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ABSTRACT
We propose a method for modeling and learning turn-taking be-
haviors for accessing a shared resource. We model the individual
behavior for each agent in an interaction and then use a multi-agent
fusion model to generate a summary over the expected actions of
the group to render the model independent of the number of agents.
The individual behavior models are weighted finite state transduc-
ers (WFSTs) with weights dynamically updated during interactions,
and the multi-agent fusion model is a logistic regression classifier.

We test our models in a multi-agent tower-building environment,
where a Q-learning agent learns to interact with rule-based agents.
Our approach accurately models the underlying behavior patterns
of the rule-based agents with accuracy ranging between 0.63 and
1.0 depending on the stochasticity of the other agent behaviors. In
addition we show using KL-divergence that the model accurately
captures the distribution of next actions when interacting with both
a single agent (KL-divergence < 0.1) and with multiple agents (KL-
divergence < 0.37). Finally, we demonstrate that our behavior model
can be used by a Q-learning agent to take turns in an interactive
turn-taking environment.
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1 INTRODUCTION
Turn-taking plays an important role in interactions between peo-
ple [21, 22]. Conversational partners take turns at speaking, and
someone wishing to take a turn might use body language to signal
that they have something to say [6]. Drivers take turns occupy-
ing segments of the road while avoiding collisions, and someone
wishing to enter an occupied lane can use turn-signals to indicate
their intention. There has been a large amount of work covering
turn-taking in conversational agents where interruptions are re-
coverable [7, 17], but our focus is on applications that require strict
turn-taking behavior, in which collisions can be catastrophic.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
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There are expected turn-taking patterns that are defined by
social-cultural norms and explicit rules. Adhering to social-cultural
norms can significantly enhance the performance of agents acting
within a group [10]. Deviations from these patterns may require
turn-taking to be re-negotiated, which slows down task completion
and can result in adverse outcomes. The personalities and individ-
ual attributes of those participating in an interaction will influence
the extent to which norms are followed. Norm and personality-
based attributes are hard to define formally, are complex, and can
involve contradictory requirements and constraints [9]. Therefore,
the effects of social-cultural and personality-based attributes are
best discovered through observation and experience.

We treat multi-agent interactions as a three-step process: 1) select
what to do (e.g. change lane), 2) identifywhen to do it (e.g. merge in
front of or behind the occupying vehicle), and 3) determine how to
do it (e.g. execute the path). Decomposing multi-agent interactions
into a process of identifying what, when and how results in a
hierarchical model with components that can be tackled in semi-
isolation; the more general task-agnostic when component, which
is most influenced by social-cultural norms, is decoupled from the
more task-specific action selection and execution components. This
decomposition allows the regularity imposed by social-cultural
norms and turn-taking patterns to be modeled in a way that is
applicable across interactive domains in which agents should not
take turns at the same time.

Our focus is on modeling the turn-taking behavior of agents with
different behavioral types (i.e. erratic, passive, and aggressive) such
that a learning-agent can learn to collaboratively build towers. Our
behavior model is able to accurately predict the type of turn-taking
action other agents will take, and a Q-learning agent can use our
behavioral model to learn a turn-taking policy [16] that can be used
in interactions involving varying numbers of agents.

The rest of this paper is organized as follows: In Section 2 we
present the relevant background. Section 3 presents an overview of
the technologies and learning algorithms used. Section 4 describes
the experiments conducted to validate our models. The results are
described in Section 5, and Section 6 provides a summary of our
work and suggestions for future work.

2 RELATEDWORK
Prior work on learning acceptable social-cultural norms typically
focuses on evaluating how long it takes a group of artificial agents
to converge upon a set of norms [26], and techniques fall into one of
several categories: imitation, normative advice, machine learning,
and data-mining [20]. Such social learning models typically assume
that the agents involved are able to communicate any required
information for learning a policy [26], an assumption that may not
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Figure 1: The tower building domain with increasingly complex towers scoring nine (left), 22 (center), and 73 (right). In our
experiments the width and height of the world are 100 bricks (not shown here), and the base is of size eight bricks.

apply to all domains. We assume that there is a pre-existing set of
norms that the agent must learn, so there is no process of norm
negotiation, and these norms must be learned without access to the
strategies of the other agents. For example, it is not feasible to exit
a moving car to ask another driver how they intend to perform a
maneuver. Therefore, we take the approach of learning behavioral
styles by imitating the behavior of other agents for the purpose
of predicting future actions. Following [14, 23, 26, 27], we use Q-
learning algorithms to learn norms.

Our work has characteristics in common with Sequential Social
Dilemmas (SSD): the interaction is temporally extended, decisions
to cooperate or defect occur quasi-simultaneously, and decisions
must be made given only partial information about the activities of
the other players [11]. However, such approaches do not explicitly
account for the influence of social-cultural norms or the personali-
ties of the other agents participating. Instead the focus, as it is for
Matrix Game Social Dilemmas (MGSD), is on how to select action
strategies that are most socially beneficial. In our domain, the best
strategy is cooperating with turn-taking norms by alternating access
to a resource. Our goal is to learn how to cooperate. Therefore, we do
not take a game theoretic approach and instead focus on modeling
when others are likely to take a turn.

Our model maintains beliefs of a set of hypothetical behaviors
that may be observed in other agents. Maintaining a set of beliefs
over possible next actions is one strategy for handling situations in
which there is no opportunity for coordination prior to entering
the task domain [1–5, 8, 24]. Typically, behaviors are specified as
a set of types (i.e. blackbox mappings from interaction histories
to probability distributions). When the types sufficiently represent
the true underlying behaviors, they can be used to rapidly adapt
strategies for effective interactions [4]. We handle the issue of non-
parameterized types, as identified in [3], by designing models that
can be refined to reflect the specific behavior types being observed.

Melo and Sardinha [12] propose an approach for managing ad-
hoc teamwork where teammates are treated as a single meta-agent,
and actions are predicted for the meta-agent at each time step. The
learning-agent then selects a joint action that includes its own
action and the predicted action for its teammate. We take a similar
approach when selecting a next action for our learning-agent — the
Q-function considers the expected actions at the group level, and
we include an estimate of what our learning-agent will do when
making predictions about what other agents will do.

3 LEARNING SHARING BEHAVIORS
In this work, we are interested in modeling when agents can and
will take a turn using a limited capacity shared resource. The com-
plexity of requiring agents to select a goal (i.e. what to do) is re-
moved by choosing a problem domain that has only a single goal.
This allows us to focus specifically on when agents should take a
turn in an interaction.

We evaluate our turn-taking behavior models with a tower build-
ing game (see Figure 1), where the objective is to build complex
towers (measured as the number of bricks used to build the tower)
by placing blocks (formed of 1 ×m bricks, with 1 ≤ m ≤ 5). The
game always begins with a fixed-size base in the center of the world.
The game is complete when all bricks have been used, the tower
reaches a pre-defined maximum height, or the tower collapses. The
tower collapses when more than one agent places a block at a time
(even if the block placements do not collide) or when a block place-
ment offsets the center of gravity of the tower so that it is no longer
supported by the structure.

There are three types of rule-based agents with varying degrees
of stochasticity that build towers in this domain. Specifically, the
agent types are a simple deterministic agent that plays passively, a
semi-stochastic agent that plays aggressively, and a fully-stochastic
agent that plays erratically. These types encompass both different
styles of turn-taking and varying degrees of difficulty for predicting
next actions. In this work, the agent types and the type assignment
for each agent are known a priori, but in a more general approach
we could cluster agents based on observed behavior to define types.
In addition, we could represent agent behavior type as a distribution
over types (see Section 6).

The rule-based agents are formed of:

• A shared tower building policy learned using a deep Q-
network (DQN) that defines how to place blocks to build
towers.

• A distribution over block sizes that is unique to each agent
and that the agent draws from to play the game.

• A unique behavior policy that defines the agent type (Table
1). This policy is modeled as a distribution over next actions,
where possible actions are: 1) do nothing — pass (p), 2) indi-
cate an intention to place a block (i), or 3) access the resource
— place a block on a tower (a).

At each time step in the simulation, all agents choose a type of
turn to take: the rule-based agents by sampling from their assigned
policy and the learning-agent from its learned policy. If an agent
chooses to place a block, the shared tower building policy is used
to determine where to place the block on the tower.
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Agents must strictly take turns to avoid collapsing the tower. For
this reason, agents may not place a block in their first turn, rather
they must either pass or indicate their intention to place a block.
This restriction avoids over-penalizing the learning-agent because,
without context, it can only guess the first move of each agent.

3.1 Learning to Build Towers
A tower building policy is learned offline using the DQN architec-
ture described in [13], which has been used previously to learn
to play games successfully. The purpose of this policy is to learn
where to place blocks to build towers. Once the tower building
policy is learned, it is used by all agents, but each agent is assigned
a different distribution of block sizes to draw from to provide a
degree of uniqueness among the agents.

The tower building policy takes as input the block size for the
current turn and a binary image that encodes where bricks have
been placed. No feedback is provided about the quality of block
placements during an episode, rather the reward is applied only
after the episode is complete. The reward is equal to the number
of bricks in the tower, which encourages building both upwards
and outwards to construct more complex towers. See Figure 1 for
examples of towers of varying complexity.

3.2 Modeling Interactive Behaviors
An overview of our behavior model in the tower building domain
is shown in Figure 2. The purpose of the behavioral model is to rep-
resent the observed behavior patterns of the agents in a group such
that a Q-learning agent can take turns without causing collisions.
Broadly, the behavior model performs the following:

(1) For each rule-based agent in isolation, predict a distribution
over its next action based only on its previous action (Figure
2 B and Section 3.2.1).

(2) Summarize the predictions by agent type (Figure 2 C and
Section 3.2.2)

(3) Refine the individual action predictions from step 1 using
the summaries from step 2 as input to a multi-agent fusion
model (Figure 2 D and Section 3.2.3).

(4) Summarize the refined action predictions from step 3 and
input to the interaction policy to select a next action (Figure
2 E and Section 3.2.4).

(5) Place a block using the Q-learning tower building policy if
the selected action is to place a block (Figure 2 A and Section
3.1).

(6) Roll-out the behavior model for n time-steps to maximize
the expected future reward by using the most likely action
at time t as the previous action for time t + 1 for all agents.

3.2.1 Modeling Individual Behavior. The individual agent behav-
ior models are weighted finite state transducers (WFSTs). A WFST
is a network of states connected by directed arcs that each map
an input symbol to an output symbol with an associated cost. The
structure of the WFSTs used in this work is depicted in Figure 3,
which shows the possible state sequences for an agent that has been
allocated two bricks. This model can be expanded to any arbitrary
number of bricks by adding columns of states and the appropriate
arcs between the states. In our domain, a state represents the num-
ber of bricks an agent has placed and the action that it took in the

last turn. In Figure 3, the input symbol on each arc represents an
observed action, and the corresponding output symbol represents
the predicted next action. Each state has multiple output arcs (one
for each possible input-output action pair), therefore the set of arcs
to each next state reflects the distribution over next actions given a
particular previous action that was observed. WFSTs allow us to
model agent behavior as a function of the progression of a game.
For example, as a tower nears completion, an eager agent might
become more cautious to avoid losing a large reward, so the distri-
bution over next actions is dependent on where in an episode the
agent currently is.

In the context of modeling behavior, the sequence of actions
taken by an agent is a path through the WFST. The likelihoods
on the arc transitions are learned using an approach inspired by
learning to search, which is used to simplify structured joint predic-
tion tasks in computational linguistics [19]. We use the exponential
moving average to update the weights as follows:

wt =

{
ct if wt is uninitialized
ηct + (1 − η)wt−1 otherwise, (1)

where wt is the weight at time t , and ct is the observed cost at
time t . In any given state, there are three arcs that correspond to a
particular observed action (one arc for each next action). The cost
ct is 0 for the arc corresponding to the observed next action and
1 for the remaining two arcs. The weight,wt , is uninitialized the
first time a transition between a particular pair of states occurs.
The update in Equation 1 is used because it provides a degree of
robustness to noisy observations as the influence of older versus
more recent observations can be tuned by changing η as needed
(we used η = 0.1), and the arc weights can be updated without
having to track the entire history associated with that arc.

3.2.2 Action Summaries. To render the interaction policy in-
dependent of the specific number of agents in the interaction, we
summarize the predictions for the next action distributions by agent
type. The summary for each agent type is formed of two parts: 1)
the probability of observing any agent of that type taking each of
the available actions in the next turn, and 2) a histogram of the
actions taken by the agents of that type in the previous turn. The
entries in the summary for any agent types that are not present in
the interaction are set to zero. Since we are summarizing the actions
by agent type, we are dependent on only the number of actions and
the number of behavior types, not the number of agents.

3.2.3 Multi-agent Fusion Model. The behavior model maintains
an agent-specific WFST to model the behavior of each (rule-based)
agent it is participating with. While the predictions produced by a
WFST are based only on the actions that a particular agent has taken,
interacting agents will influence one another. Thus, the action
predictions are refined using a multi-agent fusion model that takes
into account the predicted next actions and the behavior type of all
agents.

The multi-agent fusion model uses multinomial logistic regres-
sion to predict a refined distribution over next actions for each
agent for the next time step. The model parameters are learned us-
ing the cross-entropy loss function and stochastic gradient descent.
For each agent, the model takes as input a flag representing the
agent’s type, a one-hot vector encoding the agent’s last action, the
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Next Action
Passive Aggressive Stochastic

Previous Action p i a p i a p i a
Only agent ai indicated 0.0 0.0 1.0 0.0 0.0 1.0 0.05–0.15 0.05–0.15 0.75–0.85
Agent ai and other agents indicated 0.0–0.05 0.95–1.0 0.0 0.0 0.0 1.0 0.55–0.65 0.35–0.45 0.0–0.05
Pass 0.0–0.05 0.95–1.0 0.0 0.0–0.05 0.95–1.0 0.0 0.35–0.45 0.50–0.60 0.05–0.10
Place block 1.0 0.0 0.0 0.05–0.15 0.85–0.95 0.0 0.05–0.15 0.60–0.70 0.20–0.30

Table 1: The range of values used to generate the distribution of next actions for rule-based agents. To generate an agent, select
the desired behavior style, sample values in the ranges shown and normalize to form a distribution over next actions.

Figure 2: An overview of our model for interactive behavior modeling. Components that relate to modeled agents of different
behavior types are colored using red (solid) and green (dotted) lines, and the learning-agent is colored purple (dashed). The
example shown is for an agent of Type 1; the process repeated for all agents of all types.

WFST predictions for that agent, and the action summaries for each
agent type. The output is a refined distribution over next actions for
the given agent, refined with respect to the behaviors of all other
agents. Once the predicted action distribution has been refined for
all agents, the action likelihoods are then re-summarized by agent
type, and this summary along with the action distribution for the
learning-agent are input to the interaction policy to select an action
for the learning-agent.

The dimensionality of the feature space consumed by the fusion
model (i.e. na (2×nt + 2)+ 1, where nt is the number of agent types,
and na is the number of actions) grows linearly with the number of
actions and agent types, but this is small compared to any approach
attempting to represent the domain as an image (e.g. to obtain a
fixed sized feature vector for neural network training). The low
dimensionality greatly reduces the amount of data we need to learn
models of turn-taking behaviors and is what allows us to use a
simple model like multinomial logistic regression.

3.2.4 Turn-Taking Policy. We used a Q-learning algorithm to
learn a policy for choosing which action {p, i,a} a learning-based
agent should take when collaborating with other rule-based agents.
The state-space for the policy is continuous, but relatively simple
and all values fall on the range [0, 1], which represent the probabil-
ity of each action type being observed in the next time step. The
simplicity of the state-space allows us to predict the discounted
expected reward for each given action using linear function ap-
proximation (Figure 6.7, pg. 137) in [25], where the inputs are the

(rolled-out) refined action summaries for each rule-based agent
type and the (rolled-out) refined distributions over next actions
for the learning-agent, and output is the Q-value representing the
quality of each action. At the end of each game, the agent receives a
reward equivalent to the number of successful block placing actions
it had taken. A block placement was considered successful if the
Q-learning agent did not attempt to place a block at the same time
as a rule-based agent. If the Q-learning agent attempted to place a
block at the same time as a rule-based agent then the total score was
decreased by one. This means that to achieve the maximum possible
reward during each game, the Q-learning agent must successfully
place all allocated blocks (i.e. learn when to take turns).

The turn-taking policy only handles the selection of the action
{p, i,a}. If the learning-agent selects to access the resource (i.e.
chooses action a) it then uses the tower-building policy, discussed
in Section 3.1, to place the block on the tower (i.e. how to take the
turn). The tower building policy used by the learning-agent is the
same policy used by the rule-based agents.

4 EXPERIMENTS
There are three behavioral components of our learning-agent that
require training: 1) the general WFSTs for each behavior type that
are used as the basis of the behavior models for individual agents,
2) the multi-agent fusion model that consumes and refines action
summaries, and 3) the interaction policy that consumes the refined
action summaries and selects the next action for the learning-agent.
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Figure 3: The behavior model for two steps in our tower
building domain. Each column of states represents a certain
number of bricks placed by the agent. The colors on the arcs
signify that no block was placed in the turn (solid green), a
block of size one was placed (dashed blue), or a block of size
two was placed (dotted red). The state labels reflect the ac-
tions, e.g. “mI2” signifies that after placingm bricks on the
tower, the agent has indicated at least twice in a row. The
arc labels denote input:output pairs, where the input symbol
represents an observed action and the corresponding output
symbol represents the predicted next action.With this struc-
ture we assume that the probability of indicating or passing
two or more times is the same. This can be altered by grow-
ing the WFST vertically as required. For brevity, the output
arc labels are grouped into sets, and the weights are not in-
cluded.

Each subsequent step in the behavior model relies on the previous
stages and so we adopt a sequential approach to training. This is
outlined in the following sections.

4.1 Training general behavior models
The learning-agent must first learn a prototypical behavior model
for each behavior type. To do this the learning-agent creates a set
of uninitialized WFSTs (Figure 3), where the cost on all arcs is 1.
Next it observes a series of rule-based agents interacting, where
there are 30 games of each permutation of one, two and three
agent type combinations (210 interactions in total). Each rule-based
agent is created by first selecting the desired behavior type, then
sampling the values for the next action likelihoods from the ranges
given in Table 1, and finally normalizing to form a distribution
over next actions. During the interactions, the learning-agent is
only observing the game-play, it is not interacting with the other
agents. The aim is only to update the weights on the WFST arcs
representing the specific agent types as turns are taken by the
rule-based agents.

After training the prototypical WFST for each agent type, these
models then form the basis of the behavior models used by the
learning-agent to represent the behavior of new rule-based agents.

A new rule-based agent is assigned the prototypical model cor-
responding to its type, and the weights on the arcs are adapted
from the initial ‘prototypical’ values to the values that represent
the specific agent behavior as the learning-agent interacts with the
rule-based agent(s). Note, the rule-based agents have behavior types
known a priori, which means that we do not need to estimate agent
type from behavior and we can control and manipulate precisely
the turn-taking behaviors of these agents.

4.2 Training the multi-agent fusion model
The behavior model contains a single multi-agent fusion model
that is trained while observing rule-based agents interacting with
one another. Again, during this observation phase, the learning-
agent is not interacting with the rule-based agents. Each rule-based
agent is assigned the general behavior model corresponding to
its type, and these are adapted during the interactions to match
the distribution over next actions for each particular agent. The
action summaries from the next action predictions (Section 3.2.2) are
used as the training inputs for the multinomial logistic regression,
and the observed next actions are the ground-truth output targets
during training. As in Section 4.1, the learning-agent observes each
permutation of one, two and three agent types interact for 30 games.

We train a single multi-agent fusion model that is used in all
subsequent interactions, regardless of the number of interacting
agents. Unlike the WFSTs, the multi-agent fusion model is not
updated or refined as it observes agents interact1. The multi-agent
fusion model is used to represent and account for the more stable
turn-taking patterns that stem from social-cultural norms while
the single-agent behavior models are used to account for individual
differences.

4.3 Training the interaction policy
After learning the general behavior models and the multi-agent fu-
sion model, the interaction policy is trained by having the learning-
agent interact with various combinations of rule-based agents. Dur-
ing these interactions, we also evaluate how well the weights on
the arcs reflect the next action distributions of the rule-based agents
(see Table 2), and how well the multi-agent fusion model refines
these individual next action predictions (see Table 3). We measure
performance in terms of accuracy of predicting the next action for
the rule-based agents, and using the KL divergence the extent to
which the approximated action distributions differ from the true
action distributions. Note, the results in Tables 2 and 3 are produced
while the individual behavior models are being adapted —we would
expect higher mean accuracy and lower mean KL divergence if eval-
uating only after the models had converged.

Whilst training the interaction policy, the exploration rate of the
Q-learner, ϵ , was initially set to 1.0 for the first 50 games, then was
decayed linearly to 0.0001 over 400 games, and finally remained
constant for the remaining games. The learning rate α was decayed
according to the same schedule. We measure how well a Q-learning
agent can use our behavior model to make decisions about how to
take actions in an interactive task by reporting the mean return,
1There exist online learning algorithms for multinomial logistic regression that
would allow the model to update itself based on current observations and ad-
just to any changes in turn-taking patterns if we ever decide we need that:
https://lingpipe.files.wordpress.com/2008/04/lazysgdregression.pdf
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Single Agent
Passive Aggressive Stochastic

Acc. KLD Acc. KLD Acc. KLD
1.00 0.0001 0.900 0.064 0.778 0.077

Pairwise Agents
Passive Aggressive Stochastic

Acc. KLD Acc. KLD Acc. KLD
0.907 0.011 0.791 0.213 0.7 0.237

All Agents
Passive Aggressive Stochastic

Acc. KLD Acc. KLD Acc. KLD
0.890 0.021 0.693 0.003 0.63 0.015

Table 2: Mean accuracy (acc.) and KL Divergence (KLD) for
the next action predictions from single agent WFST models.
All scores are averaged across 50 independent runs for all
combinations of agent types.

averaged over 50 trials for each agent type combination (see Figures
4 – 6, and Figures 8 and 9.

We compared our behavioral model as the input to the Q-learning
agent against a baseline state space. The baseline state space is fixed
relative to the number of agents participating in the interaction, and
the dimensionality is equal to the number of agents participating
in the interaction (including the Q-learning agent). The state space
represents the turn-taking actions observed during the last time
step. For example, if the Q-learning agent is playing against one
other agent, and in the last turn the Q-learning agent indicated
and the other agent placed a block, then the state space is [i,a].
We chose this state representation as our baseline because it is
the same state representation used by the rule-based agent, so the
Q-learning agent should be able to learn appropriate behavioral
responses given the same state representation, and this baseline
serves as a point of comparison for our new model. Unlike our
behavior model that is independent of the number of agents in the
interaction, this baseline state space has prior knowledge of the
number of agents. Also, the learned policy using the baseline state
space is only applicable for this specific number of agents.

5 RESULTS
5.1 Interacting with a Single Rule-Based Agent
We first consider the performance of the learning-agent interacting
with a single rule-based agent. This allows us to determine an upper
bound on expected accuracy of the next action prediction given the
different agent types without confounding effects that arise when
interacting with multiple rule-based agents. As one would expect,
the accuracy with which the next action can be predicted varies
as a function of the stochasticity of the agent being observed. The
behavior of the deterministic agent is learned perfectly, and the
behavior model does well at modeling the distribution of the next
actions for the semi-stochastic and fully-stochastic agents (accuracy
> 0.78 and KLD < 0.08, see Table 2). Also, the fusion model used
to refine the predictions improves the performance as expected
(accuracy > 0.8 and KLD < 0.2, see Table 3).

Single Agent
Passive Aggressive Stochastic

Acc. KLD Acc. KLD Acc. KLD
1.0 0.05 0.95 0.37 0.8 0.2

Pairwise Agents
Passive Aggressive Stochastic

Acc. KLD Acc. KLD Acc. KLD
0.931 0.003 0.868 0.005 0.735 0.015

All Agents
Passive Aggressive Stochastic

Acc. KLD Acc. KLD Acc. KLD
0.907 0.012 0.693 0.003 0.63 0.024

Table 3: Mean accuracy (acc.) and KL Divergence (KLD) for
the refined next action predictions produced bymulti-agent
fusion models. All scores are averaged across 50 indepen-
dent runs for all combinations of agent types.

Figure 4: Learning curves for the Q-learning agent playing
with the passive rule-based agent with α = 0.01 and γ = 0.90.
The agent is able to learn a perfect policy using both state
spaces, but the rate of learning is faster for the baseline.

Figure 5: Learning curves for the Q-learning agent playing
with the aggressive rule-based agent with α = 0.01 and γ =
0.99. The agent is able to learn a perfect policy using both
state spaces, but the rate of learning is faster for the baseline.
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Figure 6: Learning curves for the Q-learning agent playing
with the stochastic agent with α = 0.01 and γ = 0.90. A pol-
icy is learned using the behavior model despite the erratic
nature of the rule-based agent, but the agent fails to learn a
policy with the baseline state space.

Figure 7: Themeannumber of steps into the game before the
learning-agent placed the ith block when playing agents of
different behavior styles. The near-linear curves show that
the agents are not waiting until all other agents have placed
all of their blocks before taking a turn.

When using the behavior predictions as input to the Q-learning
agent for decision making, an optimal policy is learned for the
passive and aggressive rule-based agents for both the baseline state
representation and the behavior model state representation (Figures
4 and 5). Despite differences in optimal gamma values (determined
using a parameter sweep), the learning curves show similar trends
across both figures. However, convergence to the optimal policy
occurs more slowly for the behavioral model compared with the
baseline state space, which is the result of the more complex struc-
ture of the state space returned by the behavior model.

For the stochastic rule-based agent (Figure 6), neither the baseline
nor the behavioral model state representations learn an optimal
policy, and it took longer to learn a policy that converged for this
agent than either the passive or the aggressive agent (approximately

1000 steps vs. 500 steps). Interestingly, once ϵ decays to 0.0001
(where the Q-learning agent rarely explores and relies heavily on
its policy) performance drops for the baseline state representation
due to the stochastic behavior of the agent, but the behavioral model
continues to learn as the weights on the WFST arcs converge to
the distributions defining the behavior.

The performance of the Q-learning agents when playing the
stochastic rule-based agent indicates a difference in the usefulness
of the baseline and the behavioral model representations. The de-
crease in performance using the baseline state representation after ϵ
finished decaying suggests that some degree of randomness during
action selection is beneficial when facing a highly random agent.
Indeed, it appears that the behavior model state representation
can account for the randomness of a single stochastic rule-based
agent. Representing the state of the rule-based agent as a set of
probabilities directly captures the uncertainty about the rule-based
agent’s next actions.

To ensure that the Q-learning agent was not learning to wait
until the other agents had used all of their allocated blocks before
placing its own blocks, we evaluated the average number of turns
that were taken when the agent placed its ith block (Figure 7). The
near-linear relationship between the number of game steps and
the number of blocks placed by the Q-learning agent indicates that
turn-taking behaviors are being learned.

5.2 Interacting with Multiple Rule-Based
Agents

5.2.1 Multiple Agents of Different Types. Learning behavior
with multiple rule-based agents interacting with one another is
more challenging, but the behavior model is able to capture the
distribution over next actions when playing with each pair of agent
types (accuracy ≥ 0.7 and KLD ≤ 0.24, see middle section of Tables
2 and 3) and when playing with all three agent types (accuracy
≥ 0.63 and KLD ≤ 0.24, see bottom section of Tables 2 and 3). In
general, as the number of agents participating in the interaction
increases, the performance of both the single agent WFSTs and
the multi-agent fusion model decreases. However, the accuracy
remains usefully high and the KL Divergence remains usefully low
given the number of action combinations the rule-based agents can
exhibit, as shown by the performance of the Q-learning agent in
the top of Figure 8. An interesting observation is that neither model
converged to an optimal policy when playing only the stochastic
agent (Figure 6), but when a stochastic agent is playing with agents
of other types, the behavior of the other agents regulates the erratic
behavior of the stochastic agent and our behavior model does learn
an optimal policy. However, the performance of the Q-learning
agent using the baseline state representation does not converge to
an optimal policy and decreases after ϵ reaches 0.0001.

5.2.2 Multiple Agents of the Same Type. The previous experi-
ments demonstrate that the behavior model is able to account for
multiple agents, but where only a single agent of each behavior
type is present. Here we consider the result of the summarizing
step when there are multiple agents of the same type present.

Figure 9 (top) shows that if there are multiple agents of the
same type that behave well, in terms of turn-taking interactions
and honor the intent signaled by other agents, then the Q-learning
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Figure 8: Learning curves for the Q-learning agent playing
with an agent of each behavior type with α = 0.001 and
γ = 0.98. Notice that the agent using the behavior model
learns an optimal policy despite the inclusion of the stochas-
tic agent because the behavior of the other agents somewhat
regulates the erratic behavior of the stochastic agent.

Figure 9: Learning curves for the Q-learning using the be-
havior model with α = 0.001 and γ = 0.98. The optimal policy
is learned for the passive agents, and a reasonable policy is
learned for the aggressive agents. However, a policy cannot
be learned for multiple stochastic agents.

agent is able to learn an optimal policy and take turns appropriately.
Furthermore, the rate at which the learning occurs is the same as if
there is a single passive agent present (c.f. the top of Figure 4).

As the scenario becomes more challenging, the Q-learning agent
no longer learns an optimal policy. For the case of multiple aggres-
sive agents the likelihood of collisions increases since they always

take block placing actions after indicating, regardless of the state
of other agents. Despite this behavior the Q-learning agent is able
to learn a reasonable policy as the weights on the output arcs of
the WFST converge to the distributions defining the behavior of
the agents (middle of Figure 9). As one might expect, for the com-
plex case of multiple stochastic agents (bottom of Figure 9) the
Q-learning agent is not able to learn a policy. This limitation is
because it becomes increasingly difficult to predict how the world
will evolve as it becomes increasingly stochastic.

6 CONCLUSIONS AND FUTUREWORK
We have presented a model of turn-taking behavior for individual
and groups of agents, and we have shown that a learning-agent
can use the model to select turn-taking actions. The hierarchical
nature of our behavior model and our treatment of all rule-based
agents as a single group unit allows us to learn a turn-taking policy
for interacting with an arbitrary numbers of agents. Our model is
dependent only on the number of behavior types that the learning-
agent is likely to encounter. The accuracy of the action selection
policy is dependent on the stochasticity of the agents. However,
with a reasonable degree of regularity to the agents (as we would
expect in real-world tasks), the policy is able to successfully and
safely take turns.

Future work could consider continuous domains and handling
time-pressure conditions by replacing the binary intention signal
with a measure of action completion and the speed of action ex-
ecution. The measure could operate as an abstraction similar to
that used by [18]. We could also replace the Q-learners used in
this work with a learning algorithm that has been shown to work
in continuous domains, e.g. deep deterministic policy gradient for
robotics control [15].

In this work we used rule-based agents where each agent was
represented by a single and known type. When playing against
either humans or agents that we did not design, we do not know
a priori their behavior types. Therefore, we would need to extend
our use of WFSTs by generating hypotheses about agent type and
update these based on how well each model of behavior type is
able to predict the behaviors of the other agents. Alternatively, we
might model an agent as a distribution over agent types rather
than imposing a strict classification. Furthermore, agents could be
assigned initially to an “unknown” behavior type, and learning-
agents take turns with caution. As the behavior models are refined
during interactions, the learning-agents can be more confident in
their predictions.

In summary, the performance of our model in the tower-building
domain shows it is encouraging for its application to learning to
interact with an arbitrary numbers of agents of different behavioral
types in collaborative environments.
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