each reserve price r how many agents
prepare in equilibrium and the resulting probability of achiev-
ing the reduction target. The higher the reserve price r, the
more agents prepare, the higher the global reliability is and
the higher the total payment made to the agents.

Experimental Results.
We now compare the equilibrium outcome of the spot

auction with the truthful outcome of the reward-bidding
mechanism. Consider a set of n = 500 with exponential
model types, where the preparation cost ci = 2, expected
opportunity cost λ−1

i = i/100, and the reduction target
M = 100. For the reward-bidding mechanism, we simply
set the penalty z = 1. For the spot auction, for each τ rang-
ing from 0.9 to 0.999 we choose the minimum r such that
there are enough agents preparing in equilibrium and the
reliability target can be met.

The mean and standard deviation (std) of the total costs
(reward payments minus collected penalties) of one million
instances of agents’ realized opportunity costs are shown in
Figure 5. Despite the unfair comparison (dominant strategy
for reward bidding vs. Nash equilibrium, optimized reserve
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Figure 5: Comparison between the average and
standard deviation of total costs.

r for spot auction), the total cost under reward-bidding is
lower than that of spot auction. Moreover, the standard
deviation of the total costs under the spot auction is much
higher. This is because under the spot auction, the total cost
is low most of the times (when the (M+1)st bid is paid),
however, with small probability where there are no more
than M bids below r, r is paid to all agents, and this results
in a huge variance in the total payments.

A high reserve r is needed in the spot auction because the
number of agents preparing hardly increases as r increases,
thus r has be large enough such that enough agents’ bids
fall below r and their reductions are purchased in order to
meet the reliability target. When there are too many agents
preparing, with high probability agents are getting paid only
the (M+1)st bid instead of the high reserve price, and this
may not be enough to cover the opportunity cost. As a
comparison, the minimum reserve required to achieve τ =
0.999 is r = 5.76 under which 101 agents prepare, and under
reward-bidding with z = 1, there are 103 agents selected and
average reward selected agents face (note that the critical
rewards differ for different agents) is around 3.02. Both the
reward and the penalty help with improving boosting the
reliability of each individual agent.

7. CONCLUSIONS
We studied the generalized demand response problem where

the design of contingent payments affect the probability of
response, and where each agent may reduce multiple units of
consumption. We design a new, truthful and reliable mech-
anism that selects a small number of agents to prepare and
does so at low costs when compared to natural benchmarks.

In future work, we plan to understand whether it is possi-
ble to (i) design indirect mechanisms with good performance
where there is no need for agents to communicate their full
types, (ii) meet the reduction target with high probability
without reducing too much beyond the target, (iii) optimize
total welfare for both demand-side response and supply-side
reserves at the same time, while retaining dominant-strategy
equilibrium, and (iv) generalize the model and mechanism
for demand side response over multiple periods of time.
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