
Practical versus Optimal Mechanisms∗

Weiran Shen
Institute for Interdisciplinary Information Sciences

Tsinghua University
Beijing, China

emersonswr@gmail.com

Pingzhong Tang
Institute for Interdisciplinary Information Sciences

Tsinghua University
Beijing, China

kenshinping@gmail.com

ABSTRACT
Designing simple mechanisms with desirable revenue guar-
antees has become a major research agenda in the economics
and computation community. However, few mechanisms
have been actually applied in industry.

In this paper, we aim to bridge the gap between the “sim-
ple versus optimal” theory and practice, and propose a class
of parameterized mechanisms, tailored for the sponsored
search auction settings. Our mechanisms can balance differ-
ent objectives by simple parameter tuning, yet at the same
time guarantee near optimal revenue in both theoretical and
practical senses.

Keywords
auction, revenue maximization, sponsored search, applied
mechanism design

1. INTRODUCTION
Designing revenue optimal auctions has been one of the

most important themes in economics, ever since Myerson’s
seminal work [16]. Theories for designing such auctions for
the so-called“single parameter”environment have been well-
developed [14, 8], and much progress has been made when
selling multiple items [23, 24, 7]. Recently, due to interdisci-
plinary research paradigms such as algorithmic mechanism
design [18] and automated mechanism design [6], and its
various applications in the sponsored search [9, 25] and
similar other domains, it has also become a topic of inten-
sive research at the interface between computer science and
economics (e.g. [15, 21, 17]).

Following the vein of algorithmic mechanism design, an
important literature, initiated by Hartline and Roughgar-
den [10], aims to design mechanisms that are simple in their
forms (e.g., second price auction with a reserve) and yet
guarantee desirable revenue bounds in the worst case. This
viewpoint has turned out to be widely adopted in the EC
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community and has been investigated under a number of
extended domains [22, 18, 5, 1, 11, 13, 26, 2, 4]

While a major motivation to design these simple and ap-
proximately optimal mechanisms is for the purpose of prac-
ticality, unfortunately, to the best of our knowledge, very
few of these mechanisms are actually fielded in industry.
From an industrial perspective, there are at least the fol-
lowing three concerns when considering implementation of
these mechanisms: first of all, all these mechanisms are de-
signed to guarantee the worst-case revenue bounds, while
in industry, the evaluation metric tends to be the average-
case performance. Secondly, even though most of these pa-
pers are able to guarantee constant approximations, say a
2-approximation, of the optimal revenue, they are still not
strong enough in the sense that it may indicate that the
seller can lose half of the revenue in certain cases. Last but
not least, the seller may have other objectives in addition
to revenue, which are not guaranteed by these mechanisms.
These objectives may change dynamically due to various
short-term targets of the company.

In this paper, we aim to bridge the gap between the “sim-
ple versus optimal” theory and practice. To address the con-
cerns raised above, we propose the following refined research
agenda, targeting specifically the domain of sponsored-search
auction design: to design a parameterized class of auctions,
which

1. has highly desirable worst case guarantees (say, better
than 2-approximation) for revenue;

2. gives flexibility to engineers who can freely trade off
revenue bounds for other objectives by simply tuning
parameters;

3. meets industry-level targets via empirical evaluations.

We investigate the sponsored search auction setting, where
the seller has several slots for sale and each slot has a cer-
tain click-through-rate (CTR). For ease of presentation, a
simpler “K identical items” setting is also considered, which
is essentially equivalent to the sponsored search setting with
the CTR for each slot being 1. In fact, both of the two
settings belong to the so-called “single-parameter” setting.

The rest of the paper is organized as follows: section 1.1
summaries our contribution. Section 1.2 lists some existing
works in the literature that are related and briefly compares
these mechanisms with ours. Section 2 introduces some ba-
sic definitions and notations. Section 3 first describes our
mechanisms, and then in the two subsections 3.1 and 3.2,
analyzes our mechanisms in two different but closely related
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settings. Section 4 describes our simulation setup and re-
sults. And the last section 5 concludes the paper.

1.1 Our contribution
With the above agenda in mind, we make the following

contributions, for the sponsored search domain:

• We put forward a parameterized class of auctions, which
in essence, rank each bidder by a combined (not nec-
essarily linear) function, described by a single param-
eter α, of its value and Myerson virtual value, allocate
the items (CTRs) greedily according to the rank and
charge each bidder according to the so-called payment
identity formula.

• We prove that any auction in the parameterized class is
a (2− θ)-approximation of the optimal revenue, where
θ is between 0 and 1, as a function of the auction pa-
rameter α. Furthermore, given any desired θ between 0
and 1, we give explicitly a mechanism that guarantees
a (2− θ)-approximation of the optimal revenue.

• We prove that, as the weight of virtual value increases
in the ranking rule, the revenue increases and efficiency
drops.

• We empirically evaluate the revenue and efficiency of
each auction in this class by simply tuning the parame-
ter α, based on valuations generated from real-bidding
data.

1.2 Additional related works
The idea of parameterized auction class has been consid-

ered by several existing work in the domain of sponsored
search auctions. Lahaie and Pennock [12] consider a class
of “squashing” mechanisms. They introduce a parameter α
and rank the bidders by biw

α
i where wi is the CTR of bid-

der i. They find that setting α < 1 generally increases the
revenue.

Roberts et al. [20] considers the “anchoring” mechanism
by ranking the bidders by (bi − r)wi. They introduce a
reserve price parameter r and a reserve score parameter s.
Several ranking algorithms, including biwi/r, biwi/s, biw

α
i /s

and the “squashing” biw
α
i are compared. They show, by

simulation, that their “anchoring” mechanism which ranks
the bidders by (bi−r)wi achieves more revenue and efficiency
than other mechanisms.

Bachrach et al. [3] aim towards tradeoffs among different
objectives. They use “γ1revenue+γ2welfare+γ3click yield”
as their objective function. They show that under the con-
dition that γ1 + γ2 + γ3 = 1, their mechanism achieves an
γ1 fraction of the optimal revenue, a γ2 fraction of the op-
timal welfare and a γ3 fraction of the optimal click yield.
Their work is similar to ours in the sense that they also
consider tradeoffs between efficiency and revenue. In fact,
our class of mechanisms includes their mechanism as a spe-
cial case (up to a constant factor, which does not affect
the outcome of the mechanism) by setting α = γ1

γ1+γ2
and

P (t) = Q(t) = t + γ3
γ1+γ2

. However, the difference is also
very clear: while their goal is to optimize linearly combined
objectives and achieve a fraction of the optimal value of
these objectives, our goal is to design a class of parameter-
ized mechanisms that are easy for practical use. Also, our
mechanisms do not require linear combinations and always

achieve an approximation ratio better than 2, which is much
stronger than theirs. In addition, the results of the two pa-
pers do not imply each other.

In the same spirit, [19] also aims to design parameterized
mechanism class in which one can tune worst-case bound by
tuning parameters in the facility location domain.

2. PRELIMINARIES
We consider the standard sponsored search setting, where

there are N bidders competing for several slots, and each
bidder aims at one slot. Each bidder i has a private valuation
vi ≥ 0, which is drawn from a publicly known distribution
Fi. A valuation profile is denoted by v = (v1, v2, . . . , vN ).
Each bidder i also has a bid bi that is reported to the seller.
Similarly, a bid profile is denoted by b = (b1, b2, . . . , bN ).
We may use v−i and b−i to mean the value profile and bid
profile of all bidders except i.

2.1 Mechanisms
A mechanism consists of two functionsM = (x, p), where

the allocation rule x a function x : RN → [0, 1]N , which
takes as input the bid profile and outputs an N -dimensional
vector indicating the quantity of items allocated to each bid-
der; and the payment rule p is a function p : RN → RN that
maps the bid profile to an N -dimensional non-negative vec-
tor specifying the payment of each bidder. The output of the
allocation rule x should be in the set of all feasible alloca-
tions X . The bidders are said to have unit-demand if each
feasible allocation in X is a binary vector. Further, when
the bidders have unit-demand, X has a set representation
X = {X(x)|x is feasible}, where X(x) = {i|xi = 1}. X is
said to be downward-closed, if each subset Y of X ∈ X is
again a feasible allocation.

2.2 Bayes Nash Equilibria
It is standard to assume that the bidders are risk neutral

and have quasi-linear utility : ui(vi; bi, b−i) = vixi(bi, b−i)−
pi(bi, b−i). Since the distributions F = F1 × F2 × · · · ×
FN are common knowledge but each bidder only knows his
own valuation vi, the bidder’s objective is to maximize his
utility by reporting a bid bi(vi) which is a function of vi.
Thus the utility function for bidder i can be written as
ui(bi(vi), b−i(v−i)) = vixi(bi(vi), b−i(v−i))−pi(bi(vi), b−i(v−i)).
We say a set of bidding functions b(v) = (b1(v1), . . . , bN (vN ))
forms a Bayes-Nash equilibrium if for all i, vi and b′i(vi), the
following inequality holds:

Ev−i [ui(bi(vi), b−i(v−i))] ≥ Ev−i

[
ui(b

′
i(vi), b−i(v−i))

]
2.3 BIC mechanisms

A mechanism is Bayesian incentive compatible (BIC) if
b(v) = v is a Bayes-Nash equilibrium. According to the
revelation principle [16], it is without loss of generality to
consider only BIC mechanisms. So from now on, we do not
distinguish between bidders’ values and bids. The following
lemma by Myerson [16] characterizes the set of BIC mecha-
nisms.

Lemma 1. In a single-parameter setting, assume that p(0) =
0, then a mechanism M = (x, p) is BIC if and only if for
each i, xi(vi) is monotone increasing and pi(vi) satisfies:

pi(vi) =

∫ vi

0

z · dxi(z)
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The above lemma states that a monotone allocation rule
is necessary for a mechanism to be truthful. And given
a monotone allocation rule, there exists a unique way to
implement a truthful mechanism by setting the payment rule
as described in the lemma. Thus, all we need to design is
the allocation function.

2.4 Optimal auction
We first define the notation of virtual valuation, which

follows Myerson [16].

Definition 1 (Virtual Valuation). Given vi, the vir-
tual valuation of bidder i is

ϕi(vi) = vi −
1− Fi(vi)
fi(vi)

where fi(vi) is the density function of the distribution Fi(vi).

Myerson [16] proves that the expected revenue of a mecha-
nismM is equivalent to the expected virtual valuation. This
lemma directly leads to the design of the optimal auction,
and is also crucial to our analysis.

Lemma 2 (Myerson’s Lemma). The revenue of any mech-
anism M = (x, p) satisfies

REV (M) = Ev∼F (v)

[
N∑
i=1

xi(v)ϕi(vi)

]
To maximize revenue, we should set a reserve price ri for

each bidder, such that ϕi(ri) = 0, and allocate the items to
those with the highest virtual valuations.

2.5 Efficiency

Definition 2 (Efficiency). Given an equilibrium bid
profile b, the efficiency of a mechanismM = (x, p) is defined
to be:

EFF (M) = Ev∼F (v)

[
N∑
i=1

xi(v)vi

]

Efficiency is an important metric in practical sponsored
search auction design. From the experiences of several ma-
jor sponsored search teams in China, it is understood that,
the number of complaints from advertisers concerning their
rankings negatively correlates with the efficiency criteria.

3. GENERALIZED VIRTUAL-EFFICIENT
MECHANISMS

In this section, we aim for a tradeoff between optimal
revenue and efficiency. Our goal is to provide a spectrum
of mechanisms, within which one can easily trade off the
two objectives. We call the class of mechanisms General-
ized virtual-efficient mechanisms, the meaning of which will
become clear immediately after its formal definition.

Let P (·) and Q(·) be two increasing functions, and as-
sume that the each bidder’s value distribution satisfies the
regularity condition [16] (the virtual value function ϕ(v) is
increasing with respect to v). We now consider a family of
parameterized mechanisms M(α, r) based on the functions
P (·) and Q(·), where α is a real number with 0 ≤ α ≤ 1 and
r is a reserve price profile. The mechanism M(α, r) first
filters the bidders with the reserve profile r. Then rank the

bidders with the function αP (v) + (1 − α)Q(ϕ(v)) among
those who meet the reserve price conditions, if any, and al-
locate the items to the agents greedily according to their
rankings. Note that M(1, r) is just the VCG mechanism
with reserve profile r, and if ϕi(ri) = 0, then M(0, r) is the
optimal auction (denoted by OPT ).

3.1 The K identical items setting
In this section, we consider the setting where the seller

has K identical items for sale and each bidder only wants
exactly one item (unit-demand). This setting is in fact a
special case of the sponsored search setting, with all slots
have CTRs of 1. We show that in this setting, both the
efficiency and revenue change monotonically with respect to
the parameter α. In addition, we also provide a tight lower
bound for the revenue of our mechanisms.

Theorem 1. Let P (·) and Q(·) be two increasing func-
tions. Suppose that the seller has K identical items for sale
and the bidders have unit-demand. Assume that the distribu-
tions Fi that each bidder’s valuation is drawn from satisfies
the regularity condition. Then REV (M(α, r)) is monotone
decreasing with α while EFF (M(α, r)) is monotone increas-
ing with α.

Proof. For any 0 ≤ α1 < α2 ≤ 1, let W1 and W2 be the
set of winners (those with xi = 1) ofM(α1, r) andM(α2, r),
respectively. If the number of the bidders who meet the
reserve conditions is smaller than or equal to K, then we
have W1 = W2, which contains exactly those who meet the
reserve conditions. When the number of the bidders who
meet the reserve conditions is greater than K, we only need
to consider the case where W1 6= W2. In this case, both W1

and W2 has K winners. It follows that |W1\W2| = |W2\W1|.
Since |W1 \W2| = |W2 \W1|, there exists bijections be-

tween the two sets. Let µ be any such bijection. For any
i ∈ W1 \W2, let j = µ(i) ∈ W2 \W1. Since M(α1, r) ranks
the bidders by α1P (v)+(1−α1)Q(ϕ(v)) and bidder j /∈W1,
we have that bidder i has a higher ranking score than bidder
j in mechanism M(α1, r):

α1P (vi) + (1− α1)Q(ϕi(vi))

≥α1P (vj) + (1− α1)Q(ϕj(vj)) (1)

Similarly, mechanismM(α2, r) ranks the bidders by α2P (v)+
(1− α2)Q(ϕ(v)), and i /∈W2. It follows that:

α2P (vj) + (1− α2)Q(ϕj(vj))

≥α2P (vi) + (1− α2)Q(ϕi(vi)) (2)

Multiplying inequality 1 by α2, inequality 2 by α1 and then
adding them together yields:

α1α2P (vi) + (1− α1)α2Q(ϕi(vi))

+ α1α2P (vj) + α1(1− α2)Q(ϕj(vj))

≥α1α2P (vj) + (1− α1)α2Q(ϕj(vj))

+ α1α2P (vi) + α1(1− α2)Q(ϕi(vi))

With a little rearrangement, we get:

(α2 − α1)Q(ϕi(vi)) ≥ (α2 − α1)Q(ϕj(vj))

Therefore, Q(ϕi(vi)) ≥ Q(ϕj(vj)) since α2 − α1 > 0. It fol-
lows that ϕi(vi) ≥ ϕj(vj) for Q(·) is an increasing function.
Note that the above inequality holds for any i ∈ W1 \W2.
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Summing over all such i, we have∑
i∈W1\W2

ϕi(vi) ≥
∑

i∈W1\W2

ϕµ(i)(vµ(i)) =
∑

i∈W2\W1

ϕi(vi)

Thus ∑
i∈W1

ϕi(vi) =
∑

i∈W1∩W2

ϕi(vi) +
∑

i∈W1\W2

ϕi(vi)

≥
∑

i∈W1∩W2

ϕi(vi) +
∑

i∈W2\W1

ϕi(vi)

=
∑
i∈W2

ϕi(vi)

Taking expectation over v yields:

Ev∼F (v)

[∑
i∈W1

ϕi(vi)

]
≥ Ev∼F (v)

[∑
i∈W2

ϕi(vi)

]
which is equivalent to REV (M(α1, r)) ≥ REV (M(α2, r))
by Myerson’s lemma.

Similarly, we can multiply inequality 1 by 1− α2 and in-
equality 2 by 1− α1. Adding them together yields:

(α1 − α2)P (vi) ≥ (α1 − α2)P (vj)

Thus P (vi) ≤ P (vj) since α2−α1 > 0, which implies vi ≤ vj .
Similar reasoning gives∑

i∈W1

vi ≤
∑
i∈W2

vi

Taking expectation over v, we have

EFF (M(α1, r)) ≤ EFF (M(α2, r))

which completes the proof.

Next, we show that if each distribution Fi satisfies the
monotone hazard rate condition, with appropriate choices
of the functions P (·) and Q(·), our mechanisms can achieve
approximately optimal revenue.

Definition 3 (Hazard Rate). Given a probability dis-
tribution F (v), the hazard rate with respect to F (v) is defined
to be:

h(v) =
f(v)

1− F (v)

where f(v) is the density function of the distribution F (v).

If the hazard rate h(v) is monotone increasing with re-
spect to v, we say that the corresponding distribution F (v)
satisfies the monotone hazard rate (MHR) condition. Note
that the regularity condition will be automatically satisfied
if the hazard rate function is monotone increasing. We first
prove a lemma that will be useful for later arguments.

Lemma 3. Assume v is distributed according to F (v). Let
ϕ(v) and h(v) be the corresponding virtual valuation function
and hazard rate function. Let P (·) and Q(·) be two functions
that are increasing, concave and differentiable, and there ex-
ists a constant c > 0, such that ∀v,Q′(v) ≥ cP ′(v) > 0.
Then for all v > 0 and all 0 ≤ α ≤ 1,

αP (v) + (1− α)Q(ϕ(v)) ≤ R
(
v − θ

h(v)

)
where R(v) = αP (v) + (1− α)Q(v), θ = (1−α)c

α+(1−α)c .

Proof. Let z = v − θ
h(v)

. Then

v = z +
θ

h(v)

ϕ(v) = v − 1− F (v)

f(v)
= v − 1

h(v)
= z − 1− θ

h(v)

Since P (·) and Q(·) are concave functions, we have

P (v) ≤ P (z) +
θ

h(v)
P ′(z)

Q(ϕ(v)) ≤ Q(z)− 1− θ
h(v)

Q′(z)

Thus

αP (v)+(1− α)Q(ϕ(v)) ≤ αP (z) + (1− α)Q(z)

+
αθ

h(v)
P ′(z)− (1− θ)(1− α)

h(v)
Q′(z)

Since Q′(z) ≥ cP ′(z) and 0 ≤ α ≤ 1, 0 ≤ θ ≤ 1, h(x) =
f(x)

1−F (x)
> 0, we have

αθ

h(v)
P ′(z)− (1− θ)(1− α)

h(v)
Q′(z)

≤ αθ

h(v)
P ′(z)− (1− θ)(1− α)

h(v)
cP ′(z)

=
P ′(z)

h(v)
(αθ − (1− θ)(1− α)c)

=0

The last equality holds because θ = (1−α)c
α+(1−α)c . Therefore

αP (v) + (1− α)Q(ϕ(v)) ≤ αP (z) + (1− α)Q(z) = R(z)

completing the proof.

Next, we show that under certain technical conditions,
our mechanism can achieve near-optimal revenue guarantees
with appropriate choices of the functions P (·) and Q(·).

Theorem 2. Suppose the distribution Fi that each bid-
der’s valuation is drawn from satisfies the monotone haz-
ard rate condition. Let P (·) and Q(·) be two functions that
are increasing, concave and differentiable, and there exists a
constant c > 0, such that ∀v,Q′(v) ≥ cP ′(v) > 0. Let r∗ be
the monopoly reserve profile for the bidders, i.e. ϕi(r

∗
i ) = 0.

If either one of the following two conditions is satisfied:

1. There are K identical items for sale, and the bidders
have unit-demand;

2. P (t) = at and Q(t) = bt, where a, b are positive con-
stants.

Then REV (M(α, r∗)) is a (2− θ)-approximation of the op-

timal mechanism, where θ = (1−α)c
α+(1−α)c .

Remark 1. These approximation ratios are highly desir-
able. First, since θ ≥ 0, all of the approximation ratios
are less than 2 (except when θ = 0), which guarantees the
near-optimality of our mechanism. Second, the approxima-
tion ratio depends on the parameter α, which provides more
flexibility for practical use. Note that the 2-approximation
result by [10] can be immediately obtained from our result,
by setting P (t) = Q(t) = t and α = 1.
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Proof. Since ϕi(r
∗
i ) = r∗i − 1

h(r∗i )
= 0, we have r∗i =

1
h(r∗i )

. The MHR condition implies that ∀vi > r∗i , 1
h(r∗i )

≥
1

h(vi)
. Thus ∀vi > r∗i , we have

ϕi(vi) +
1− θ
h(r∗i )

≥ ϕi(vi) +
1− θ
h(vi)

which is equivalent to

ϕi(vi) + (1− θ)r∗i ≥ vi −
θ

h(vi)

It is straightforward that R(·) is an increasing function.
Thus R−1(·) exists and is also increasing. So

ϕi(vi) + (1− θ)r∗i ≥ vi −
θ

h(vi)

= R−1

(
R

(
vi −

θ

h(vi)

))
≥ R−1 (αP (vi) + (1− α)Q(ϕi(vi))) (3)

The last inequality holds because of Lemma 3.
Under condition 1, we always allocate the items to the

bidders with the highest ranking scores among those who
meet the reserve price condition. Let W and WOPT be the
set of winners of our mechanism and the optimal mechanism.
Then using similar arguments as in the proof of Theorem 1,
we have that |W | = |WOPT | and that for any i ∈W \WOPT

and any j ∈WOPT \W :

αP (vi) + (1− α)Q(ϕi(vi)) ≥ αP (vj) + (1− α)Q(ϕj(vj))

which implies:

R−1(αP (vi) + (1− α)Q(ϕi(vi)))

≥R−1(αP (vj) + (1− α)Q(ϕj(vj)))

since R−1(·) is increasing.
Under condition 2,

R(x) = αax+ (1− α)bx

R−1(x) =
x

αa+ (1− α)b

Our mechanism ranks the bidders by αav + (1 − α)bϕ(v).
Thus

N∑
i=1

(αavi + (1− α)bϕi(vi))xi(v)

≥
N∑
i=1

(αavi + (1− α)bϕi(vi))x
∗
i (v)

where x(v) and x∗(v) is the allocation function of our mech-
anism and the optimal mechanism, respectively. Equiva-
lently,

N∑
i=1

1

αa+ (1− α)b
(αavi + (1− α)bϕi(vi))xi(v)

≥
N∑
i=1

1

αa+ (1− α)b
(αavi + (1− α)bϕi(vi))x

∗
i (v)

Therefore under both cases, we have:

N∑
i=1

R−1 (αP (vi) + (1− α)Q(ϕi(vi)))xi(v)

≥
N∑
i=1

R−1 (αP (vi) + (1− α)Q(ϕi(vi)))x
∗
i (v) (4)

According to Myerson’s Lemma, the revenue of our mech-
anism can be written as the weighted expectation of the
virtual valuations:

REV (M(α, r∗)) = Ev∼F (v)

[
N∑
i=1

ϕi(vi)xi(v)

]
(5)

The revenue can also be lower bounded by r∗ since the re-
serve profile is r∗.

REV (M(α, r∗)) ≥ Ev∼F (v)

[
N∑
i=1

r∗i xi(v)

]
(6)

Therefore,

(2− θ)REV (M(α, r∗))

= Ev∼F (v)

[
N∑
i=1

(ϕi(vi) + (1− θ)ϕi(vi))xi(v)

]

≥Ev∼F (v)

[
N∑
i=1

(ϕi(vi) + (1− θ)r∗i )xi(v)

]

≥Ev∼F (v)

[
N∑
i=1

R−1 (αP (vi) + (1− α)Q(ϕi(vi)))xi(v)

]

≥Ev∼F (v)

[
N∑
i=1

R−1 (αP (vi) + (1− α)Q(ϕi(vi)))x
∗
i (v)

]

≥Ev∼F (v)

[
N∑
i=1

R−1 (αP (ϕi(vi)) + (1− α)Q(ϕi(vi)))x
∗
i (v)

]

= Ev∼F (v)

[
N∑
i=1

ϕi(vi)x
∗
i (v)

]
=REV (OPT )

The first inequality combines equation 5 and 6. The second
inequality comes from inequality 3. The third inequality
holds because of inequality 4. The fourth inequality comes
from the definition of ϕ(v) and the monotonicity of the func-
tions P (·) and R−1(·). And the last equation is a direct
application of the Myerson’s Lemma.

Remark 2. The first condition can actually be extended
to the sponsored search environment (see the next section).

Under the second condition, if the set of feasible alloca-
tion set X is downward-closed, our bound for the revenue is
actually tight. Consider the following example.

Let P (t) = Q(t) = t and c = 1. Suppose there are K items
for sale and two groups of bidders EXP and UNI, each con-
taining K bidders, and the bidders inside each group have
iid value distributions. Bidders of EXP have a exponential
distribution with FEXP (v) = 1− e−v, while bidders of UNI
have values that are distributed uniformly in the interval
[ 1+α−ε

e
− δ, 1+α−ε

e
+ δ], where δ, ε are sufficiently small posi-

tive numbers. The feasible allocations are those that contain
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only bidders from the same group. In this case, θ = 1 − α
and our theorem gives an approximation ratio of 1 + α.

The monopoly reserve prices for bidders in the EXP group
and the UNI group are 1 and 1+α−ε

e
− δ, respectively. For

bidders in EXP, the virtual value ϕEXP (v) = v − 1. While
the bidders in UNI have virtual value ϕUNI(v) = v− 2δ(1−
FUNI(v)), which is highly concentrated at a small neigh-
borhood of 1+α−ε

e
. Our mechanism uses a ranking score of

v− 1 +α and v− (1−α)2δ(1−FUNI(v)) for the bidders in
EXP and UNI. Again, the ranking score of bidders in UNI is
highly concentrated around 1+α−ε

e
. When K is sufficiently

large, the number of bidders in EXP that exceeds the reserve
price is about K

e
and the average value of these bidders is

about 2. Thus, both the revenue and the total ranking score

of allocating to the group UNI are about (1+α−ε)K
e

, while

allocating to the group EXP extracts a revenue of only K
e

but a total ranking score of (1+α)K
e

. Thus our mechanism
allocates the items to EXP, but the optimal mechanism al-
locates to UNI. The ratio of revenue is 1 +α− ε, which can
be arbitrarily close to 1 + α.

Note that in Theorem 2, θ always lies in [0, 1] and changes
continuously with respect to α. Thus we can achieve any
desired approximation ratio in [1, 2] by simply tuning the α,
even if the functions P (·) and Q(·) (and thus the constant c)
are fixed, which leads to the following immediate corollary:

Corollary 1. Suppose the distribution Fi that each bid-
der’s valuation is drawn from satisfies the monotone haz-
ard rate condition. Let P (·) and Q(·) be two functions that
are increasing, concave and differentiable, and there exists a
constant c > 0, such that ∀v,Q′(v) ≥ cP ′(v) > 0. Let r∗ be
the monopoly reserve profile for the bidders, i.e. ϕi(r

∗
i ) = 0.

If either one of the following two conditions is satisfied:

1. There are K identical unit of items for sale, and the
bidders have unit-demand;

2. P (t) = at and Q(t) = bt, where a, b are positive con-
stants.

Then for any θ ∈ [0, 1], there exists α ∈ [0, 1], such that the
revenue of the mechanismM(α, r∗) is a (2−θ)-approximation
of that of the optimal mechanism.

3.2 The sponsored search setting
Now we generalize our results to the sponsored search set-

ting. In the standard sponsored search setting, a search en-
gine typically has several slots available for advertisements.
These slots have different CTRs and are sold to interested
advertisers via auctions. Each keyword corresponds to an
auction. When a user enters keyword query, the search en-
gine collects bids from the bidders that are interested in this
keyword, and allocate the slots to the winning bidders. If
the user clicks on an advertisement, the corresponding ad-
vertiser pays according to some payment rules.

Assume that there are K available slots and the j-th slot
has a CTR sj satisfying s1 ≥ s2 ≥ · · · ≥ sK ≥ 0. There
are N bidders and our mechanism computes for each bidder
i a ranking score Ri(vi) = αP (vi) + (1− α)Q(ϕi(vi)), then
allocates the j-th slot to the bidder with the j-th highest
score. We show that both the efficiency and the revenue of
our mechanism are monotone with respect to α.

Even though the K identical items setting and the spon-
sored search setting both belong to the “single-parameter”

setting, the analysis from the previous subsection cannot be
directly applied here since in this setting, different slots have
different CTRs, i.e. slots are not identical. We overcome
this technical difficulty by decomposing the sponsored search
auctions into K sub-auctions with the j-th sub-auction sell-
ing j identical slots. Then our results in previous sections
still hold for each sub-auction. We aggregate the results for
the sub-auctions together to show that they can be extended
to this setting.

Theorem 3. Let P (·) and Q(·) be two increasing func-
tions. Suppose there are K slots with CTR s1 ≥ s2 ≥
· · · ≥ sK ≥ 0 and the distributions Fi that each bidder’s
valuation is drawn from satisfies the regularity condition.
Then REV (M(α, r)) is monotone decreasing with α while
EFF (M(α, r)) is monotone increasing with α.

Proof. Let sK+1 = 0 and x(α) be the allocation rule
of the mechanism M(α, r). Note that only pointing out
whether a bidder is a winner is not enough in this setting,

since the slots have different CTRs. So we let x
(α)
i ∈ {si|1 ≤

i ≤ K+1} to specify the slot that is allocated to bidder i. If
bidder i loses in the auction, we say that i wins the (K+1)-th

slot and x
(α)
i = sK+1 = 0. Thus the efficiency and revenue

can be written as:

EFF (M(α, r)) = Ev∼F (v)

[
N∑
i=1

x
(α)
i vi

]

REV (M(α, r)) = Ev∼F (v)

[
N∑
i=1

x
(α)
i ϕi(vi)

]
Let dj = sj − sj+1 ≥ 0, ∀1 ≤ j < K. We decompose

the auction into K sub-auctions with the j-th (1 ≤ j ≤ K)
auction selling the first j slots to N bidders. In the j-th
sub-auction, all the j slots for sale have the same CTR of
dj . Thus the j-th sub-auction actually sells j identical items.
We apply our mechanism M(α, r) to these K sub-auctions,
i.e. in the j-th sub-auction, we compute the ranking score for
each bidder, and allocate the slots to the highest j bidders.

Denote the j-th sub-auction by A(j)(α, r) and let x
(j,α)
i ∈

{0, 1} be its allocation rule. Clearly, for any j > l, winners

of A(l)(α, r) are also winners of A(j)(α, r). And if a bidder
i wins the l-th (1 ≤ l ≤ K) slot in the original auction, then
i is also among the winners of sub-auctions j ≥ l. Thus we
have that for all i,

K∑
j=1

djx
(j,α)
i =

l−1∑
j=1

dj · 0 +

K∑
j=l

dj · 1

=

K∑
j=l

sj − sj+1

=sl = x
(α)
i (7)

Now consider each sub-auction A(j)(α, r). For any 0 ≤
α1 < α2 ≤ 1, according to Theorem 1,

N∑
i=1

x
(j,α1)
i ϕi(vi) ≥

N∑
i=1

x
(j,α2)
i ϕi(vi)

N∑
i=1

x
(j,α1)
i vi ≤

N∑
i=1

x
(j,α2)
i vi
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Multiply the above inequalities by dj and sum over j, and
we obtain:

K∑
j=1

dj

(
N∑
i=1

x
(j,α1)
i ϕi(vi)

)
≥

K∑
j=1

dj

(
N∑
i=1

x
(j,α2)
i ϕi(vi)

)
Switching the order of summation and applying equation 7
gives

N∑
i=1

ϕi(vi)x
(α1)
i ≥

N∑
i=1

ϕi(vi)x
(α2)
i

Taking expectation yieldsREV (M(α1, r)) ≥ REV (M(α2, r)).
Similarly

N∑
i=1

vix
(α1)
i ≤

N∑
i=1

vix
(α2)
i

It follows that EFF (M(α1, r)) ≤ EFF (M(α2, r)), which
completes the proof.

Theorem 4. Let P (·) and Q(·) be two functions that are
increasing, concave and differentiable, and there exists a
constant c > 0 such that Q′(t) ≥ cP ′(t) > 0,∀t. Sup-
pose there are K slots with CTRs s1 ≥ s2 ≥ · · · ≥ sK ≥
0 and the distributions Fi that each bidder’s valuation is
drawn from satisfies the monotone hazard rate condition.
Let r∗ be the monopoly reserve profile for the bidders. Then
REV (M(α, r∗)) is a (2 − θ)-approximation of the optimal

mechanism, where θ = (1−α)c
α+(1−α)c .

Proof. We also decompose the original auction into K
sub-auctions and follow the notations defined in the proof
of Theorem 3. Let x(OPT ) be the allocation function of the
original auction and x(j,OPT ) ∈ {0, 1}(1 ≤ j ≤ K) be the
allocation function of the corresponding j-th sub-auction. It
is clear that for each bidder i

x
(OPT )
i =

K∑
j=1

djx
(j,OPT )
i

And from Theorem 2, we have that for each sub-auction j:

(2− θ)
N∑
i=1

ϕi(vi)x
(j,α)
i ≥

N∑
i=1

ϕi(vi)x
(j,OPT )
i

Multiply the above inequality by dj and sum over all sub-
auctions j and we have

(2− θ)
K∑
j=1

dj

(
N∑
i=1

ϕi(vi)x
(j,α)
i

)

≥
K∑
j=1

dj

(
N∑
i=1

ϕi(vi)x
(j,OPT )
i

)

Applying the fact x
(α)
i =

∑K
j=1 djx

(j,α)
i gives

(2− θ)
N∑
i=1

ϕi(vi)x
(α)
i ≥

N∑
i=1

ϕi(vi)x
(OPT )
i

Taking expectation over v yields

(2− θ)REV (M(α, r∗)) ≥ REV (OPT )

completing the proof.

4. EXPERIMENTS
In Theorem 1, we show that in the “K identical items”

setting, both the efficiency and revenue of our mechanism
are monotone with respect to the parameter α.

To verify our results, we first consider a relatively simple
case. We assume that there are 3 identical items for sale
and 10 interested bidders. The value of bidder i is uniformly
distributed in the interval [0, ui], where ui is again uniformly
distributed in [1, 2]. No reserve prices are set for all bidders.
We set the functions P (t) = Q(t) = t and c = 1, so the only
parameter in the simulation is α. The numbers in the figures
are normalized since the absolute value is not important.

Figure 1 shows that the efficiency changes almost linearly
with respect to α within a large range of values. The rev-
enue, however, changes slowly when α is small and rapidly
when α is large. Therefore we can set an appropriate α value
to achieve a great efficiency gain but only suffer from a slight
revenue loss.

We also evaluate our mechanisms in the sponsored search
setting. We use real data from one of the major search
engines in Chinese. We first select a keyword with over 600
bidders. There are 3 slots for sale, with the first slots having
a CTR of about 0.1. We extract two weeks’ data for the
keyword. Each bidder’s valuations for the keyword is fitted
to a lognormal distribution1, and assume that these bidders
have independent distributions. Then we run the auction
1000 times. Inside each auction we draw a sample bid for
each bidder according to their respective distributions, and
allocate the 3 slots based on our ranking algorithm. We use
the average efficiency and revenue of the 1000 auctions as
the per-impression efficiency and revenue. We still choose
P (t) = Q(t) = t and c = 1 for this simulation but use
the monopoly reserve price for each bidder. Figure 2 shows
similar trends as in the simple case.

Next we evaluate our mechanism on the most profitable
100 keywords. Each keyword has nearly 500 interested bid-
ders on average and the most popular has over 1500 bidders.
We adopt the same simulation method as described above
for each keyword. After computing the per-impression effi-
ciency and revenue of these 100 keywords, we multiply them
by their respective occurrence frequency and then add them
together to compute the total efficiency and revenue.

1Note that the lognormal distribution does not satisfy the
regularity condition. Nevertheless, the simulation is comple-
mentary to our theoretical results, showing that our mech-
anism works under this setting as well.
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Figure 1: Efficiency and revenue of the simple case
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Figure 2: Efficiency and revenue of the keyword with
over 600 bidders
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Figure 3: Efficiency and revenue of the sponsored
search setting

Figure 3 shows that the efficiency is sensitive with respect
to α (changes quickly) when α is small, which may cause
some inconvenience for parameter tuning if the objective is
to guarantee a certain amount of efficiency. However, this
problem could be solved by simply changing the function
Q(t) = t to Q(t) = 0.5

1.2
t1.2 + 0.5

0.8
t0.8. It is clear that we

still have Q′(t) ≥ 1, ∀t > 0. This ranking algorithm causes
the efficiency to change almost linearly (shown in Figure 4),
making it easier to tune the parameter α.
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Figure 4: Efficiency and revenue of the sponsored
search setting with a different Q(·) function

5. CONCLUSION AND FUTURE WORK
In this paper, we propose a parameterized class of mecha-

nisms that are tailored specifically for the sponsored search
setting. We show that under certain conditions, our mech-
anisms guarantee a highly desirable revenue bounds, while
in the meantime provide great flexibility to engineers who
can freely trade off between revenue and efficiency. We also
show that our mechanisms perform well in realistic settings
by simulations on real search engine data. A better way to
thoroughly test our mechanisms is through a large-scale field
experiment. We are currently implementing our framework
with Baidu (the major search engine in China) sponsored
search team.
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