
Joint Movement of Pebbles in Solving the (N
2
-1)-Puzzle

and its Applications in Cooperative Path-Finding

(JAAMAS Extended Abstract)

Pavel Surynek
National Institute of Advanced Industrial

Science and Technology (AIST)
2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan

pavel.surynek@aist.go.jp

Petr Michalík
Accenture Central Europe B.V.Consulting

Jiráskovo náměstí 1981/6
120 00, Prague, Czechia

petr.michalik@accenture.com

ABSTRACT

Moving pebbles jointly in formations called snakes has been

integrated into the Parberry’s algorithm for solving the

(N2-1)-puzzle sub-optimally in the on-line mode. Using snakes

consisting of 2 pebbles that are relocated jointly towards their goal

positions after their opportunistic formation yields a measurable

reduction of the total number of pebble movements at low extra

computational cost. As the N×N-puzzle represents a special case of

the cooperative path finding problem (CPF) we also transferred the

concept of snake-like movements into the context of two rule-based

sub-optimal algorithms for CPF – BIBOX and PUSH-and-SWAP

(PUSH-and-ROTATE). The evaluation indicates significant benefit

from employing snakes within the BIBOX algorithm and also

increasing benefit in PUSH-and-SWAP being applied on bi-

connected graphs with growing size of ears.

Author Keywords: Cooperative Path-Finding, Multi-agent

Path Finding, Pebble Movement, PUSH-and-SWAP, BIBOX.

1. INTRODUCTION AND BACKGROUND
The task in the (N2-1)-puzzle [3] is to move N2-1 distinguishable

pebbles on a board with N×N positions so that each pebble

eventually reaches its unique goal position. Each position is either

occupied by a pebble or is empty. A pebble can be moved in a

discrete step to a vacant position in its neighborhood.

Figure 1. Example of CPF with 3 agents: a, b, c.

Cooperative path-finding (CPF) [4] represents a generalization

of the (N2-1)-puzzle. Instead of the board we have an undirected

graph with vertices representing positions and edges defining the

neighborhood into which movements can be done.

Appears in: Proc. of the 16th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.)

May 8–12, 2017, São Paulo, Brazil.

Copyright © 2016, International Foundation for Autonomous Agents
And Multiagent Systems (www.ifaamas.org). All rights reserved.

The role of pebbles is played by distinguishable agents in the

context of CPF. Each vertex is occupied by at most one agent at a

time. Again, each agent has its unique goal vertex and the task is to

move agents so that they eventually reach their goals (see Figure 1).

Many algorithms have been developed for solving the

relocation puzzles and CPF – see [6] for an overview. Here we

focus on those that operate in the on-line mode and generate sub-

optimal solutions in terms of the total number of moves. The

contribution of this work is a technique for moving pebbles/agents

jointly like snakes to reduce the total number of moves while still

preserving the on-line character of target algorithms.

2. SNAKE-BASED RELOCATION
Parberry suggested an on-line sub-optimal algorithm for the

(N2-1)-puzzle that arranges pebbles one by one in rows of the board

[2]. Movement of a pebble is enabled by vacating a vertex in front

of it in the direction along a path towards the goal. Special cases are

treated by a number of rules.

2.1 Snakes in the (N
2
-1)-puzzle

Our improvement opportunistically groups pebbles that would be

moved consecutively into pairs and relocate them towards their

goals jointly like a snake if a preliminary check shows that it is less

move consuming. One relocation of a pair of pebbles often

consumes considerably less moves for vacating a vertex in front of

the snake than if the two were relocated separately – Figure 2.

Figure 2. Snake formation of pebbles 1 and 2 and their joint

relocation towards the left-top corner in the (42-1)-puzzle.

5

1

1

2

9

(iv)

2

1 6 2

10

1

3

2

7

(iii)

4

(v)
8 (i)

11

1

12

2

13

(ii)

14

1

a

2

b

c

5

1

9

2

6

10

3

7

4

8

11

12 13 14

a b

c

Start Goal

856

2.2 Snakes in Rule-based CPF Solving
The snake-based agent relocation has been also integrated into two

sub-optimal rule-based algorithms for CPF – BIBOX [5] and PUSH-

and-SWAP [1], [8].

BIBOX assumes bi-connected underlying graph 𝐺 and at least

two unoccupied vertices. It employs an ear decomposition [7] of the

graph to arrange agents to their goals inductively. Any bi-connected

graph 𝐺 can be composed by adding ears 𝐿1,…, 𝐿𝑛 – each

consisting of fresh vertices making a path – to a currently

constructed graph by connecting entrance/endpoint of the ear

somewhere in the existing graph; a cycle is taken at the beginning of

the construction. Starting with the last ear 𝐿𝑛 and arranging agents

to their goal positions within 𝐿𝑛 the task of path-finding for agents

then reduces on the smaller sub-graph 𝐺 ∖ 𝐿𝑛 with no need to move

agents in 𝐿𝑛 any more.

 The process of arranging agents into an ear is done in a similar

way to pushing items into a stack (see Figure 3). An agent arrives at

the entrance of the ear (vertex 𝑣) and then all agents in the ear are

pushed one position towards the endpoint (vertex 𝑢). This is the

moment where the snake based reasoning can take place. Instead of

moving agents towards the ear entrance one by one it is always

checked if it is less motion consuming to move a pair of agents

whose goal are consecutive in the ear jointly like a snake of size 2.

Figure 3. Agents 𝟏 and 𝟐 enter ear 𝑳𝒏 like a snake jointly within

a sub-procedure of the BIBOX algorithm.

 A similar approach is used within our modification of the

PUSH-and-SWAP algorithm. The algorithm is applicable on

arbitrary underlying graph with at least two unoccupied vertices.

Agents are moved towards their goals one by one while the

placement of the next agent does not hurt already placed agents

which however may be temporarily moved out of their goal

positions. This is a substantial difference from BIBOX where agents

once finished within an ear move never more.

 An agent is moved towards its goal along a path connecting its

current position with the goal. If on this path, the agent encounters

another agent it is either moved out of the way in case this is

possible or a more complex operation of swapping agents is

initiated (an agent already placed in its goal cannot be simply

moved out of the way). The swapping operation relocates the pair of

agents needed to be swapped toward a vertex with enough

neighbors where the ordering of agents is changed using fixed rules.

Then all moves preceding the change of the ordering of agents are

executed in the reverse order which leaves all other agents as if they

were untouched except the swapped pair.

The snake based reasoning can be reflected inside the

PUSH-and-SWAP algorithm by simply trying to move a pair of

consecutive agents together if it saves moves with respect to their

separate relocation. This modification leads to a more complicated

set of rules for making the swap over a triple of agents instead of a

pair [6].

3. EXPERIMENTAL EVALUATION
Our experimental evaluation fully shown in [6] revealed that snakes

bring a consistent reduction of the total number of moves of

approximately 8% to 9% in Parberry’s algorithm and up to 50% in

the BIBOX algorithm. This is observable in Figure 4: Parberry’s

algorithm and BIBOX are compared with their snake-improved

versions. Forty randomly generated (502-1)-puzzles and instances

over biconnected graph consisting of 90 vertices with initial cycle of

size 7 and average size of ear 6 with varying number of unoccupied

vertices were used.

 PUSH-and-SWAP on the other hand turned out to be resistant

against the snake based reasoning. Improvements were observed on

biconnected graphs with growing size of ears but were unstable.

Figure 4. Improvement obtained by using snakes of size 2 in the

algorithm of Parberry (left) and BIBOX (right).

4. CONCLUSIONS
The snake-based relocation of pebbles/agents has been shown to be

a very flexible technique for reduction of the total number of moves

generated by on-line algorithms for the (N2-1)-puzzle and CPFs. We

manage to integrate it into three different algorithms. As an open

question, we consider extending the lengths of snakes from 2 to

more pebble/agents which offers new challenges.

5. ACKNOWLEDGEMENT
This paper is supported by a project commissioned by the New

Energy and Industrial Technology Development Organization Japan

(NEDO).

6. REFERENCES
[1] Luna, R., Bekris, K. E. 2011. Push and Swap: Fast Cooperative Path-

Finding with Completeness Guarantees. Proceedings IJCAI 2011, pp.

294-300, IJCAI.

[2] Parberry, I. 1995. A real-time algorithm for the (n2-1)-puzzle.

Information Processing Letters, Volume 56 (1), pp. 23-28, Elsevier.

[3] Ratner, D., Warmuth, M. K. 1990. NxN Puzzle and Related Relocation

Problems. Journal of Symbolic Computation, Volume 10 (2), pp. 111-

138, Elsevier.

[4] Silver, D. 2005. Cooperative Pathfinding. Proceedings of the AIIDE

2005, pp. 117-122, AAAI Press.

[5] Surynek, P. 2014. Solving Abstract Cooperative Path-Finding in

Densely Populated Environments. Computational Intelligence, Volume
30 (2), pp. 402-450, Wiley.

[6] Surynek, P., Michalík, P. 2016. The Joint Movement of Pebbles in
Solving the (N2-1)-Puzzle Suboptimally and its Applications in Rule-

Based Cooperative Path-Finding. Autonomous Agents and Multi-

Agent Systems, IFAAMAS/Springer, in press.

[7] Tarjan, R. E. 1972. Depth-First Search and Linear Graph Algorithms.

SIAM Journal on Computing, Volume 1 (2), pp. 146-160, SIAM.

[8] de Wilde, B., ter Mors, A., Witteveen, C. 2014. Push and Rotate: a
Complete Multi-robot Pathfinding Algorithm. Journal of Artificial

Intelligence Research (JAIR), Volume 51, pp. 443-492, AAAI Press.

2.8E+05

3.0E+05

3.2E+05

3.4E+05

0 10 20 30 40

N
u

m
b

er
 o

f
m

o
ve

s

2499-puzzle (50x50)

Parberry

Snakes
0

2000

4000

6000

0 20 40 60 80

Biconnected (7,6,90)

BIBOX

BIBOX Snake

𝐿𝑛

𝑢

𝑣

1

𝐺 = (𝑉, 𝐸)

𝐺 ∖ 𝐿𝑛

2

𝐿𝑛

𝑢

𝑣

1

𝐺 ∖ 𝐿𝑛

2

(i) (ii)

Number of unoccupied vertices Instance

857

