
Efficient Reciprocal Collision Avoidance between
Heterogeneous Agents Using CTMAT

Yuexin Ma
The University of Hong Kong

yxma@cs.hku.hk

Dinesh Manocha
University of North Carolina at

Chapel Hill
dm@cs.unc.edu

http://gamma.cs.unc.edu/CTMAT

Wenping Wang
The University of Hong Kong

wenping@cs.hku.hk

ABSTRACT
We present a novel algorithm for reciprocal collision avoidance
between heterogeneous agents of different shapes and sizes. We
present a novel CTMAT representation based on medial axis trans-
form to compute a tight fitting bounding shape for each agent.
Each CTMAT is represented using tuples, which are composed
of circular arcs and line segments. Based on the reciprocal veloc-
ity obstacle formulation, we reduce the problem to solving a low-
dimensional linear programming between each pair of tuples be-
longing to adjacent agents. We precompute the Minkowski Sums
of tuples to accelerate the runtime performance. Finally, we pro-
vide an efficient method to update the orientation of each agent
in a local manner. We have implemented the algorithm and high-
light its performance on benchmarks corresponding to road traffic
scenarios and different vehicles. The overall runtime performance
is comparable to prior multi-agent collision avoidance algorithms
that use circular or elliptical agents. Our approach is less conser-
vative and results in fewer false collisions.

KEYWORDS
multi-agent simulation; heterogeneous agents; collision avoidance;
autonomous vehicles; traffic simulation
ACM Reference Format:
Yuexin Ma, Dinesh Manocha, and Wenping Wang. 2018. Efficient Recipro-
cal Collision Avoidance between Heterogeneous Agents Using CTMAT. In
Proc. of the 17th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAA-
MAS, 9 pages.

1 INTRODUCTION
Computing collision-free trajectories for each agent is a fundamen-
tal problem in multi-agent navigation. The main goal is to ensure
that each agentmust take action to avoid collisionswith othermov-
ing agents or obstacles andmake progress towards its goal position.
This problem has been well studied in AI and robotics [7, 19–21],
VR [14, 36], computer games and crowd simulation [9, 22, 27, 46],
traffic simulation, emergent behaviors [41], etc.

In this paper, we address the problem of computing collision-
free paths for a large number of heterogeneous agents at interac-
tive rates. Such agents are characterized by varying shapes and
sizes (see Fig. 1) and can be in close proximity. In order to achieve
real-time performance, most practical algorithms [23, 41, 50, 51]

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15,
2018, Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

(a) (b)

Exact 2D projections Circular representation Elliptical representation CTMAT representation

(c)

Figure 1: Traffic scenario. (a) Image of street traffic with
different vehicles of varying sizes. The contours of vehi-
cles are shown in green. (b) Our CTMAT representation for
each agent with red medial axis. (c) Comparison of differ-
ent kinds of representations of vehicle agents that lie in the
red rectangle in (a). Our CTMAT representation is less con-
servative as compared to circles and ellipses and has similar
runtime performance.

use a disc representation for each agent. However, one obvious
disadvantage of using discs is that it results in a conservative ap-
proximation for each agent, especially when the shape is not round
or has a large aspect ratio. This can result in a large number of false
positives and the resulting multi-agent algorithms may not work
well in dense scenarios. Other multi-agent algorithms use an el-
lipse [10, 35] or a capsule shape [46] to represent each agent. How-
ever, these representations can become very conservative for some
shapes and may also result in high number of false positives. The
recent interest in autonomous driving simulators and navigation
has motivated the development of a new set of multi-agent nav-
igation algorithms for heterogeneous agents, whose shapes may
correspond to cars, bi-cycles, buses, pedestrians, etc., that share
the same road [6, 8, 28, 38, 42, 47, 49, 53]. Using a simple shape
approximation like a circle or an ellipse for all agents can be very
conservative for dense traffic situations, as shown in Fig. 1. Instead,
we need efficient and accurate multi-agent navigation algorithms
that can model agents with varying shapes and sizes.

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1044

Input
Contour

Generate
CTMAT

VO-based
MATRVO

Precomputation
Orientation
Update

Figure 2: Pipeline of our algorithm. For given contour of
agent, we compute CTMAT representation. Then, we use
MATRVO to compute velocities of agents. To speed up the
algorithm, we can precompute Minkowski Sums and width
table. We can update the orientation to match new veloci-
ties.

Main Results: We present an algorithm for efficient collision-
free navigation between heterogeneous agents by using a novel
medial-axis agent representation (CTMAT). Based on CTMAT, we
also present a reciprocal collision avoidance scheme (MATRVO). In
order to represent the heterogeneous agents for local navigation,
we compute a compact representation of each agent based on the
Medial Axis Transform (MAT) [11]. Our formulation is based on a
simplified discretization of the medial axis that captures the shape
of agents. By linearly interpolating every two adjacent medial cir-
cles of MAT, we can get a set of tuples, which constitute CTMAT.
Each tuple, composed of two circular arcs and two line segments
(see Fig. 3(b)), is used to efficiently compute the Minkowski Sum,
which is used for velocity obstacle computation for reciprocal col-
lision avoidance. Our CTMAT representation can handle both con-
vex and concave agents for reciprocal collision avoidance. We use
precomputed tables of Minkowski Sums and precomputed width
table of these agents to further accelerate the algorithm in handling
a large environment that contains thousands of agents. We also
update the orientation of each agent to generate collision-free tra-
jectories. For the runtime performance, without precomputation,
the average query time to perform the collision avoidance test be-
tween two CTMATs with one tuple is about 20 microseconds on
a single CPU core. In practice, our MATRVO algorithm with one
tuple for each agent is 1.5− 2X slower than ORCA collision avoid-
ance algorithms for circular agents, while it is 2X faster than ERVO
algorithm with elliptical agents.

The rest of the paper is organized as follows. We give a brief
overview of prior work in collision avoidance and multi-agent nav-
igation algorithms in Section 2. In Section 3, we provide an overview
of MAT and how we construct our CTMAT representation for a
given agent shape. In Section 4, we present our collision-free navi-
gation algorithm (MATRVO) for heterogeneous agents.We present
an acceleration scheme that uses precomputedMinkowski sums in
Section 5 and present our approach to computing the orientation
for local navigation in Section 6. We describe the implementation
and highlight the results in Section 7.

2 RELATEDWORK
The problem of collision avoidance andmotion planning for robots
or agents has been extensively studied. Many prior approaches [12,

(a)

P1

P2

T1

T4T2

T3

(b) (c) (d)

Figure 3: (a) MAT of a 2D shape: Red curve is the medial axis
and black circles are several sampling medial circles of the
shape. (b) Tuple: Linear interpolation of two neighboring
medial circles. (c) Simplified combination of tuples by our
algorithm. Blue dotted curve is the contour of the original
shape. (d) CTMAT representation of the original shape.

20, 25, 45] assume that the obstacles are static or slow moving as
compared to the robot. Prior algorithms for collision avoidance and
collision-free navigation in dynamic environment can be classified
into two categories, including centralized methods and decentral-
ized methods. The former [30, 43, 48] regard all the agents as part
of a single global system and decide the actions for each agent in
the unified configuration space. These methods can provide global
guarantees, but their complexity increases significantly with the
number of agents in the scene. In practice, they are limited to sce-
narios with a few agents. Decentralized methods [19, 21, 24, 27, 39,
43] compute the motions and trajectories for the agents indepen-
dently. They usually make use of local environmental information
to compute a local trajectory according to agents’ positions and
current motions. Some of these earlier methods did not account
for reactive behaviors of other agents.

Among decentralized approaches, velocity obstacle (VO) [18] is
a widely used algorithm for collision avoidance for a robot navi-
gating among dynamic obstacles. It has been extended to model
reciprocal behaviors between agents [50, 51] and can provide suffi-
cient conditions for collision avoidance. Furthermore, they can also
account for kinematic and dynamic constraints of agents [1, 5, 29].
All these methods assume that each agent is represented as a disc.
Some other local navigation methods for disc-based agents include
cellular decomposition [44], rule-based methods [41] and force-
based methods [23, 26, 37].

In order to better approximate human and robot shapes, efficient
reciprocal velocity obstacle methods have been proposed for ellip-
tical agents [10]. The resulting algorithm extends ORCA and takes
advantage of the precomputed table of Minkowski Sums of ellipses
to compute velocities for all the agents in real time. Based on this
ellipse representation, Narang et al. [35] can accurately model hu-
man motions in dense situations, including shoulder turning and
side-stepping. A capsule-shaped approximation of agents has been
used for character animation [46] to generate torso-twisting and
side-stepping characters of crowd model. All these methods are
less conservative than disc-based agent representations and can
also model orientation changes. However, they are limited to ho-
mogeneous environments, where each agent has the same shape.
It could be quite expensive to extend these methods to heteroge-
neous environmentswhere the agents have different sizes and shapes.

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1045

(a) (b) (c) (d) (e) (f)

Figure 4: The process of generating CTMAT for a given agent: (a) Transfer the curved contour of agent to a polygon. (b) Sample
on the boundary of polygon and compute the CDT of the point samples. (c) Compute circumcircles for J-triangles and T-
triangles. (d) Select valid circles as medial circles and compute the corresponding tuples. (e) Modify tuples to cover the agent.
(f) The CTMAT.

3 CTMAT: APPROXIMATION OF AGENTS
Our approach is designed for heterogeneous environments, where
each agent could have a different shape that is convex or non-
convex. Our algorithm only assumes that we are given the 2D
boundary or contour of each agent. One of our goals is to compute
a representation that is tight–fitting and useful for efficient recip-
rocal collision avoidance for a large number of agents. We present
a new representation that exploits the properties of the medial axis
transform of the object.

3.1 Medial Axis Transform
The medial axis, proposed by [11], is an intrinsic shape representa-
tion that naturally captures the symmetry and interior properties
of an object. In 2D, the medial axis of a shape, which is bounded by
planar curveC , is the locus of the centers of circles that are tangent
to curveC at two or more points, as shown in Fig. 3(a) shows. The
circles are called medial circles. If the distance to the boundary is
regarded as the radius of a medial axis point, we obtain theMedial
Axis Transform (MAT), denoted as (P , r) ∈ Rd , d = 2 or 3, where P
is the center of the medial circle and r is the radius. The contour of
an object can be reconstructed from MAT and the accuracy of the
reconstructed shape is related to the number of sampled medial
points.

3.2 CTMAT Representation
The exact representation of a medial axis is a continuous shape,
but it is hard to compute. In most cases, we just compute a dis-
cretized representation in terms of a set of medial circles and their
neighboring relationship, which is defined by the relative locations
of the centers on the medial axis. When reconstructing a shape
from the stored discrete information, we perform linear interpola-
tion [32] between any pair of neighboring medial circles. Finally,
the outermost contour is the reconstructed shape approximation
of the agent. Fig. 3(b) shows a linear interpolation of two neigh-
boring sampling medial circles. We call its contour a tuple, which
is a basic unit of our representation. The tuple consists of two line
segments T1T2, T3T4 and two circular arcs Arc(T1T2), Arc(T3T4) of
the green area. After interpolation, the contour of the set of tuples

of the original object corresponds to our CTMAT representation.
The CTMAT representation of an agentA is denoted asCTMAT (A),
which is also composed of line segments and circular arcs. To im-
prove the efficiency of our algorithm, we make a tradeoff between
the number of tuples and the conservative nature of our representa-
tion (Fig. 3(c)) to approximate the original shape. The final CTMAT
is shown in Fig. 3(d). In order to illustrate the structure of CTMAT,
we the draw detailed combination of tuples with medial axis inside
in the figure along with the contour to represent CTMAT.

3.3 CTMAT Computation
Our approach to computing the CTMAT consists of two parts -
computing the reconstructed shape of the simplified medial axis
and modifying the tuples to enclose the agent. Fig. 4 shows our
pipeline. To ensure that the contour of agent can be easily rep-
resented, we first approximate the closed curve with a polygon,
which is similar to the original shape and overestimates it. Many
methods have been proposed [2, 16, 31] to compute theMAT.Among
them, Voronoi-based approaches [3, 4, 13, 17] are widely used in
practice. In 2D, the Voronoi vertices approximate the medial axis
and converge to the exact medial axis if the sample density of the
points on the contour approaches infinity. Therefore, we uniformly
sample on the polygonal contour. All the vertices of the polygon
are added to the samples. The sampling density depends on user-
specified accuracy. Given a set of sampling points of agent’s bound-
ary, one easy method to compute Voronoi vertices is to compute
Delaunay Triangulation (DT) [52]. For convex shapes, we just com-
pute DT. For non-convex shapes, we use Constraint Delaunay Tri-
angulation (CDT) [15] to guarantee that all the sampling line seg-
ments, which is constituted by two adjacent sampling points, be-
long to the edges of triangulation. Moreover, we need to delete
the outer triangles. Fig. 4(b) shows the result of this step for a
non-convex shape. The complexity of computing DT or CDT is
O(n logn), where n is the number of sample points. There are three
kinds of triangles [40] in the resulting triangulation. Those trian-
gles with two external edges located in the terminal of a branch
or a protrusion of the shape are called T-triangles. Those trian-
gles with one external edge are S-triangles. Finally, the triangle
with no external edges determines a junction of branches of the

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1046

polygon is the J-triangle. The circumcircle of each triangle can be
used to approximate the medial circle. The neighboring relation-
ship is decided by their related triangles. If two triangles share the
same edge, they are neighbors of each other. However, using a CT-
MAT representation with too many medial circles can slow down
the runtime collision avoidance scheme. It turns out that perform-
ing the interpolation based on the T-triangle and J-triangle would
cover the S-triangles, andwe only compute themedial circles based
on T-triangles and J-triangles, as shown in Fig. 4(c). If there is a set
of consecutive S-triangles between two circles, we think these two
circles are adjacent. To further simplify the representation, we use
the following conditions to select the final valid medial circles and
compute corresponding tuples for CTMAT.

Γi j =
d(ci , c j) + r j

ri + r j
, (1)

where ci , c j and ri , r j are the centers and the radii of two neigh-
boring medial circles respectively, and d(ci , c j) represents the dis-
tance between the two centers. If Γi j < ϕ, we delete one of the two
medial circles. If the medial circles of two related triangles are of
different types, we delete the circle corresponding to the T-triangle.
Otherwise, we remove the smaller one. After deleting a circle, the
neighboring relationships of the removed circle are added to the re-
maining one.ϕ, standing for the threshold of filter, is a user-defined
parameter and we use ϕ = 1 in our experiment. Fig. 4(d) shows the
result after filtering.

After computing the simplified combination of tuples, we mod-
ify that representation so that it totally covers the agent. We use
an optimization algorithm for this modification step with the goal
of generating as small tuples as possible to contain the boundary
of the agent and maintaining the original tuples’ shape (Fig. 4(d))
as much as possible. Assume the variables of the current medial
circle m are represented as the center c and the radius r . The op-
timization algorithm is applied to each medial circle and can be
expressed as:

min E = E1 + E2,

E1 = d
2(c, co),

E2 =

{
0 , r < ro

(r − ro)2,otherwise

s.t.

{
Gin ∈ U

Gout ∈ U ,
(2)

where co and ro are the original center and radius ofm, E1 stands
for the distance from the initial position and E2 stands for the differ-
ence from the initial radius,U is the set of tuples related tom.Gin
is the set of sampling line segments, which locate inside U before
the modification. Gout is composed of two kinds of sampling line
segments which are not inside any tuple, one is that just one ter-
minal belongs toU , another is that the nearest distance to current
reconstructed shape is the distance to U . The distance between a
line segment and a tuple is defined as the bigger Hausdorff distance
of two terminals to the tuple. The constraints are used to ensure
that each sampling line segment is located inside at least one tuple.
E is the objective function that consists of a mixture of continu-
ous and combinatorial terms: it cannot be optimized directly by

B

A

rB rB

r

r

A

A

PB
PB

P

PA

A

b s

b

b

b

s

s

s

(a)

rB rB

PB PB

b s

b s

rB
b

PB
b

rB
s

PB
s

r

r

A

A

b

s

rA
b

rA
s

tBAs

tBAb

(b)

tBAs

tBAb

(c)

M

(d)

Figure 5: Computing the Minkowski Sum of Two tuples. (a)
The tuples of two agents A and B. (b) Offsetting B by two cir-
cles of A. (c) Positioning new tuples of (b) in right place and
computing their tangent lines. (d) Getting the Minkowski
SumM .

gradient-based methods. Instead, we use a greedy strategy to lo-
cally optimize the configuration of each medial circle. We consider
co as the center and test positions from small radius in a search
web, which is constructed by a set of concentric circles and a set of
rays from their center. For each crossed node of the web, we com-
pute the minimal r . Moreover, we compute the minimal value of E
in a defined range. Finally, we obtain the our required tuples and
CTMAT, as shown in Fig. 4(e) and Fig. 4(f).

Theorem 3.1. For agent A, Sub(CTMAT (A)) ⊇ Sub(A), where
Sub stands for the subset of 2D space.

Proof. Let C(A) represent the polygonal contour of A, l repre-
sent the line segment on C(A) and t denote a tuple. For ∀l ∈ C(A),
∃t , Sub(t) ⊆ Sub(CTMAT (A)), l ⊆ t . Then, l ⊆ Sub(CTMAT (A)).
Then, C(A) ⊆ Sub(CTMAT (A)) and Sub(C(A)) ⊆ Sub(CTMAT (A)).
Because Sub(C(A)) ⊇ Sub(A), we get Sub(CTMAT (A)) ⊇ Sub(A).

□

Our approach can be used to represent heterogeneous agents.
Fig. 1(a) is a scene of the top view of traffic scenario with different
kinds of vehicles. CTMATs for all the vehicles are shown in Fig.
1(b). The comparison among disc, ellipse and CTMAT in represent-
ing the part of the traffic scene inside a red rectangle is in Fig. 1(c),
which illustrates that CTMAT provides a tighter approximation.

4 VELOCITY OBSTACLES FOR
HETEROGENEOUS AGENTS

In general, the physical workspace of robots or agents is in 3D,
presented byR3. We project the geometric representation of agents
to a lower dimension R2, and generate CTMAT as the underlying
and conservative approximation of each agent. In order to compute
collision-free velocities, we treat each tuple, which is convex, as a
separate computational unit to compute the velocity of each agent.

4.1 Tuple Definition
In the following, to make description clearer, we will assume the
CTMAT of our agent has just one tuple. The cases that agent is
represented by a few of tuples will be discussed later. The shape
of tuple in R2 of each agent i is decided by its two medial circles
-mb with bigger radius andms with smaller radius. If two medial
circles have the same radius, mb and ms are randomly assigned

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1047

B

A

Py

Px

vA

vB

(a)

vy

vx0

M

M /τ

(b)

vy

vx0

vA-B

vA

u

τ
A|B

u_
2

MATRVO

(c)

vy

vx0MATRVOτA|B

M
ATRVO

τ
A

|D

M
AT

RV
Oτ A

|C

MATRVO
τ
A|F

M
AT

RV
O
τ A

|E

vA
new

(d)

Figure 6: MATRVO algorithm to compute collision-free velocity. (a) Two agents with one tuple are moving towards their goal
positions. (b) The velocity obstacle for A induced by B takes the shape of a truncated cone, which is formed by the Minkowski
Sum of A and B, scaled by τ and its two tangent lines from the origin. (c) The half-plane constraint MATRVOτ

A |B is the set of
permitted velocities for agent A with respect to B. (d) After adding all the constraints, we compute a feasible velocity in the
intersection region of all the half-planes.

to them. Let position vector ®pbi ∈ R2 and radius rbi ∈ R1 rep-
resent mb and ®psi and r si represent ms . In order to benefit later
computation, we also store four tangent points of tuple, shown in
Fig. 3(b), which can be represented by Ti =

[
T i1 ,T

i
2 ,T

i
3 ,T

i
4
]
. The

case that the computed CTMAT of agent degenerates to one cir-
cle is easier to deal with [50]. We just consider common situations.
So the information of the tuple of agent i can be represented as
ti =

[
®pbi , r

b
i , ®p

s
i , r

s
i ,Ti

]
. The preferred velocity and current veloc-

ity are denoted by ®v0i and ®vi repectively. Let ®o0i denote the preferred
orientation and ®oi denote current orientation for the agent. Then
the state space of agent i is given by

[
ti , ®v0i , ®vi , ®o

0
i , ®oi

]
. If the agent

has more than one tuple, ti can be changed to a set of tuples.

4.2 Local Collision Avoidance
Our algorithm is based onVelocityObstacle (VO) [18] and its follow-
up ORCA [50]. For two agents A and B, the velocity obstacle of A
induced by B is represented byVOτ

A |B , which consists of all the rel-
ative velocities of A with respect to B that would cause a collision
with B at some moment before time τ . Conversely, assuming ®vA
and ®vB are current velocity of A and B respectively, the condition
®vA − ®vB < VOτ

A |B can guarantee that agent A and B are collision-
free for at least τ time. VOτ

A |B and VOτ
B |A are symmetric in the

origin. Formally,

VOτ
A |B = { ®v | ∃t ∈ [0,τ] :: t ®v ∈ M}, (2)

whereM is the Minkowski Sum between B and −A.
The tuple of A and B and its parameters are shown in Fig. 5(a).

The first step of computing M is to offset B by rbA and r sA of A re-
spectively and get two new expanded tuples tBAs and tBAb , shown
in Fig. 5(b). The offsetting operation is composed of two substeps -
one is enlarging the two circular arcs and the other is shifting two
tangent lines of B in terms of vector ®d1 = T B

1 −PbB and ®d2 = T B
3 −PbB .

After getting new tuples, we translate them to correct places ac-
cording to the position of −A. tBAs moves according to the vector
−PsA, and tBAb translates by the vector−P

b
A. The result is in Fig.5(c).

We only need compute tangent lines of two new tuples and then
the boundary of M , defined by ΩM , can be extracted. ΩM is still
composed of line segments and circular arcs, which brings conve-
nience to later computation of nearest point and forward face.

4.3 Neighboring Obstacle Constraints
It comes to compute the velocity obstacle for agent. Also taking
agentA and its neighboring agent B as an example, we know their
current velocities and their Minkowski SumM . The next step is to
find lines from the origin and tangent to ΩM . It is easy to compute
these lines because of the geometric properties of the components
of ΩM . Then we can get the tangents of ΩM scaled by the inverse
of τ and the forward face, shown in Fig. 6(b). The forward face is
also composed of line segments or circular arcs or combination of
them, so the nearest point of the boundary of velocity obstacle for
the relative velocity ®vA−B can be computed easily.

Then, we compute valid velocities for agent A by making use
of the velocity obstacle. The process is extended from ORCA [50]
andwe denote the permitted velocities forA for reciprocal collision
avoidance with respected to B asMATRVOτ

A |B . As Fig. 6(c) shows,
®u is the vector from ®vA−B to the nearest point. Agent A should
change its velocity by 1

2 ®u under the assumption that B will do the
same. And the collision-free velocity for A with the neighbor B is
defined by the half-plane, passing through the point ®vA + 1

2 ®u and
vertical to ®u. Suppose agent A and its neighbor B hasm tuples and
n tuples respectively, the planes caused by them ism×n. If we have
found all neighboring agents of A by searching in kD-tree, we can
compute all the half-planes, the constraints forA, and get the final
intersected valid areaMATRVOτ

A for permitted velocities of A.

MATRVOτ
A =

∩
B,A

MATRVOτ
A |B (3)

To guarantee our agent always has a tendency towards its goals, we
choose a velocity insideMATRVOτ

A that has the smallest deviation

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1048

Pb

T1
T2

T3 T4

Ps e

(a)

P1
α

T’4

T’3

T2

e

e’

Pb
Ps

Ps ’

T1

(b)

Figure 7: Swept Tuple. (a) An original tuple. (b) Rotate the tu-
ple by an angle θ with Pb as the pivot. e is themiddle point on
circular arcT2T4 of the original tuple and the corresponding
point after rotating is represented as e ′.

from its preferred velocity ®v0A. That is

®vnewA = argmin
®v ∈MATRVOτ

A

®v − ®v0A
 (4)

We use linear programming to computeMATRVOτ
A and Eq. 3, and

the runtime isO(n)wheren is the number of constraints. If there is
a feasible solution for the agent, the agent’s motion is guaranteed
to be collision-free. When the agents are densely distributed in the
scenario, MATRVO may be empty and no feasible solution can be
found. In that situation, we minimally penetrate the constraints
and use another linear programming [10, 50].

Theorem 4.1. If MATRVO algorithm is able to compute a feasible
velocity, the resulting motion for agent is collision-free.

Proof. For ∀agentA in the scenario, its neighboring agents can
be represented as Neiдhbors(A). All the tuples of A construct con-
straints with all the tuples of Neiдhbors(A). If we compute a fea-
sible velocity ®vnewA ∈ MATRVOτ

A by linear programming, then
∀tuple tn ∈ Neiдhbors(A), ∀tuple tA ∈ A, ®vnewA < VOτ

tA |tn . Then,∀agent N ∈ Neiдhbors(A), ®vnewA < VOτ
A |N . Then, A will not col-

lide with any other neighboring agent at any moment before time
τ . □

4.4 Runtime Analysis
Let t(A) represent the number of tuples ofCTMAT (A) and NA

i rep-
resent the ith neighboring agent ofA. The runtimeTime(A) of com-
putingMATRVOτ

A can be denoted as follows.

Time(A) = t(A) ×
n∑

k=1
t(NA

k) × µ, (5)

where n denotes the number of neighboring agents of A, µ is the
runtime of computing MATRVOτ

A when A has just one neighbor
and both of them have one tuple.

5 PRECOMPUTATION OF MINKOWSKI SUMS
One important factor influencing the efficiency is the computation
of the Minkowski Sum. To further accelerate our algorithm, we
make use of a precomputational table of Minkowski Sums [10].

Given a tuple, we define the orientation angle θti , which is the
angle between the x-axis and its main axis decided by two centers

c1

c2
c3

m1

m2 m3

(a)

w
βc1

c2
c3

α

(b)

Figure 8: Computing the width for agent: (a) An agent with
two tuples. (b) Convex hull of the agent. w is the width of
the orientation of the arrow.

of circular arcs. To make our discrete table cover all the orienta-
tions of tuples, we first compute a new representation of the tuple
after rotating it for an interval angle α . Like Fig. 7 shows, we select
Pb as the rotation center because the approximation error for the
tuple is smaller than using Ps when their radii are different. The
blue contour in Fig. 7(b) is composed of new circular arcs and line
segments. The special one is the circular arc ee ′, which does not
come from the original medial circles but from a new circle with
Pb as the center and

PbPs + r s as the radius. However, it does
not effect our computation of the Minkowski Sum since it is also a
circular arc. The structure has no essential difference with the tu-
ple. Let S =

{
θE × i : 0 ≤ i ≤ ⌊ 2πθE ⌋ | θE ∈ (0, 2π)

}
denote the set of

angles and R = {Rot(T (θi),θi+1) | θi ,θi+1 ∈ S} represent the set of
precomputed contours by rotating a tuple from θi to θi+1 for each
two ordered angles in S . After getting the set R for each kind of tu-
ple, we could construct n×n tables of Minkowski Sum for n tuples.
When there comes a tuple with orientation θnow , we can easily get
the corresponding element in R by searching θi ≤ θnow < θi+1. In
this way, for a pair of tuples, we can efficiently find the correspond-
ing Minkowski Sum in the precomputed tables. In our experiment,
we set θE to 1

36π .
After computing the Minkowski sum using the table, we use

our method to compute the forward face and nearest point. Our
precomputed method provides 2× improvement in runtime perfor-
mance, when each agent is represented using one tuple.

6 ORIENTATION UPDATE
Our representation of agents provides more degree of freedom in
terms of selecting a feasible motion to avoid collisions. When the
space in the environment is too narrow for the agent to move
ahead, the agent can rotate its body to find a relatively small width
under the direction of its velocity to pass through the space. In
order to perform these computations efficiently, we use a precom-
puted width table to search for the rotated angle at runtime.

In order to design a solution for general scenarios, we assume
the agent has two tuples, as shown in Fig. 8(a). The first step is
to add more tangent lines to obtain the convex hulls of the agent,
which consists of circular arcs and line segments. The width of
the convex hull corresponds to the width of agent. The arrow in
Fig. 8(b) shows the orientation of the agent and the distance w
between two parallel tangent lines of the convex hull in the di-
rection of the arrow is the width of current agent. Three medial

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1049

(a) (b) (c) (d) (e)

Figure 9: A sequence of frames in the simulation of traffic scenario byMATRVO. For each scenariowe compute the newvelocity
of each agent using MATRVO and compute collision-free trajectories between two frames.

(a) (b) (c) (d) (e) (f)

Figure 10: A sequence of frames in the simulation of antipodal circle scenario by MATRVO.

circles in this example arem1,m2 andm3 with centers c1, c2 and
c3, respectively. Assuming two parallel tangent lines are tangent
to medial circle mi and mj , we can compute the value of w by
w = ri +r j +d(ci , c j)×cos β , where ri and r j are the radii ofmi and
mj , respectively, d(ci , c j) is the distance between two circles’ cen-
ters and angle β is the acute angle between the vertical direction of
orientation and the line passing through ci and c j . This equation
corresponds to the case when two parallel tangent lines are tan-
gent to the same medial circle. If the orientation arrow rotates by
360◦, the change of width can be represented as a piecewise con-
tinuous function with clear ranges. We precompute the function in
a table so that our algorithm can search for the width and find the
minimal rotated angle for the agent to pass through the clearance
efficiently. We update the orientation after every time step to com-
pute the new velocity for the agent and use the approach in [35]
to guarantee that the rotating action is collision-free. More details
are given in the report [34].

7 RESULTS
In this section, we highlight the performance of our algorithm
on different benchmarks and compare its performance with prior
multi-agent navigation algorithms.We implemented the algorithm
and conducted experiments in C++ on a Windows 10 laptop with
Intel i7-6700 CPU and 8GB RAM. Our algorithm can be easily par-
allelized on multiple cores. All the results in this paper were gen-
erated on a single CPU core.

Fig. 9 shows a sequence of agent positions (corresponding to dif-
ferent vehicles) of the simulation result of a traffic scenario by MA-
TRVO. We have computed a representation and position for each
vehicle based on the discrete time instances in a given video. For

each column, the top image corresponds to the scene of moving
vehicles and the bottom one is the corresponding simulated traf-
fic scene. Our algorithm can tightly represent different kinds of
agents (vehicles) and closely match the actual traffic. Fig. 10 shows
a sequence of frames of simulating the agent positions in the an-
tipodal scenario that has been used in prior benchmarks [10, 50].
This scenario requires every agent on a circle to reach the antipo-
dal position as the final goal. The type of agent used in this bench-
mark is shown in the dotted rectangle. We also use another four
scenarios to test the performance of our algorithm. The result in
Fig. 13(a) illustrates that our algorithm could be applied to large
scenarios with hundreds of or thousands of agents and used for in-
teractive navigation. In Fig. 13(b), two agents should pass through
the narrow hallway and reach the opposite positions. In this exam-
ple, no disc-based agent or ellipse-based agent could pass through
it due to the narrow space. Our CTMAT representation works well
in such scenarios because of a tighter and more flexible representa-
tion. Fig. 13(c) and Fig. 13(d) show the performance of multi-agent
navigation among static obstacles.

In order to evalute the efficiency of our algorithm, we compare
the performance of ORCA [50], ERVO [10] with precomputation,
MATRVO and MATRVO with precomputation in different scenar-
ios, like the antipodal circle. We highlight the average frame up-
date time as a function of the number of agents in Fig. 11. Agents
use one tuple for CTMAT in this comparison. We observe that MA-
TRVO with precomputation is at most 2X slower than ORCA. The
performance of agents with different numbers of tuples without
precomputation is shown in Fig. 12.

During the process of computing collision-free trajectories, we
need check for collisions between the agents. Representations that

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1050

Figure 11: Performance comparison of ORCA, ERVO with
precomputation, MATRVO and MATRVO with precomputa-
tion in the antipodal circle scenario.

Figure 12: Performance comparison of MATRVO without
precomputation, when underlying agents have different
numbers of tuples in the CTMAT representation.

are too conservative may result in a high number of false positives
and may not be able to compute collision-free trajectories in dense
situations. Currently, we use a brute-force method to perform col-
lision checks between the exact polygonal representations of the
agents and use that data as the ground truth and compute the num-
ber of false positives for ORCA, ERVO, and MATRVO for 50 agents
in the anti-podal benchmark (see Table 1).

8 CONCLUSION, LIMITATIONS AND FUTURE
WORK

We present a novel algorithm for reciprocal collision avoidance be-
tween heterogeneous agents. For an arbitrary-shaped agent, we
represent it with CTMAT and use MATRVO to compute collision-
free trajectories for multiple agents. Taking advantage of the ge-
ometrical properties of MAT, our representation is less conserva-
tive andmore flexible than current disc or ellipse-based approxima-
tion. Moreover, we can handle both convex or non-convex agents.
Due to the simplicity of the formulation, MATRVO is very fast and

(a) (b)

(c) (d)

Figure 13:DifferentBenchmarks: (a) 500 agents from twover-
tical directions walk ahead; (b) Two agents approach and ro-
tate in the narrow hallway; (c) 160 agents from two vertical
directions walk ahead in 4-square scene. (d) 50 agents walk
through a narrow door; CTMAT and MATRVO are able to
perform collision-free navigation in these scenarios.

Test Agent ORCA [50] ERVO [10] MATRVO

1 54.5% 37.9% 8.5%

2 60.4% 31.4% 9.8%

3 47.3% 46.2% 9.2%

Table 1: Comparison of ratios of false positives of ORCA,
ERVO, and MATRVO in antipodal circle scenario.

can be used for interactive multi-agent navigation of thousands of
agents on a single CPU core. We demonstrate the performance of
our algorithm in simulating different scenarios and highlight the
benefits over prior multi-agent navigation schemes.

Our approach has some limitations. First, the new velocity and
agent’s orientation are not computed simultaneously. Second, like
other VO-based methods, our algorithm also assumes perfect sens-
ing and does not take into account uncertainty. In real traffic, differ-
ent kinds of vehicles have different dynamics and we need to take
them into account [33]. As part of future work, we would like to
overcome these limitations and evaluate the performance of MA-
TRVO in more complex scenarios.

9 ACKNOWLEDGEMENTS
Thisworkwas supported byHongKongRGCGrant (HKU 717813E).
We also wish to thank Xinge Zhu for his valuable suggestions.

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1051

REFERENCES
[1] Javier Alonso-Mora, Andreas Breitenmoser, Paul Beardsley, and Roland Sieg-

wart. 2012. Reciprocal collision avoidance for multiple car-like robots. In Ro-
botics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 360–
366.

[2] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. 2001. The power crust,
unions of balls, and the medial axis transform. Computational Geometry 19, 2-3
(2001), 127–153.

[3] Dominique Attali and J-O Lachaud. 2001. Delaunay conforming iso-surface,
skeleton extraction and noise removal. Computational Geometry 19, 2-3 (2001),
175–189.

[4] Dominique Attali and Annick Montanvert. 1997. Computing and simplifying
2D and 3D continuous skeletons. Computer vision and image understanding 67,
3 (1997), 261–273.

[5] Daman Bareiss and Jur Van den Berg. 2013. Reciprocal collision avoidance for
robots with linear dynamics using lqr-obstacles. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE, 3847–3853.

[6] Daman Bareiss and Jur van den Berg. 2015. Generalized reciprocal collision
avoidance. The International Journal of Robotics Research 34, 12 (2015), 1501–
1514.

[7] Aniket Bera, Tanmay Randhavane, Rohan Prinja, and DineshManocha. 2017. So-
cioSense: Robot Navigation Amongst Pedestrians with Social and Psychological
Constraints. arXiv preprint arXiv:1706.01102 (2017).

[8] Andrew Best, Sahil Narang, Daniel Barber, and Dinesh Manocha. 2017. Au-
tonoVi: Autonomous Vehicle Planning with Dynamic Maneuvers and Traffic
Constraints. (2017).

[9] Andrew Best, Sahil Narang, Sean Curtis, and Dinesh Manocha. 2014. Dens-
esense: Interactive crowd simulation using density-dependent filters. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Eurographics Association, 97–102.

[10] Andrew Best, Sahil Narang, and Dinesh Manocha. 2016. Real-time reciprocal
collision avoidance with elliptical agents. In Robotics and Automation (ICRA),
2016 IEEE International Conference on. IEEE, 298–305.

[11] Harry Bium. [n. d.]. A transformation for extracting new descriptions of shape.
In Symposium on Modeis for the Perception of Speech and Visua1 Form.

[12] Johann Borenstein and Yoram Koren. 1991. The vector field histogram-fast ob-
stacle avoidance for mobile robots. IEEE transactions on robotics and automation
7, 3 (1991), 278–288.

[13] JonathanWBrandt and V Ralph Algazi. 1992. Continuous skeleton computation
by Voronoi diagram. CVGIP: Image understanding 55, 3 (1992), 329–338.

[14] Julien Bruneau, Anne-Helene Olivier, and Julien Pettre. 2015. Going through,
going around: A study on individual avoidance of groups. IEEE transactions on
visualization and computer graphics 21, 4 (2015), 520–528.

[15] L Paul Chew. 1989. Constrained delaunay triangulations. Algorithmica 4, 1-4
(1989), 97–108.

[16] Tim Culver, John Keyser, and Dinesh Manocha. 2004. Exact computation of the
medial axis of a polyhedron. Computer Aided Geometric Design 21, 1 (2004), 65–
98.

[17] Tamal K Dey and Wulue Zhao. 2004. Approximate medial axis as a voronoi
subcomplex. Computer-Aided Design 36, 2 (2004), 195–202.

[18] Paolo Fiorini and Zvi Shiller. 1998. Motion planning in dynamic environments
using velocity obstacles. The International Journal of Robotics Research 17, 7
(1998), 760–772.

[19] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. 1997. The dynamic win-
dow approach to collision avoidance. IEEE Robotics & Automation Magazine 4, 1
(1997), 23–33.

[20] Thierry Fraichard and Hajime Asama. 2004. Inevitable collision statesA step
towards safer robots? Advanced Robotics 18, 10 (2004), 1001–1024.

[21] Julio Erasmo Godoy, Ioannis Karamouzas, Stephen J Guy, and Maria L Gini.
2016. Implicit Coordination in Crowded Multi-Agent Navigation.. In AAAI.
2487–2493.

[22] Liang He, Jia Pan, Sahil Narang, Wenping Wang, and Dinesh Manocha. 2016.
Dynamic group behaviors for interactive crowd simulation. arXiv preprint
arXiv:1602.03623 (2016).

[23] Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynam-
ics. Physical review E 51, 5 (1995), 4282.

[24] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock. 2002. Ran-
domized kinodynamic motion planning with moving obstacles. The Interna-
tional Journal of Robotics Research 21, 3 (2002), 233–255.

[25] Fumio Kanehiro, Florent Lamiraux, Oussama Kanoun, Eiichi Yoshida, and Jean-
Paul Laumond. 2008. A local collision avoidance method for non-strictly convex
polyhedra. Proceedings of robotics: science and systems IV (2008).

[26] Ioannis Karamouzas, Peter Heil, Pascal van Beek, and Mark H Overmars. 2009.
A Predictive Collision Avoidance Model for Pedestrian Simulation. MIG 9 (2009),
41–52.

[27] Ioannis Karamouzas, Nick Sohre, Rahul Narain, and Stephen J Guy. 2017. Implicit
crowds: Optimization integrator for robust crowd simulation. ACM Transactions

on Graphics (TOG) 36, 4 (2017), 136.
[28] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka.

2015. Real-time motion planning methods for autonomous on-road driving:
State-of-the-art and future research directions. Transportation Research Part C:
Emerging Technologies 60 (2015), 416–442.

[29] Emmett Lalish and Kristi A Morgansen. 2012. Distributed reactive collision
avoidance. Autonomous Robots 32, 3 (2012), 207–226.

[30] Steven M LaValle and Seth A Hutchinson. 1998. Optimal motion planning for
multiple robots having independent goals. IEEE Transactions on Robotics and
Automation 14, 6 (1998), 912–925.

[31] Der-Tsai Lee. 1982. Medial axis transformation of a planar shape. IEEE Transac-
tions on pattern analysis and machine intelligence 4 (1982), 363–369.

[32] Pan Li, Bin Wang, Feng Sun, Xiaohu Guo, Caiming Zhang, and Wenping Wang.
2015. Q-mat: Computing medial axis transform by quadratic error minimization.
ACM Transactions on Graphics (TOG) 35, 1 (2015), 8.

[33] YuexinMa, DineshManocha, andWenpingWang. 2018. AutoRVO: Local Naviga-
tion with Dynamic Constraints in Dense Heterogeneous Traffic. arXiv preprint
arXiv:1804.02915 (2018).

[34] Y. Ma, D. Manocha, and W.Wang. 2017. Efficient Reciprocal Collision Avoidance
between Heterogeneous Agents Using CTMAT. Technical Report (2017).

[35] Sahil Narang, Andrew Best, and Dinesh Manocha. 2017. Interactive simulation
of local interactions in dense crowds using elliptical agents. Journal of Statistical
Mechanics: Theory and Experiment 2017, 3 (2017), 033403.

[36] Sahil Narang, Andrew Best, Tanmay Randhavane, Ari Shapiro, and Dinesh
Manocha. 2016. PedVR: Simulating gaze-based interactions between a real user
and virtual crowds. In Proceedings of the 22nd ACM conference on virtual reality
software and technology. ACM, 91–100.

[37] Nuria Pelechano, Jan M Allbeck, and Norman I Badler. 2007. Controlling indi-
vidual agents in high-density crowd simulation. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation. Eurographics As-
sociation, 99–108.

[38] Scott Drew Pendleton, Hans Andersen, Xinxin Du, Xiaotong Shen, MalikaMegh-
jani, You Hong Eng, Daniela Rus, and Marcelo H Ang. 2017. Perception, Plan-
ning, Control, and Coordination for Autonomous Vehicles. Machines 5, 1 (2017),
6.

[39] Stéphane Petti and Thierry Fraichard. 2005. Safe motion planning in dynamic
environments. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on. IEEE, 2210–2215.

[40] Lakshman Prasad. 1997. Morphological analysis of shapes. CNLS newsletter 139,
1 (1997), 1997–07.

[41] Craig W Reynolds. 1987. Flocks, herds and schools: A distributed behavioral
model. ACM SIGGRAPH computer graphics 21, 4 (1987), 25–34.

[42] Mohammad Saifuzzaman and Zuduo Zheng. 2014. Incorporating human-factors
in car-following models: a review of recent developments and research needs.
Transportation research part C: emerging technologies 48 (2014), 379–403.

[43] Gildardo Sanchez and J-C Latombe. 2002. Using a PRM planner to compare
centralized and decoupled planning for multi-robot systems. In Robotics and
Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on, Vol. 2.
IEEE, 2112–2119.

[44] Andreas Schadschneider. 2001. Cellular automaton approach to pedestrian
dynamics-theory. arXiv preprint cond-mat/0112117 (2001).

[45] Reid Simmons. 1996. The curvature-velocitymethod for local obstacle avoidance.
In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Confer-
ence on, Vol. 4. IEEE, 3375–3382.

[46] Sybren A Stüvel, NadiaMagnenat-Thalmann, Daniel Thalmann, A Frank van der
Stappen, and Arjan Egges. 2017. Torso crowds. IEEE transactions on visualization
and computer graphics 23, 7 (2017), 1823–1837.

[47] Hao Sun, Weiwen Deng, Sumin Zhang, ShanshanWang, and Yutan Zhang. 2014.
Trajectory planning for vehicle autonomous driving with uncertainties. In Infor-
mative and Cybernetics for Computational Social Systems (ICCSS), 2014 Interna-
tional Conference on. IEEE, 34–38.

[48] Petr Švestka and Mark H Overmars. 1998. Coordinated path planning for multi-
ple robots. Robotics and autonomous systems 23, 3 (1998), 125–152.

[49] Chris Urmson, Chris Baker, John Dolan, Paul Rybski, Bryan Salesky, William
Whittaker, Dave Ferguson, and Michael Darms. 2009. Autonomous driving in
traffic: Boss and the urban challenge. AI magazine 30, 2 (2009), 17.

[50] Jur Van Den Berg, Stephen Guy, Ming Lin, and Dinesh Manocha. 2011. Recipro-
cal n-body collision avoidance. Robotics research (2011), 3–19.

[51] Jur Van den Berg, Ming Lin, and Dinesh Manocha. 2008. Reciprocal velocity
obstacles for real-time multi-agent navigation. In Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on. IEEE, 1928–1935.

[52] David FWatson. 1981. Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes. The computer journal 24, 2 (1981), 167–172.

[53] Julius Ziegler, Philipp Bender, Markus Schreiber, Henning Lategahn, Tobias
Strauss, Christoph Stiller, Thao Dang, Uwe Franke, Nils Appenrodt, Christoph G
Keller, et al. 2014. Making Bertha driveAn autonomous journey on a historic
route. IEEE Intelligent Transportation Systems Magazine 6, 2 (2014), 8–20.

Session 26: Agent-Based Simulation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1052

	Abstract
	1 Introduction
	2 Related Work
	3 CTMAT: Approximation of Agents
	3.1 Medial Axis Transform
	3.2 CTMAT Representation
	3.3 CTMAT Computation

	4 Velocity Obstacles for Heterogeneous Agents
	4.1 Tuple Definition
	4.2 Local Collision Avoidance
	4.3 Neighboring Obstacle Constraints
	4.4 Runtime Analysis

	5 Precomputation of Minkowski Sums
	6 Orientation Update
	7 Results
	8 Conclusion, Limitations and Future Work
	9 Acknowledgements
	References

