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ABSTRACT
The Monroe and Chamberlin–Courant (CC) multiwinner rules pro-

ceed by partitioning the voters into virtual districts and assigning

a unique committee member to each district, so that the voters

are as satisfied with the assignment as possible. The difference

between Monroe and CC is that the former creates equal-sized

districts, while the latter has no constraints. We generalize these

rules by requiring that the largest district can be at most X times

larger than the smallest one (whereX is a parameter). We show that

our new rules inherit worst-case computational properties from

their ancestors; evaluate the rules experimentally (in particular, we

provide their visualizations, analyze actual district sizes and voter

satisfaction); and analyze their approximability.
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1 INTRODUCTION
In the setting of multiwinner voting, we are given a group of candi-

dates, a group of voters (or agents), and the task is to select a com-

mittee of k candidates that both reflects the voters’ preferences and

matches the application at hand [1, 14, 28, 34]. For example, if we

are to choose some sort of a governing body—such as a parliament—

then we should make sure that the committee represents the views

of the voters proportionally, but if we want to select a set of movies

for passengers on a long-distance flight, then we should select a

“committee of movies” that is as diverse as possible, so that every

passenger (i.e., every voter) can find something appealing. Indeed,

each application may require committees with different properties,

chosen according to different principles (see, e.g., the survey of

Faliszewski et al. [19] for an overview). In this paper we consider

applications requiring committees that achieve a given level of

compromise between proportional representation and diversity;

specifically, we study the complexity of computing such compro-

mise committees, and we analyze the nature of these committees

experimentally. We model the notions of “a diverse committee” and
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“a proportional committee” through the Chamberlin–Courant [10]

(CC) and Monroe [30] voting rules, respectively. Given a set ofm
candidates, a set of n voters, and the target committee size k , these
rules proceed as follows: They partition the voters into k virtual
districts and associate each district with a representative candidate,

so that the voters are as satisfied with their representatives as pos-

sible (see Section 2 for formal definitions). The difference between

these rules is that Monroe requires the districts to be of equal sizes

(give or take a voter), whereas CC puts no such constraints. In

consequence, under the Monroe rule each winning candidate repre-

sents (almost) the same number of voters, and under CC different

candidates may be associated with varying numbers of the voters.

Example 1.1. Consider the following society that wishes to select
a parliament of size k = 5. There are five parties, A, B, C , D, and
E, supported by, respectively, 72%, 11%, 10%, 6%, and 1% of the

voters (i.e., 72% of the voters most prefer members of Party A, 11%
most prefer members of Party B, and so on. (To be more formal, we

would say that each party is a set of candidates and the voters who

support a given party rank all its candidates on top, in a given, fixed

order.) Under the Monroe rule, we would partition the voters into

five virtual districts, each with 20% of the voters, so that, e.g., the

first three would contain supporters of Party A only, the next one

would contain the remaining 12% of the supporters of Party A and

8% of the voters chosen among the supporters of parties C , D, and
E, and the final district would contain the 11% of the supporters of

Party B and all the remaining voters. In consequence, members of

Party A would win in the first four districts, and a member of Party

B would win in the last one.

Example 1.2. Consider an airline that wishes to choose k = 5

movies to provide on its long-distance flights. The preferences of

the voters are the same as above, except that we replace members

of Party A with Hollywood blockbuster movies, members of Party

B with family movies, members of Party C with documentaries,

members of Party D with artistic movies, and members of Party E
withmovies onNP-completeness (i.e., we consider the same election

as above, but with renamed candidates to illustrate a diversity-

oriented setting). The CC rule would create a virtual district for each

movie type, consisting exactly of the people whomost prefer movies

of this type, and would select one movie in each district. Thus the

largest district would be 72 times larger than the smallest one.

The results in the above examples are somewhat extreme. In

the first one, the supporters of Party C would be disappointed to

not be represented, even though there are almost as many of them

as supporters of Party B,1 and 17% of the voters are assigned to

1
Of course, to some extent this is because our committee is small. This explanation,

however, would not prevent the voters from being disappointed.
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representatives that they do not support. In the second example,

people who most enjoy Hollywood movies might complain that

even though they form an overwhelming majority, they have only

one movie to choose from, just like the 1% of the society that en-

joys movies on NP-completeness. We address such complaints by

introducing a parameterized family of rules where each rule in the

family achieves a given level of compromise between the Monroe

and Chamberlin–Courant rule: For each X ≥ 1, we define the X -
BalancedCC rule similarly to the CC rule, except that we require

that the largest virtual district can be at mostX times larger than the

smallest one (we refer toX as the balancedness ratio); 1-BalancedCC
is the Monroe rule and ∞-BalancedCC is the CC rule.

Example 1.3. If we used 2-BalancedCC rule for the election from

the first example, then we would, e.g., obtain three virtual districts,

each containing 24% of the supporters of Party A, one district with
the 11% voters supporting Party B and the 1% of the supporters of

Party E, and one district with the 10% voters supporting Party C

and the 6% of the voters supporting Party D. Thus, members of

Party Awouldwin in three districts, andmembers of Parties B and C

would win in one district each. (In terms of the movie example, we

would get three Hollywood blockbusters, one family movie, and

one documentary.) The ratio between the size of the largest and

smallest district would be 24%/12% = 2, and only 7% of the voters

would be represented by candidates they do not like.

Notice that, in the context of parliamentary elections the X -
BalancedCC rules implement the idea of degressive proportionality,
where parties with smaller support obtain more seats than would

follow from the proportion of their support (see, e.g., the work of

Koriyama et al. [25]), and in the context of movie selection, the

rules implement the idea of support-sensitive diversity, where we
want our committee to be diverse, but we are unwilling to select

candidates supported by very few voters.

We can also use X -BalancedCC rules in the context of resource
allocation with soft constraints. Consider a university department

that is required to send all its professors to courses on creative

teaching. There are many courses to choose from, but—due to

limited budget—the university will pay only for k of them, and each

professor needs to attend one course. The department can gather

the professors’ preferences and then run a multiwinner voting rule

to choose which courses to run. If there is a strict requirement

that each course should be attended by the same number of people

(e.g., because the people running the courses require such balance),

then the university should use the Monroe rule. However, if it

is acceptable that some courses would have a bit more attendees

than others, then some X -BalancedCC rule (for some X not much

larger than 1) would be a more natural choice.
2
(It would also be

natural to put upper and lower bounds on the numbers of people in

each selected course, e.g., to model that classrooms have bounded

capacity and that we do not want too few students in a classroom.

On the other hand, our X -balancedness requirement is, in spirit,

closer to modeling fairness to the course teachers, ensuring that all

of them have quite similar numbers of professors to teach.)

2
This application is interesting also because the assignment of the voters (the pro-

fessors) to the committee members (the courses) is public. This is not the case for

parliamentary elections (due to voter anonymity) nor for the movie-selection example

(where the election might also be held among a small fraction of passengers only).

Our Contribution. We study computational properties of our

rules, analyze the trade-off between the balancedness ratio and

the satisfaction of the voters, and perform experimental evaluation:

Computational Properties. We explore the complexity land-

scape of our rules (including parameterized complexity) and

the ability to solve them using integer linear programming.

Experimental Evaluation. We provide a visual comparison

of the X -BalancedCC rules (in the style of Elkind et al. [13]),

we analyze the sizes of the virtual districts computed under

the X -BalancedCC rules (and, in particular, under CC), and

we show the relation between the voter (dis)satisfaction with

their representatives and the balancedness ratio. We consider

two families of election models, the Polya-Eggenberger urn

model and the 2D Euclidean model.

Approximability and Voter Satisfaction. We show initial

results regarding approximability of our rules (under favor-

able conditions, our algorithms may achieve roughly 1− 1/X

approximation ratios for balancedness ratio X ).

There is an interesting interplay between our theoretical and

experimental results. For example, the theoretical analysis suggests

that the sizes of the virtual districts (when considered from the

largest to the smallest) may decrease exponentially, and our experi-

ments confirm that this happens in practice, but interestingly, show

other types of behavior as well (this is interesting as it may lead to

better approximation algorithms). Further, by contrasting our theo-

retical and experimental results, we obtain a better understanding

of Skowron et al.’s [35] approximation algorithm for the CC rule.

Related Work. There is quite an extensive literature on both

the Monroe and the Chamberlin–Courant rule. From a computa-

tional point of view, it is known that winner determination for

these rules is NP-hard [28, 32], but that this problem is in FPT

when parameterized either by the number of candidates or by the

number of voters [6]. Further, there are efficient approximation

algorithms [28, 35] and heuristics [20]. Indeed, our analysis of the

voters’ satisfaction in Section 5 is largely inspired by the analysis of

Algorithm P of Skowron et al. [35]. Finally, there are papers on the

complexity of the Monroe and CC rules under various domains of

restrictedpreferences [6, 36]. From a normative point of view, the

Monroe and CC rules were first studied by their inventors [10, 30]

and then, e.g., by Elkind et al. [14] and Aziz et al. [1]. In particular,

Elkind et al. [14] explicitly argued that the Monroe and CC rules

have different applications, with Monroe better suited for propor-

tional representation and CC better suited for selecting diverse

committees (see also the survey of Faliszewski et al. [19]).

We generalize the Monroe and CC rules by requiring various

degrees of balancedness from their virtual districts. Other modifica-

tions of these rules include, e.g., their egalitarian variants, studied

by Betzler et al. [6], and the generalizations of the CC rule due

to Skowron et al. [34] and Elkind and Ismaili [15]. The rules of

Skowron et al. [34] take into account that each voter may feel repre-

sented by more than a single candidate, and the rules of Elkind and

Ismaili [15] form a spectrum of rules between the classic CC rule

and its egalitarian variant. In a similar vein, Faliszewski et al. [18]

show several spectra of rules between CC and the k-Borda rule [12]
(while we view our work as providing a spectrum of rules between

proportional representation and diversity, their work can be seen as
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providing spectra between diverse committees and those consisting

of individually excellent ones). Lackner and Skowron [26] suggest

similar spectra of rules in the approval-based setting.

Talmon [37] considered the Monroe and CC rules in the context

of an underlying social network of the voters (since the group

activity selection problem of Darmann et al. [11] can also be seen as

a very general extension of the Monroe rule, the works of Igarashi

et al. [22, 23] might also be understood in this way).

Finally, as we are interested in the sizes of the virtual districts

used by the Monroe and CC rules, our work relates to the extensive

studies of districting (thus, to some extent, also to Gerrymander-

ing); we specifically mention the papers of Bachrach et al. [3] and

Lewenberg et al. [27], but emphasize that these papers consider

geographic districts while we consider virtual districts.

2 PRELIMINARIES
For a positive integer t , we write [t] to mean the set {1, . . . , t}. An
election E = (C,V ) consists of a set of candidates C = {c1, . . . , cm }

and a collection of votersV = (v1, . . . ,vn ), where each votervi has
preference order ≻vi , ranking all the candidates from the most to

the least desired one (i.e., we assume the ordinal model of elections;

committee elections are also often studied in the approval model,

where each voter specifies a set of acceptable candidates [1, 2, 8, 24]).

We often refer to the preference orders as the votes.

For a voter v and candidate c , by posv (c) we mean the position

of c in v’s ranking (the most preferred candidate has position 1,

the next one has position 2, and so on). A (single winner) scoring

function (for the case ofm candidates) γm : [m] → R associates

each possible position in a vote with a score. For example, the

Borda scoring function is defined as βm (i) =m− i and the Plurality
scoring function associates score 1with the top position and score 0

with all the other positions. The γ -score of a candidate c in election

(C,V ) is defined as

∑
v ∈V γ (posv (c)).

Given an election E = (C,V ) and a positive integer k , k ≤ |C |,
a multiwinner voting rule R outputs a set R(E,k) of size-k com-

mittees (i.e., size-k subsets of C) that tie as winners of this election.
For example, the single non-transferable vote rule (the SNTV rule)

outputs committees of candidates with the highest Plurality scores

and the k-Borda rule outputs committees of candidates with the

highest Borda scores. The Monroe and Chamberlin–Courant rules

rely on the notions of assignment functions and voter satisfaction.

Assignment Functions and Voter Satisfaction. Let us fix an

election E = (C,V ) and committee size k . A k-CC-assignment

function Φ is a function Φ : V → C that associates each voter with

one of at most k candidates. We say that an assignment function Φ
induces committeeW (of size k) if for each voterv it holds that Φ(v)
belongs toW . Given a voterv , we refer to the candidate Φ(v) as the
representative of v . For a candidate c , we refer to the set of voters

represented by c (i.e., to the set Φ−1(c)) as his or her virtual district.
A k-Monroe-assignment function is a k-CC-assignment function

where each candidate c either does not represent any voters or has

a virtual district of size |Φ−1(c)| ∈ {⌊n/k⌋, ⌈n/k⌉}. When speaking

about assignment functions, we drop the k-CC- and k-Monroe-

prefixes when they are clear from the context.

We define the satisfaction of a voter with his or her representative

to be the Borda score that the representative receives from the voter.

The total voter satisfaction with Φ is defined as the sum of the

satisfactions of the particular voters:

sat(Φ) =
∑
v ∈V βm

(
posv (Φ(v))

)
.

The choice of the Borda function is arbitrary and one could use

any other scoring function instead. We take the Borda-based ap-

proach because it was used in the original definitions of Monroe and

CC [10, 30] and it has a very natural interpretation (the Borda-based

satisfaction of the voters is proportional to the average number of

candidates that a voter ranks below his or her representative).

Monroe andChamberlin–Courant. Given the above setup, we

are ready to define the Monroe and CC rules.

Definition 2.1. Let E = (C,V ) be an election and let k ∈ [|C |]
be the desired committee size. For each size-k committee S , the
CC-score of S is the highest voter satisfaction achievable by a k-
CC-assignment function that induces S (i.e., the CC score of S
is max{sat(Φ) | Φ is a k-CC-assignment that induces S}). The CC
rule outputs all the size-k committees with the highest CC-score.

The Monroe rule is defined analogously, except that we consider

k-Monroe assignments instead of k-CC-assignments.

Example 2.2. Consider an election E = (C,V )with six candidates,

C = {a,b, c,d, e, f }, and the following six votes:

v1 : a ≻ e ≻ d ≻ c ≻ b ≻ f , v2 : a ≻ f ≻ d ≻ e ≻ b ≻ c,

v3 : a ≻ d ≻ e ≻ c ≻ b ≻ f , v4 : a ≻ f ≻ d ≻ e ≻ b ≻ c,

v5 : b ≻ e ≻ d ≻ a ≻ c ≻ f , v6 : c ≻ d ≻ e ≻ a ≻ b ≻ f .

We seek a committee of size k = 3. Under CC, the unique winning

committee is {a,b, c}, with {v1,v2,v3,v4} as a’s virtual district,
and {v5} and {v6} as the districts of b and c , respectively. Under
Monroe, the unique winning committee is {a,d, e}, with a’s district
set to {v2,v4}, d’s district {v3,v6}, and e’s district {v1,v5}. Under
CC, the voter satisfaction is 30 (highest possible), and under Monroe

it is 26.

X -BalancedCC. To define our X -BalancedCC rules, we need the

notion of an X -balanced k-CC-assignment.

Definition 2.3. Let E = (C,V ) be an election, k ∈ [|C |] be the

committee size, Φ be a k-CC-assignment function, and X ≥ 1 be

a rational number. We say that Φ is X -balanced if the following

holds: (a) there are exactly k candidates, a1, . . . ,ak , assigned to

non-empty virtual districts (i.e., for each i ∈ [k], Φ−1(ai ) , ∅); and

(b) for each two candidates ai and aj associated with non-empty

virtual districts, it holds that ai ’s district is at most X times larger

than aj ’s district (i.e., |Φ
−1(ai )| ≤ X · |Φ−1(aj )|).

In other words, a k-CC-assignment is X balanced if it provides k
nonempty virtual districts, of which the largest one is at most X
times larger than the smallest one. For each X ≥ 1, we define the X -

BalancedCC rule in the same was as the CC rule, except that instead

of considering all k-CC-assignment functions, we consider only the

X -balanced ones. By a slight abuse of notation, we say that every

k-CC-assignment function is ∞-balanced (and for ∞-balancedness

we drop the requirement that there are k-nonempty districts). In

consequence, 1-BalancedCC is equivalent to the Monroe rule (for

the cases where the committee size divides the number of voters

evenly), and ∞-BalancedCC is equivalent to the CC rule.
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Example 2.4. Consider the election from Example 2.2. Under

3-BalancedCC, there are two winning committees, {a,b,d} and

{a, c, e} (which, in this case, can be seen as intermediate between

the CC andMonroe committees). The virtual districts for the former

committee are {v1,v2,v4} for a, {v5} for b, and {v3,v6} for d . For
the latter committee they are {v2,v3,v4} for a, {v6} for c , and
{v1,v5} for e . Indeed, the largest district is three times larger than

the smallest one. The voter satisfaction is 28 for both committees.

3 COMPLEXITY AND EXACT ALGORITHMS
We begin our discussion of the X -BalancedCC rules with an

overview of their computational complexity. We inherit most of

the results from Monroe and CC, but sometimes care is needed.

Observation 3.1. For each rational numberX ,X ≥ 1, the problem
of deciding if there exists a size-k committee and a X -balanced k-CC-
assignment function for it with at least a given voter satisfaction (for
a given election and committee size k) is NP-complete. This problem
is in FPT for both the parameterization by the number of voters and
the parameterization by the number of candidates.

Proof sketch. NP-hardness follows from the proofs already

provided for the case of Monroe and CC [28, 32, 35]. FPT algorithms

for Monroe and CC were provided by Betzler et al. [6] and proceed

by appropriate brute-force search, which can be adapted to the case

of X -BalancedCC rules (see also Observation 3.2 below). �

The FPT algorithms above require the ability to compute opti-

mal assignments for given committees. We use Betzler et al.’s [6]

solution of this problem, adapted to the case ofX -BalancedCC rules.

Observation 3.2. There is a polynomial-time algorithm that,
given an election E = (C,V ), a committeeW of size k , and a number
X , X ≥ 1, computes an optimal X -balanced k-CC-assignment forW .

Proof. Given an electionwithn voters and a committee of sizek ,
the algorithm of Betzler et al. [6] finds an optimal assignment such

that each committee member represents at least s = ⌊n/k⌋ and

at most ℓ = ⌈n/k⌉ voters. The algorithm works for all values of s
and ℓ; we try each pair s ∈ [|V |/k] and ℓ = ⌊X · s⌋ and output an

assignment with the highest voter satisfaction. �

Remark 1. The reader may wonder if, in the proof of Observa-
tion 3.2, we really need to try more than one value of s . Indeed, it
seems that we do. For example, consider an election with 18 voters,
committee size 5, and X = 2. Then, for s = 2 we may find an assign-
ment with district sizes (2, 4, 4, 4, 4), but for s = 3 we may find one
with sizes (3, 3, 3, 3, 6).

In practice it is useful to be able to compute a winning committee

by solving an appropriate integer linear program (ILP). We provide

such a program, inspired by those for the cases of Monroe and CC,

by Potthoff and Brams [31] and Lu and Boutlier [28].

Observation 3.3. For each rational X , X ≥ 1, the problem of
computing a winning X -BalancedCC committee can be expressed as
an integer linear program.

Proof. Let E = (C,V ) be the input election, where C =

{c1, . . . , cm } and V = (v1, . . . ,vn ), let k be the desired commit-

tee size, and let X be the required balancedness ratio. We form

an integer linear program, whose goal is to identify a winning

X -BalancedCC committee S . For each j ∈ [m] we have a binary

variable x j and for each (i, j) ∈ [n] × [m] we have a binary vari-

able yi, j . The intention is that if x j = 1 then c j belongs to S and

if yi, j = 1 then c j represents vi . Our objective is to maximize∑
i ∈[n]

∑
j ∈[m] yi, j · βm (posvi (c j )). We introduce the following con-

straints to ensure consistency between our variables.

(1)

∑
j ∈[m] c j = k , to ensure that the committee has k members.

(2) For each (i, j) ∈ [n] × [n] we have constraint yi, j ≤ x j , to
ensure that only committee members can be representatives.

(3) For each i ∈ [n] we have a constraint

∑
j ∈[m] yi, j = 1, to

ensure that each voter has exactly one representative.

We introduce two integer variables,max-size andmin-size, and add
the following constraints:

(4) For each j ∈ [m] we add two constraints: max-size ≥∑
i ∈[n] yi, j and min-size ≤

∑
i ∈[n] yi, j + (1 − x j ) · n, which

ensure that max-size is at least the size of the largest district
and min-size is at most the size of the smallest one.

(5) Finally, we add a constraintmax-size ≤ X ·min-size, to ensure
that the variables yi, j describe an X -balanced assignment.

We obtain the winning committee from variables x j , and the as-

signment (if needed) from variables yi, j . �

4 EXPERIMENTAL EVALUATION
In this section we present our main results, i.e., experimental anal-

ysis of the X -BalancedCC rules. We are interested in three issues.

First, we visualize our spectrum of rules between Monroe and CC,

using the 2D-histogram approach of Elkind et al. [13]. Second, we

are interested in the sizes of the virtual districts created by our rules

(and under CC). Third, we evaluate on which position the voters

rank their representatives, depending on the balancedness ratio

(and their preference distributions).

Experimental Setup. In all our experiments, we consider elec-

tions withm = 100 candidates, n = 100 voters, and committee size

k = 10. While it certainly would be interesting to see results for

elections with other parameters, we believe that doing so would

not lead to qualitatively different result, but—with the given space

restrictions—would force us to omit some results. These or similar

parameters were already used in a number of papers [13, 18, 20].

We consider two types of distributions of voter preferences, the

Polya-Eggenberger urn model [5] and the 2D Euclidean model. In

the urn model, we assume that there is an urn that contains allm!

distinct preference orders overm candidates, and the process of

generating votes is as follows. For each voter, we draw a preference

order from the urn (this becomes the preference order of the voter)

and we return the order to the urn, together with αm! additional

copies, where α is a parameter of the distribution. The larger is

the value of α , the more correlation there is among the generated

preference orders (and, in particular, forα = 0 there is no correlation

and we obtain the impartial culture model, where each preference

order is equally likely). Impartial culture and the urn model are

among the most popular models for generating elections. They

were used, e.g., by Skowron et al. [35] for the case of Monroe and

CC, and in many other papers for other scenarios [16, 29, 38].

Session 1: Social Choice Theory 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

17



In the 2D Euclidean model, each candidate and each voter is

associated with a point on a two-dimensional plane (referred to

as the candidate’s or the voter’s ideal point). Each voter forms

his or her preference order by sorting the candidates in the order

of increasing Euclidean distances of their ideal points from the

voter’s ideal point. We generate the candidates’ and the voters’ ideal

points by drawing them from appropriate distributions (described in

Section 4.1). This model was recently used by Faliszewski et al. [17]

and Elkind et al. [13], and is now attracting increased attention.

We compute the results of all our elections by invoking the

CPLEX ILP solver for the program described in Observation 3.3.

4.1 Visualization
In our first set of experiments we visualize the results of X -
BalancedCC elections generated using the 2D Euclidean model.

We consider two types of elections. With the first type (Models

A, B, C, and D below) we attempt to capture elections that have

an appealing real-life interpretation. With the second one (Models

U, V, and W below) we aim to provide elections that illustrate the

differences between Monroe, CC, and other X -BalancedCC rules

as much as possible. Below we describe how the candidates’ and

voters’ ideal points are generated for each of our election models.

Models A, B, C, and D. In these elections the ideal candidates

are always generated uniformly at random from a disc centered

at point (0, 0), with radius 3. The ideal points of the voters are

generated so that most of them fall in this area. In Model A, they

are generated according to a two-dimensional Gaussian distribution

with center (0, 0) and standard deviation 1. In Model B, half of the

voters are generated as in Model A and half of them are generated

according to a two-dimensional Gaussian distribution centered at

(0, 0), with standard deviation 0.3. In Model C, 1/5 of the voters are

generated from the same uniform disc as the candidates, while the

remaining voters are generated from four Gaussian distributions

centered at (−1, 0), (1, 0), (0,−1), and (0, 1), each with standard

deviation 0.5 (we generate 1/5 of the voters from each of the four

Gaussians). InModel D, the voters’ ideal points are drawn uniformly

at random from the same disc as the ideal points of the candidates.

The fact that the ideal points of the candidates are drawn uni-

formly at random from the disc (which covers the area where almost

all voters may appear) models the idea that whenever there are

voters, a candidate eventually appears. As opposed to Elkind et

al. [13], however, we use different distributions of candidates’ and

voters’ ideal points. We do so for two reasons. First, it seems that

whenever these distributions are the same, the results of Monroe

and CC are very similar (this is confirmed by the histograms pre-

sented by Elkind et al. [13]). The second reason is that we capture

the setting where candidates appear in areas where they can attract

voters, but tend to avoid competition (i.e., we avoid areas with large

concentration of candidates, competing for the same voters).

Models A and B capture societies with a single predominant

opinion (in the center point (0, 0)) and differ with respect to number

of voters that have ideal points close to the center. Model C captures

a societywith fourmain opinions (the centers of the four Gaussians),

but where there is also a non-negligible number of voters that do

not follow such fashions (the 1/5th of the voters whose ideal points

are distributed uniformly on the same disc as the candidates).

Monroe X = 2 X = 3 X = 4 X = 5 X = 10 CC

M
o
d
.
A

M
o
d
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o
d
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Figure 1: Histograms showing how frequently committee
members from given areas are selected in models A-C, U-W.

Models U, V, and W. Here the areas with large concentrations

of candidates and voters are only overlapping. In Models U and V,

candidates are generated from a Gaussian distribution centered at

(−1,−1), with standard deviation 1. The voters are generated from

Gaussian distribution centered at (1, 1) with standard deviation 1

in Model U and standard deviation 2 in Model V. In Model W, the

candidates are distributed uniformly on a [−3, 1] × [−3, 1] square

and the voters are distributed uniformly on a [−1, 3]×[−1, 3] square

(this distribution was also used by Elkind et al. [13]).

Histograms. For each of our 2D election models, we have gen-

erated 5000 elections and computed their X -BalancedCC results

for X ∈ {1, 2, 3, 4, 5, 10, 100} (X = 1 means using the Monroe rule

and, in our case, X = 100 means using the CC rule). For each

of the election models and each rule, in Figure 1 we present an

histogram that indicates how frequently winners from a certain

location of the plane are selected. Specifically, the histograms show

the [−3, 3] × [−3, 3] square divided into 120 × 120 cells, where for

each election model and rule we computed the number of times a

committee member from a given cell was selected; the darker (the

more blue) a given cell is, the more winners were selected from

it (i.e., we use the same setup as [13]; see their work for the exact

formula for translating numbers of winners in a cell into colors).

Analysis. There are three main types of behavior of our his-

tograms. For Model A, we see only very little difference between

the results computed for Monroe, CC, and the rules in between.

This is not too surprising, as even under the CC rule, the average

balancedness ratio is quite low (see Table 1). This is even more pro-

nounced for Model D (the corresponding histograms for Monroe

and CC, presented by Elkind et al. [13], are nearly identical; the

same holds for their other distributions, except for Model W).

For Models B and W, there is a noticeable difference between the

results for Monroe and CC, but already the results ofX -BalancedCC

for small X (between 2 and 4, say) are, at least visually, rather close
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Figure 2: The average sizes of the virtual districts under X -
BlancedCC rules for X ∈ {1, 2, 5} and for CC. The values on
the x-axis refer to the largest virtual district, the second
largest district, and so on.

to those of CC. Interestingly, at least in the case of Model F this

cannot be easily explained by low balancedness ratio for the case

of CC. It seems that in these elections there seems to be some sort

of (perhaps “soft”) phase transition between requiring “strict bal-

ancedness” (as in Monroe) and even slightly relaxed balancedness.

Finally, for Models U, V, andW, we observe gradual change in the

results as we increase the allowed balancedness ratio (for example,

for Model C this is visible by gradually more and more visible

peaks of the four Gaussians; for Model U it is visible by gradually

increasing number of winners in the [−3, 0] × [−3, 0] quadrant).

The results for Model C are particularly intriguing. Intuitively,

one might expect that in the most proportional setting (Monroe),

the peaks of the Gaussians should be most visible, but, in fact,

we have most committee members in the area “surrounded” by

the Gaussians and very few of them outside of this area. As we

increase the allowed balancedness ratio, candidates close to peaks

of the Gaussians still win frequently, but those in this “surrounded

area” give more and more way for the candidates outside it (thus,

increasing the diversity of the result). One possible explanation is

that Monroe chooses candidates within a “smaller disc” than CC,

because the peaks of the Gaussians account for nearly 80% of the

Table 1: Balancedness ratios for the case of the CC rule.

2D Euclidean models urn model (different α values)

A B C D U V W 0 0.10 0.25 0.5

4.76 14.10 4.98 2.64 41.21 24.72 21.57 2.01 9.18 29.88 47.66

voters, forcing Monroe to place 8 out of 10 committee members on

the “smaller disc” (half of the 20% remaining voters are there as

well; the other half is too spread to get representatives).

4.2 District Sizes
In our second set of experiments we analyze the sizes of the vir-

tual districts used by the X -BalancedCC rules, depending on their

required balancedness ratio and the distribution of the voters’

preference orders. We consider the six 2D models from the pre-

vious section and the urn model, with α values taken from the set

{0, 0.05, 0.10, 0.25, 0.5, 1}.

Balancedness Ratios for CC. First, to get some idea about the

nature of our committees, we computed the average balancedness

ratios achieved under the CC rule for our elections. The averages are

taken from computing the results of 500 elections and are reported

in Table 1.

One of the most interesting results regards Model D (where both

candidates’ and voters’ ideal points come from the same distribution,

uniform on a disc). We computed the average balancedness ratio

under CC for the other three settings of Elkind et al. [13] where

candidates’ and voters’ ideal points come from the same distribution,

and we always get average balancedness ratio close to 2.6. It is

interesting on its own, but it also explains why they did not observe

much difference between the results for Monroe and CC.

The results for the other 2D models are quite intuitive. For Mod-

els B, U, V, and W, the Monroe histograms in Figure 1 show areas

with high concentrations of winners, suggesting that in these areas

there are so many voters that Monroe has to put several committee

members there, to satisfy all the voters. On the other hand, CC can

place fewer committee members in these areas, as it is not limited

by the district sizes. These intuitions are confirmed by the fact that

under CC, Models B, U, V, andW have each fairly high balancedness

ratios, whereas the other models have much lower ratios.

The results for the urn model are intuitive as well. The larger

the α value (i.e., the more correlated the votes are), the larger the

balancedness ratio. Indeed, elections generated with larger α values

are more clustered, containing very large and very small groups

of voters with identical preference orders, who are most satisfied

when represented by the same candidate.

District Sizes. For each of our election models, and for each X
value in {1, 2, 3, 4, 5, 10, 100}, we computed the average size of the

largest virtual district, the second largest district, and so on, until the

smallest district (each average is from 500 election instances). We

present these results (for the most representative cases) in Figure 2.

For Models A, C, D, and for the urn model with α = 0 (i.e., for the

impartial culture model), our results are nearly the same Models C

and D are omitted due to space restrictions but are available upon

request): The average sizes of the districts change linearly as we
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Figure 3: Rank-loss ratios under the 2D election models (on
the left) and under the urn models (right). The results for
Model C are essentially the same as for Model A.

move from the largest district toward the smallest one (see the top

two plots in Figure 2 for examples).

For the remaining election models (i.e., Models D, U, V, andW ,

and the urn model with α ∈ {0.1, 0.25, 0.5}) the results are qual-

itatively very similar to each other, but differed in terms of the

particular values (see the middle and bottom rows of Figure 2).

Under CC, in all these cases the sizes of the districts drop exponen-

tially as we move from the largest one to the smallest one. Yet, for

intermediate values of X (in particular for X = 2) we see that the

rules try to cover sufficiently large districts for as many voters as

possible, and then make the remaining districts as small as possible

(this is most visible for Model V and X = 2; in this model, on the

average, the 2-BalancedCC rule creates seven districts with size

above 10, holding about 72 voters, whereas the CC rule creates

three districts with size above 10, holding about 70 voters).

It is quite intriguing that for each of our 2D models there is a

corresponding value ofα for which the urnmodel for thisα achieves

a very similar distribution of district sizes (for example, for Model U,

urn model with α = 0.5 achieves nearly the same results; not shown

in Figure 2 due to space restrictions). One possible explanation is

that, perhaps, in real-life elections (or, at least, in typical models of

elections) there are only three types of distributions of district sizes:

the linear one (as on top of Figure 2), the exponential one (as in the

middle and on the bottom of Figure 2 for CC), and the sigmoidal

one (as in the middle and on the bottom of Figure 2 for X ∈ {2, 5}).

4.3 Ranks of the Representatives
In our final set of experiments, we compare the average positions of

the representatives of the voters, depending on the election model

and the balanced ratio X . For each election model, we generated

500 elections and computed committees under the CC rule and X -

BalancedCC rules for X ∈ {1, 2, 3, 4, 5, 10}. Then, for each election

model we calculated the average ranks of the voters’ representatives

(e.g., if under some election model half of the voters ranked their

representatives on position 2 and half of the voters ranked their

representatives on position 3, then the average representative rank

would be 2.5). Finally, for each election model and value of X , we
computed the ratio of the average representative rank under X -
BalancedCC and under CC. We refer to this value as the rank-loss
ratio. We present the values of the rank-loss ratios for our election

models in Figure 3. Naturally, the rank-loss ratio is highest for

X = 1, where the rules are most constrained.

For electionmodels where the balancedness ratio is low by nature

(i.e., Models A and C and urn model for α = 0), the rank-loss ratio is

already very low even for X = 1 and drops to nearly 1 very quickly

with X . For the other models, the rank-loss ratio also seems to drop

very quickly with X (and, as expected, the largest drop is between

1-balancedness and 2-balancedness).

Remark 2. The rank-loss ratio is most interesting for the settings
where the assignment of the committee members to the voters affects
the voters directly. For example, this is the case in the course assign-
ment example from the introduction. For the cases where voters do not
learn the assignment (as in the movies example or in the parliament
example), it may be more natural to measure the ratio between how
highly, on the average, a voter ranks his or her most preferred commit-
tee members computed under X -BalancedCC and the rank of his or
her representative computed under CC. Our preliminary simulation
results suggest that these two types of ratios behave quite similarly,
with the second type having lesser magnitude.

5 APPROXIMATING VOTER SATISFACTION
So far, our computations of X -BalancedCC committees were ex-

act and optimal. In our final set of results, we consider comput-

ing X -balanced assignments that may not be optimal, but which

nonetheless achieve high voter satisfaction.

We start by recalling Algorithm P, an approximation algorithm

for the CC rule due to Skowron et al. [35]. Let E = (C,V ) be an

election, where C = {c1, . . . , cm } and V = (v1, . . . ,vn ), and let k
be the desired committee size. The algorithm proceeds as follows:

(1) Set λ = W(k)/k , where the numerator is the value of the

Lambert’s W function
3
(we will use other values λ ∈ [0, 1]).

(2) Repeat k iterations of: Find a candidate c ranked among

the top λm positions most frequently and let V ′
contain the

voters that rank c among top λm positions. Assign c to the

voters in V ′
and remove these voters from consideration.

(3) Output the computed assignment (which is guaranteed to

give voter satisfaction at least nm(1 − 2W(k )/k)).4

In their analysis, Skowron et al. [35] show that, if after the i-th
iteration there are ni = n(1 − λ)i unassigned voters, then after the

(i + 1)-st one there will be at most ni+1 = n(1−λ)i+1 of them. Since

n0 = n, this lets us derive an algorithm for X -BalancedCC rules.

For each i ∈ [k], we define di = ni−1 − ni = nλ(1 − λ)i−1. We

modify Algorithm P so that in the i-th iteration, i ∈ [k], it assigns
a representative to exactly di voters, so that these voters rank the

representative among top λm + (i − 1) positions (this is possible

due to the above-mentioned property shown by Skowron et al.;

however, we cannot restrict our attention to top λm positions as

in Algorithm P because representatives selected in the preceding

iterations may still be present in the tops of the remaining voters).

Since d1 ≥ d2 ≥ · · · ≥ dk holds, it follows that the balancedness

ratio of the modified algorithm is at least:

B(λ) = d1/dk = nλ/nλ(1−λ)k−1 = 1/(1−λ)k−1.

3
Its values are defined so that x =W(x ) · eW(x )

.

4
At this point, there still are unassigned voters. Algorithm P assigns each of them to

the candidate that this voter ranks highest, but we will handle this step differently.
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Table 2: Approximation guarantees of the GreedyMonroe al-
gorithm (GM), the algorithms described in this section (for
various values ofX ), and Algorithm P. In parentheses we re-
port the balancedness ratio obtained by the given algorithm
(for Algorithm P we do not balance the unassigned voters,
because it assigns them to the most preferred committee
member, disregarding the balancedness).

GM X = 1.5 X = 2 X = 3 X = 4 X = 10 Alg. P

m = n = 100 0.687 0.658 0.685 0.710 0.710 0.716 0.726

k = 10 (1) (1.44) (1.87) (2.57) (2.57) (4.20) (6)

m = n = 500 0.808 0.704 0.748 0.787 0.802 0.815 0.813

k = 20 (1) (1.48) (1.95) (2.94) (3.66) (6.80) (9.33)

m = n = 1000 0.903 0.718 0.763 0.840 0.866 0.909 0.948

k = 100 (1) (1.44) (1.87) (2.85) (3.83) (9.66) (34)

(There are also nk unassigned voters. We assign them to the virtual

districts in the following way: As long as some unassigned voter

remains, we put him or her in the currently smallest district. We

refer to this process as balancing the unassigned voters; after this
balancing, all the voters are assigned but for simplicity we will still

refer to the voters to whom the balancing process was applied as

unassigned and to the others as assigned.)
The voter satisfaction is at least:∑k
i=1(m −mλ − (i − 1))di ≥ (m −mλ − k + 1)(n − nk )

=mn(1 − λ − k−1/m)(1 − (1 − λ)k ).

Since the highest possible voter satisfaction is (m − 1)n (when each

voter ranks his or her representative on top), the approximation

ratio of our modified algorithm is at least (1−λ− k−1
m )(1−(1−λ)k ).

It remains to note that if we set the λ value to be 1− k−1
√
1/X , then

we obtain balancedness ratio B(λ) ≤ X . With this λ, the achieved
approximation ratio of our algorithm is:( k−1√

1/X− k−1
m

) (
1−

( k−1√
1/X

)k )
=
( k−1√

1/X− k−1
m

) (
1−1/X ( k−1

√
1/X )

)
.

The value
k−1
√
1/X approaches 1 quite quickly as k increases, so as

long as k is not too small, but the number of candidates is large

enough for
k−1
m to be close to 0, the approximation ratio is close

to 1 − 1/X . (Our analysis disregarded the fact that λm and several

other values may not be integers, which means that our computa-

tion of the approximation ratio is slightly off; we ignore this as in

the following discussion we use precise approximation guarantees

computed by simulating the worst-case behavior of our algorithm).

The above result is both appealing and disappointing. The reason

for the disappointment is that the GreedyMonroe algorithm of

Skowron et al. [35], which computes 1-balanced assignments, has

approximation ratio ≈1 − k−1
2(m−1)

−
Hk
k (wherem is the number of

candidates, k is the committee size, and Hk is the k-th harmonic

number); e.g., for elections with 100 candidates, 100 voters, and

committee size 10, its approximation guarantee is ≈ 0.687. Our

result matches this guarantee only starting with X ≈ 4.1.

This low performance of our algorithm is due to the unassigned

voters; for example, for X = 2 we have nk = n(
k−1√

0.5)k ≈ 0.5n of

them. Yet, since we balance the unassigned voters, instead of using

the λ values computed in the above analysis, we can use a value for

which we still obtain an X -balanced assignment and which leads

to the best approximation ratio (for a balancedness ration up to X ).

In Table 2 we show several approximation guarantees that we can

achieve, depending on the election parameters, using GreedyMon-

roe, using the just-described algorithms (taking into account the

process of balancing the unassigned voters), and using Algorithm P.

To compute the approximation guarantees, we have simulated the

worst-case performance of the algorithms (and, indeed, the ratios in

Table 2 are true approximation guarantees that hold for all elections

with given sizes).

The results in Table 2 show that to beat GreedyMonroe, we need

relatively large balancedness ratios. Nonetheless, these ratios are

notable smaller than those that Algorithm P may achieve. Nonethe-

less, we view our results as mostly negative: It may be a better idea

to start from GreedyMonroe and not from Algorithm P to obtain

good approximate solutions for X -BalancedCC rules.

Remark 3. Our analysis explains a certain peculiar feature of
Algorithm P. Elkind et al. [13] ran this algorithm on 2D Euclidean
elections (e.g., on elections generated according to Model D) and noted
that, even though its approximation ratio is good, its histograms are
substantially different from that of CC.5 Thus, instead of using λ =
W(k )/k , they run the algorithm for all values λ ∈ {1/m, 2/m, . . . ,m/m}

and take the committee with the highest satisfaction; they refer to this
algorithm as RangingCC. The histograms for RangingCC look almost
identically to those of CC, but Elkind et al. [13] could not explain why.
Our analysis shows that RangingCC actually is trying to match the
balancedness ratio implicit in the voters’ preferences with appropriate
λ value. E.g., Algorithm P for Model D computes a committee with
average balancedness ratio ≈ 7.65, but RangingCC achieves ratio
≈ 2.96, much closer to the 2.64 ratio of the actual CC rule.

6 CONCLUSIONS
We considered the X -BalancedCC spectrum of rules, which achieve

a tradeoff between proportionality and diversity by generalizing CC

and Monroe, through tweaking the sizes of the districts they create.

We argued that our rules have many applications and that, compu-

tationally, they are as difficult as Monroe and CC. We illustrated

their results, analyzed their virtual districts’ sizes, and studied the

satisfaction they give to the voters. We conclude by asking: What

other natural spectra of rules of this type exist? Could one use, e.g.,

the Phragmen rule [7] as a basis for one?

We believe that (variants of) our rules could be fruitfully em-

ployed in the participatory budgeting setting [4, 9, 21, 33], where

the candidates (the projects) have costs and we have to select a

“committee” of them that does not exceed a given budget. Exploring

issues of proportionality, diversity, and district sizes in participatory

budgeting seems important and promising.
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