
Hierarchical Agent Supervision
Bita Banihashemi

York University

Toronto, ON, Canada

bita@cse.yorku.ca

Giuseppe De Giacomo

Sapienza University of Rome

Rome, Italy

degiacomo@dis.uniroma1.it

Yves Lespérance

York University

Toronto, ON, Canada

lesperan@cse.yorku.ca

ABSTRACT
Agent supervision is a form of control/customization where a su-

pervisor restricts the behavior of an agent to enforce certain re-

quirements, while leaving the agent as much autonomy as possible.

To facilitate supervision, it is often of interest to consider hierar-

chical models where a high level abstracts over low-level behavior

details. We study hierarchical agent supervision in the context of the

situation calculus and the ConGolog agent programming language,

where we have a rich first-order representation of the agent state.

We define the constraints that ensure that the controllability of in-

dividual actions at the high level in fact captures the controllability

of their implementation at the low level. On the basis of this, we

show that we can obtain the maximally permissive supervisor by

first considering only the high-level model and obtaining a high-

level supervisor and then refining its actions locally, thus greatly

simplifying the supervisor synthesis task.

KEYWORDS
Reasoning about action, plans and change in multi-agent systems;

Logics for agents and multi-agent systems

ACM Reference Format:
Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance. 2018. Hi-

erarchical Agent Supervision. In Proc. of the 17th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm,

Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
In many settings, wewant to control an agent’s behavior to conform

to a set of specifications while preserving its autonomy as much

as possible. The key challenge is then to synthesize the maximally

permissive supervisor (MPS) that minimally constrains the behavior

of the agent in the presence of uncontrollable actions so as to

enforce the desired behavioral specifications. This problem is the

central problem of Supervisory Control of Discrete Event Systems

(SCDES), where it has been thoroughly studied in a finite-state

setting [10, 34, 35]. Recently the problem has been lifted to a rich

first-order state setting in [12] (referred as DLM in the following),

where it has been studied in the context of the situation calculus

[23, 29] and the ConGolog programming language [11].

To facilitate supervision, it is of interest to consider hierarchical

models where a high level abstracts over low-level behavior details.

This has already been considered in the finite state case in SCDES

[34], but is even more critical in agents with complex first-order

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,

Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

state representations. Exploiting the insights on abstraction in sit-

uation calculus action theories presented in [7], in this paper we

extend the DLM framework to study hierarchical agent supervision

in the context of the situation calculus and the ConGolog agent

programming language. We assume that we have a low-level basic

action theory and also a high-level basic action theory that abstracts

over it. High-level fluents correspond to a state formula at the low

level and high-level actions are associated with a ConGolog program
that implements the action at the low level. Some of the actions

at the low-level (and high-level) are uncontrollable, i.e., their oc-

currence cannot be prevented by the supervisor. Moreover, the

behavior of the agent at the low level can be monitored at the high

level, i.e., any complete low-level run of the agent must be a refine-

ment of a sequence of high-level actions. The constraints on the

agent’s behavior to be enforced by the supervisor are represented

by a high-level ConGolog program, which specifies the behaviors

that are acceptable/desirable. Our task is to synthesize a MPS for

the low-level agent and specification (which we can translate into a

low-level program). We show that we can actually do this synthesis

task by exploiting the high-level model, first obtaining a MPS at

the high-level, and then refining its actions locally while remaining

maximally permissive. Moreover, we show that this can be done

incrementally, without precomputing the local refinements.

To allow this, we first identify the constraints required to ensure

that controllability of individual actions at the high level accurately

reflects the controllability of their refinements. Then we show that

these constraints are in fact sufficient to ensure that any controllable

set of runs at the high level has a controllable refinement that

corresponds to it and vice versa. In particular, this applies to the

MPS for any supervision specification represented by a high-level

ConGolog program: the low-level MPS for the mapped specification

is a refinement of the high-level MPS for the specification. Finally,

as alreadymentioned, we also show that we can obtain the low-level

MPS incrementally using the high-level MPS as a guide.

2 PRELIMINARIES
Situation Calculus. The situation calculus is a well known predi-

cate logic language for representing and reasoning about dynami-

cally changing worlds. All changes to the world are the result of

actions, which are terms in the logic. A possible world history is

represented by a term called a situation. The constant S0 is used
to denote the initial situation where no actions have yet been per-

formed. Sequences of actions are built using the function symbol

do, such that do(a, s) denotes the successor situation resulting from

performing action a in situation s . A precedence relation on sit-

uations s and s ′ denoted by s ≤ s ′ states that s ′ is a successor

situation of s and that every action between s and s ′ is in fact exe-

cutable. We write do([a1,a2, . . . ,an−1,an], s) as an abbreviation for
do(an ,do(an−1, . . . ,do(a2,do(a1, s)) . . .)); for an action sequence a⃗,

Session 39: Logics for Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1432

we oftenwritedo(a⃗, s) fordo([a⃗], s). Predicates and functions whose
value varies from situation to situation are called fluents, and are de-

noted by symbols taking a situation term as their last argument (e.g.,

Holdinд(x , s)). Within the language, one can formulate basic action

theories (BATs) that describe how the world changes as a result of

actions; see [29] for details of how these are defined. Hereafter, we

will useD to refer to the BAT under consideration. We assume that

there is a finite number of action types A. Moreover, we assume

that the terms of object sort are in fact a countably infinite set N

of standard names for which we have the unique name assumption

and domain closure. For simplicity, and w.l.o.g., we assume that

there are no functions other than constants and no non-fluent pred-

icates. A special predicate Poss(a, s) is used to state that action a
is executable in situation s . The abbreviation Executable (s) means

that every action performed in reaching situation s was executable
in the situation in which it occurred.

ConGolog. To represent and reason about complex actions or

processes obtained by suitably executing atomic actions, various so-

called high-level programming languages have been defined. Here

we concentrate on (a variant of) ConGolog that includes the follow-
ing constructs:

δ ::= α | φ? | δ1; δ2 | δ1 |δ2 | πx .δ | δ ∗ | δ1 ∥δ2 | atomic(δ) | nil

In the above, α is an action term, possibly with parameters. φ is a

situation-suppressed formula, i.e., a formula with all situation argu-

ments in fluents suppressed (also sometimes the situation argument

is replaced by a placeholder now). As usual, we denote by φ[s] the
formula obtained from φ by restoring the situation argument s into
all fluents in φ. The sequence of program δ1 followed by program δ2
is denoted by δ1;δ2. Program δ1 |δ2 allows for the nondeterministic

choice between programs δ1 and δ2, while πx .δ executes program

δ for some nondeterministic choice of a binding for object vari-

able x (observe that such a choice is, in general, unbounded). δ∗

performs δ zero or more times. Program δ1∥δ2 expresses the con-
current execution (interpreted as interleaving) of programs δ1 and
δ2, while atomic(δ) performs δ as an atomic unit, without allowing

any interleaved actions [16]. Finally nil denotes the empty program,

which requires to do nothing and is already terminated.

Formally, the semantics of ConGolog is specified in terms of

single-step transitions, using the following two predicates [11]:

(i) Trans (δ , s,δ ′, s ′), which holds if one step of program δ in sit-

uation s may lead to situation s ′ with δ ′ remaining to be exe-

cuted; and (ii) Final (δ , s), which holds if an execution of δ can

be considered completed in s . The definitions of Trans and Final
we use are as in [15]; differently from [11], the test construct φ?
does not yield any transition, but is final when satisfied. Predi-

cate Do(δ , s, s ′) means that program δ , when executed starting

in situation s , has s ′ as a terminating situation, and is defined as

Do(δ , s, s ′) � ∃δ ′.Trans∗ (δ , s,δ ′, s ′) ∧ Final (δ ′, s ′) where Trans∗

denotes the reflexive transitive closure of Trans. In the rest, we use

C to denote the axioms defining the ConGolog language.
Situation-Determined Programs.We use ConGolog programs

to represent the possible behaviors of an agent. So, it is natural to

assume that such programs are situation-determined (SD) [12], i.e.,

for every sequence of actions, the remaining program is uniquely

determined by the resulting situation:

SituationDetermined (δ, s) � ∀s′, δ ′, δ ′′.
Trans

∗ (δ, s, δ ′, s′) ∧ Trans
∗ (δ, s, δ ′′, s′) ⊃ δ ′ = δ ′′,

For example, program (a;b) | (a; c) is not SD, while a; (b | c)
is (assuming the actions involved are always executable). Thus,

a (partial) execution of a SD program is uniquely determined by

the sequence of actions it has produced. Hence a program in a

starting situation generates a set/language of action sequences,

its executions, and operations like intersection and union become

natural. Exploiting this, we will write CRM (δ , s) for the set of

complete runs of program δ in situation s in modelM :

CRM (δ, s) � {a⃗ | M |= Do (δ, s, do (a⃗, s)) }.

3 AGENT SUPERVISION
Agent supervision aims at restricting an agent’s behavior to en-

sure that it conforms to a supervision specification while leaving it

as much autonomy as possible. The objective is to customize the

generic behavior of an existing agent, not to synthesize the agent

from scratch. DLM assume that the agent’s possible behaviors are

represented by a (nondeterministic) SD ConGolog program δ i rela-
tive to a BAT D. The supervision specification is represented by

another SD ConGolog program δs . DLM extend ConGolog with two

new constructs both of which preserve situation-determinateness:

δ1& δ2 and set(E). The former denotes the intersection or synchro-

nous concurrent execution of programs δ1 and δ2. The latter denotes
an infinitary nondeterministic branch; it takes an arbitrary set of

sequences of actions E and turns it into a program.Trans and Final
for the new constructs are easily definable.

1

Using the first construct it is straightforward to specify the result

of supervision as the intersection of the agent and the specification

processes (δ i& δs), but only if it is possible to control all the actions
of the agent. However in general, some of agent’s actions may

be uncontrollable. These are often the result of interaction of an

agent with external resources, or may represent aspects of agent’s

behavior that must remain autonomous and cannot be controlled

directly. This is modeled by the special fluent Au (a, s) that means

action a is uncontrollable in situation s .
A supervision specification δs is defined to be controllable wrt

the agent program δ i in situation s as follows:2

Controllable (δ s , δ i , s) �
∀s′, au .(∃s′′.Do (δ s , s, s′′) ∧ s ≤ s′ ≤ s′′) ∧ Au (au, s′) ∧

(∃s′′.Do (δ i , s, s′′) ∧ s < do (au, s′) ≤ s′′) ⊃
(∃s′′.Do (δ s , s, s′′) ∧ s < do (au, s′) ≤ s′′)

i.e., if we take an action sequence a⃗ that is a prefix of a complete run

of δs and append to it an uncontrollable action au such that a⃗au is

a prefix of a complete run of δ i , then a⃗au must also be a prefix of a

1
Specifically the axioms for the two constructs are:

T rans (δ1&δ2, s, δ ′, s ′) ≡ T rans (δ1, s, δ ′
1
, s ′) ∧T rans (δ2, s, δ ′

2
, s ′)

∧ δ ′ = δ ′
1
&δ ′

2

F inal (δ1&δ2, s) ≡ F inal (δ1, s) ∧ F inal (δ2, s)

T rans (set(E), s, δ ′, s ′) ≡ ∃a, a⃗ .aa⃗ ∈ E ∧ Poss (a, s) ∧
s ′ = do (a, s) ∧ δ ′ = set({a⃗ | aa⃗ ∈ E ∧ Poss (a, s) })

F inal (set(E), s) ≡ ϵ ∈ E

Thus δ1&δ2 executes only if both programs step to the same situation and is final

when both programs are final, while set(E) can execute any of the sequences of actions
in E and is final if E includes the empty sequence of actions ϵ .
2
Our definition is equivalent to that of DLM, but the notation is clearer.

Session 39: Logics for Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1433

complete run of δs . Also, we will write ControllableM (δs ,δ i , s) as
an abbreviation forM |= Controllable (δs ,δ i , s).

DLM define the maximally permissive supervisor (MPS)mps (δ i ,
δs , s) of the agent behavior δ i which fulfills the supervision speci-

fication δs as:
mps (δ i , δ s , s) = set(

⋃
E∈E E) where

E = {E | ∀a⃗ ∈ E .Do (δ i & δ s , s, do (a⃗, s))
∧Controllable (set(E), δ i , s) }

i.e., the MPS is the union of all sets of action sequences that are

complete runs of both δ i and δs that are controllable wrt δ i in
situation s . In this definition, Do is indirectly used to select the set

E of sequences of actions on which the set(E) construct is applied.
DLM show that their notion of MPS,mps (δ i ,δs , s), has several

nice properties: i) it always exists and is unique, ii) it is control-
lable wrt the agent behavior δ i in s , iii) and it is the largest set of

complete runs of δ i that is controllable wrt δ i in s and satisfies the

supervision specification δs in s , i.e., it is maximally permissive.

Note that mps is an abbreviation which stands for the program

obtained by using the set construct over a (possibly infinite) set of

action sequences. This is more of a specification than a conventional

program; DLM also introduce a special version of the synchronous

concurrency construct (&Au) that takes into account the fact that

some actions are uncontrollable, which together with a form of

lookahead search exactly captures the maximally permissive super-

visor. In the remainder, for simplicity we just usemps (δ i ,δs , s), but
this more conventional alternative could be used instead.

A Logistics Running Example
For our running example, we use a simple logistics domain. There

is a shipment with ID 123 that is initially at a warehouse (W), and

needs to be delivered to a Cafe (Cf), along a network of roads shown

in Figure 1 (warehouse and cafe images are from freedesignfile.com).

i

a

Route B

Route C

Route A

L1 L2

dc

L3

Route D

b1

b2

Figure 1: Transport Logistics Example

BAT D
eд
l .We have an action takeRoad (sID, t ,o,d) for taking a

shipment with ID sID from origin location o to destination location

d along a road edge t , e.g., takeRoad (123,Rdi ,W ,L1) (we refer to
road x in Figure 1 as Rdx). This action is executable when the agent

is at location o and road t connects o to d . The fluent AtLL (sID, l , s)
indicates that shipment sID is at location l in s . CnRoad (t ,o,d, s)
specifies the road connections in Figure 1. Also, Rdb2 can only

be used if the shipment travels during nighttime, represented by

fluent NT (sID, s). Performing delivery involves unloading the ship-

ment (unload (sID)) and getting a signature (дetSiдnature (sID)).
unload (sID) is executable when sID is at its destination (specified

by the fluent DestLL (sID, l , s)), and дetSiдnature (sID) is executable
when the shipment has already been unloaded. These actions are

assumed to be controllable. We have two exogenous actions rep-

resenting delays that may occur when the agent is at location L3:

delayBD (sID) due to bad weather and delayRM (sID) due to road

maintenance. These are the only uncontrollable actions. Finally, we

have two types of express shipments: Express Same Day (Exp1) or
Express 2 Days (Exp2).
D

eд
l includes the following action precondition axioms (through-

out, we assume that free variables are universally quantified from

the outside):

Poss (takeRoad (sID, t, o, d), s) ≡ o , d ∧ AtLL (sID, o, s) ∧
CnRoad (t, o, d, s) ∧ (t = Rdb2 ⊃ NT (sID, s))

Poss (unload (sID), s) ≡ ∃l .DestLL (sID, l, s) ∧ AtLL (sID, l, s)
Poss (дetSiдnature (sID), s) ≡ Unloaded (sID, s)
Poss (delayBD (sID), s) ≡ AtLL (sID, L3, s)
Poss (delayRM (sID), s) ≡ AtLL (sID, L3, s)

Moreover, D
eд
l includes the following SSAs:

AtLL (sID, l, do (a, s)) ≡ ∃l ′, r .a = takeRoad (sID, r, l ′, l) ∨
AtLL (sID, l, s) ∧ ∀l ′, r .a , takeRoad (sID, r, l, l ′)

Unloaded (sID, do (a, s)) ≡ a = unload (sID) ∨Unloaded (sID, s)
Siдned (sID, do (a, s)) ≡ a = дetSiдnature (sID) ∨ Siдned (sID, s)
DelayedBD (sID, do (a, s)) ≡

a = delayBD (sID) ∨ DelayedBD (sID, s)
DelayedRM (sID, do (a, s)) ≡

a = delayRM (sID) ∨ DelayedRM (sID, s)

For the other fluents, we have SSAs specifying that they are unaf-

fected by any action.

D
eд
l also contains the following initial state axioms:

¬Exp1(sID, S0), Exp2(sID, S0) ≡ sID = 123,

DestLL (sID, l, S0) ≡ sID = 123 ∧ l = Cf ,

AtLL (sID, l, S0) ≡ sID = 123 ∧ l =W ,

NT (sID, S0) ≡ sID = 123,

Aul (a, S0) ≡ ∃sID(a = delayBW (sID) ∨ a = delayRM (sID))

together with a complete specification of CnRoad .

Suppose we have a supervision specification δ lSpec that says

that any shipment that has been ordered, in our case just 123,

must eventually be unloaded and signed for, and if it is an express

shipment, it should never be delayed:

δ lSpec = &sID∈ShpOrd [πa .a; ((Exp1(sID) ∨ Exp2(sID)) ⊃
¬(DelayedBD (sID) ∨ DelayedRM (sID)))?]∗;
(Unloaded (sID) ∧ Siдned (sID))?

Intuitively, the MPS for this specification allows taking road i
followed by road a, and then taking either of roads b1 or b2, fol-
lowed by unloading the shipment and getting customer’s signature.

Taking road c is not allowed, as it may be followed by either of the

uncontrollable actions delayBW (sID) or delayRM (sID), which are

forbidden by the specification, as 123 is an express shipment.

Often, agents need to represent and reason with large amounts

of knowledge about their environment and have complex behaviors.

Due to complexity of the behavior logic, designing and enforcing

specifications for the customization of the agent’s behavior can be

a difficult task. To facilitate this, we want to use abstraction and

work with a simpler model of the agent. In the following sections,

we will first develop a high-level model of our agent behavior/BAT.

We will then provide the supervision specification in terms of the

abstract model, and obtain a MPS for the abstract model of the

agent. Finally, we will show how we can use this to obtain a MPS

for the concrete/low-level model of the agent.

Session 39: Logics for Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1434

4 ABSTRACTING AGENT BEHAVIOR
In the agent abstraction framework of [7], there is a high-level

(abstract) (HL) action theory Dh and a low-level (concrete) (LL)

action theory Dl representing the agent’s possible behaviors at

different levels of detail. D
h
(resp. D

l
) involves a finite set of prim-

itive action types A
h
(resp. A

l
) and a finite set of primitive fluent

predicates F
h
(resp. F

l
). Also, D

h
and D

l
are assumed to share no

domain specific symbols except for standard names for objects inN .

Refinement Mapping. To relate the two theories, a refinement

mappingm is defined as a function that associates each high-level

primitive action type A in A
h
to a SD ConGolog program δA de-

fined over the low-level theory that implements the action, i.e.,

m(A(x⃗)) = δA (x⃗); moreover, m maps each situation-suppressed

high-level fluent F (x⃗) in F
h
to a situation-suppressed formulaϕF (x⃗)

defined over the low-level theory that characterizes the concrete

conditions under which F (x⃗) holds in a situation. We extend the no-

tation so thatm(ϕ) stands for the result of substituting every fluent

F (x⃗) in situation-suppressed formula ϕ bym(F (x⃗)). Also, we apply
m to action sequences withm(α1, . . . ,αn) � m(α1); . . . ;m(αn) for
n ≥ 1 andm(ϵ) � nil , where ϵ is the empty sequence of actions.

m-Bisimulation. To relate the high-level and low-level mod-

els/theories, a variant of bisimulation [26, 27] is defined as fol-

lows. Given Mh a model of Dh ∪ C, and Ml a model of Dl ∪ C,

a relation B ⊆ ∆
Mh
S × ∆

Ml
S (where ∆MS stands for the situation

domain of M) is an m-bisimulation relation between Mh and Ml
if ⟨sh , sl ⟩ ∈ B implies that: (i) sh ∼

Mh,Ml
m sl , i.e., sh and sl evalu-

ate each high-level primitive fluent the same; (ii) for every high-

level primitive action type A in A
h
, if there exists s ′h such that

Mh |= Poss (A(x⃗), sh) ∧ s
′
h = do(A(x⃗), sh), then there exists s ′l such

that Ml |= Do(m(A(x⃗)), sl , s
′
l) and ⟨s

′
h , s
′
l ⟩ ∈ B; and (iii) for ev-

ery high-level primitive action type A in A
h
, if there exists s ′l

such that Ml |= Do(m(A(x⃗)), sl , s
′
l), then there exists s ′h such that

Mh |= Poss (A(x⃗), sh) ∧ s ′h = do(A(x⃗), sh) and ⟨s
′
h , s
′
l ⟩ ∈ B. Mh

ism-bisimilar to Ml , written Mh ∼m Ml , if and only if there ex-

ists an m-bisimulation relation B between Mh and Ml such that

(S
Mh
0
, S

Ml
0

) ∈ B.

m-Refinement. A (ground low-level action sequence) a⃗ is anm-

refinement of an executable (ground high-level action sequence) α⃗ (wrt

m-bisimilar models Mh ∼m Ml) if and only if Mh |=

Executable (do(α⃗ , S0)) andMl |= Do(m(α⃗), S0,do(a⃗, S0)).

Sound abstractions. In [7], Dh is a sound abstraction of Dl
relative to refinement mappingm if and only if, for all modelsMl of

Dl ∪ C, there exists a modelMh of Dh ∪ C such thatMh ∼m Ml .

With a sound abstraction, whenever the high-level theory entails

that a sequence of actions is executable and achieves a certain

condition, then the low level must also entail that there exists an

executable refinement of the sequence such that the “translated”

condition holds afterwards. Moreover, whenever the low level con-

siders the executability of a refinement of a high-level action is

satisfiable, then the high level does also. A proof-theoretic charac-

terization that provides the basis for automatically verifying that

one has a sound abstraction is also given. Note that a dual notion

is also defined: Dh is a complete abstraction of Dl relative to refine-

ment mappingm if and only if, for all modelsMh ∪ C of Dh , there

exists a model Ml of Dl ∪ C such that Ml ∼m Mh (but we don’t

make use of this here).

Example (cont.) Returning to our running example, we define

a high-level BAT that abstracts over some details of D
eд
l .

High-Level BAT D
eд
h . At the high level, we have abstract actions

that represent choices of major routes, delivering a shipment, and an

exogenous action representing a travel delay. Routes abstract over

the roads; for instance, route A is refined to road i followed by road

a, and route B is refined to either road b1 or b2 (see Figure 1). The
action takeRoute (sID, r ,o,d) can be performed to take shipment

sID from origin location o to destination location d via route r ,
e.g., takeRoute (123,RtA,W ,L2) (we refer to route X in Figure 1 as

RtX); it is executable when the shipment is initially at o and route

r connects o to d . Action deliver (sID) abstracts over the unloading
of the shipment and getting the customer’s signature and can be

performed to deliver shipment sID. It is executable when sID is at

its destination. Both of these actions are assumed to be controllable.

delay (sID) is an exogenous and uncontrollable action thatmay occur

when the shipment is at location L3. This action abstracts over

actions delayBD (sID) and delayRM (sID). Shipments may be high

priority, represented by a fluent Priority (sID, s).
D

eд
h includes the following precondition axioms:

Poss (takeRoute (sID, r, o, d), s) ≡ o , d ∧ AtHL (sID, o, s) ∧
CnRouteHL (r, o, d, s)

Poss (deliver (sID), s) ≡
∃l .DestHL (sID, l, s) ∧ AtHL (sID, l, s)

Poss (delay (sID), s) ≡ AtHL (sID, L3, s)

In the above,CnRouteHL (r ,o,d, s) represents the routes in the map

in Figure 1, DestHL specifies the destination of the shipment and

AtHL indicates its location.

The high-level BAT also includes the following SSAs:

AtHL (sID, l, do (a, s)) ≡ ∃l ′, r .a = takeRoute (sID, r, l ′, l) ∨
AtHL (sID, l, s) ∧ ∀l ′, r .a , takeRoute (sID, r, l, l ′)

Delivered (sID, do (a, s)) ≡ a = deliver (sID) ∨ Delivered (sID, s)
Delayed (sID, do (a, s)) ≡ a = delay (sID) ∨ Delayed (sID, s)

For the other fluents, we have SSAs specifying that they are unaf-

fected by any action.

D
eд
h contains the following initial state axioms:

Pr ior ity (sID, S0) ≡ sID = 123,

DestHL (sID, l, S0) ≡ sID = 123 ∧ l = Cf ,

AtHL (sID, l, S0) ≡ sID = 123 ∧ l =W ,

Auh (a, S0) ≡ ∃sID.a = delay (sID)

together with a complete specification of CnRouteHL (r , ls , le , S0).
Refinement Mappingmeд

.We specify the relationship between

the high-level and low-level BATs through a refinement mapping

meд
, which is defined as follows:

meд (takeRoute (sID, r, o, d)) =
(r = RtA ∧CnRouteLL (RtA, o, d))?;

π t .takeRoad (sID, t, o, L1); takeRoad (sID, Rda, L1, d) |

Session 39: Logics for Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1435

(r = RtB ∧CnRouteLL (RtB, o, d))?;
π t .takeRoad (sID, t, L2, d) |

(r = RtC ∧CnRouteLL (RtC , o, d))?;
π t .takeRoad (sID, t, o, L1); takeRoad (sID, Rdc , L1, d) |

(r = RtD ∧CnRouteLL (RtD, o, d))?;
π t .takeRoad (sID, t, L3, d)

meд (deliver (sID)) = unload (sID);дetSiдnature (sID)
meд (delay (sID)) = delayBW (sID) | delayRM (sID)

meд (Pr ior ity (sID)) = Exp1(sID) ∨ Exp2(sID)
meд (Delivered (sID)) = Unloaded (sID) ∧ Siдned (sID)
meд (Delayed (sID)) = DelayedBW (sID) ∨ DelayedRM (sID)

meд (AtHL (sID, l)) = AtLL (sID, l)
meд (CnRouteHL (r, o, d)) = CnRouteLL (r, o, d)
meд (DestHL (sID, l)) = DestLL (sID, l)

Note that we also need to add the complete specification of

CnRouteLL to the initial state axioms of D
eд
l . It is straightforward

to confirm that D
eд
h is a sound abstraction of D

eд
h wrtmeд

.

The setp(P) Construct.Observe that even if the program associ-

ated to each high-level actionm(Ai (x⃗)) is SD, the nondeterministic

branch of several high-level actions may not be SD if executions of

different high-level actions may share prefixes. E.g., if we have two

high-level actions A and B, withm(A) = a1;a2 andm(B) = a1;a3,
then we get (a1;a2) | (a1;a3), which is not SD. After performing

the first transition, we are left with either a2 or a3 remaining, and

we only have one choice for the next action.

We can address this problem by introducing a new program

construct setp(P) that executes a set of programs P nondeterminis-

tically without committing to which element of P is being executed

unless it has to.
3
The transition semantics for it is as follows:

T rans (setp(P), s, δ ′, s′) ≡
∃δ .∃δ ′′.δ ∈ P ∧T rans (δ, s, δ ′′, s′) ∧
δ ′ = setp({δ ′′ | ∃δ .δ ∈ P ∧T rans (δ, s, δ ′′, s′) })

F inal (setp(P), s) ≡ ∃δ .δ ∈ P ∧ F inal (δ, s)

Note that setp(P) is always SD. For the example above, setp({(a1;
a2) | (a1;a3)}) can make a transition to setp({a2,a3}), which can

then execute either a2 or a3.

Monitorable agents.We assume that the agent only executes

low-level action sequences that refine some high-level action se-

quences, so that the agent is monitorable. At the high level, we

consider that the agent may do any sequence of executable actions.

We define the following high-level programs to capture this:

anyOne � |Ai ∈Ah π x⃗ .Ai (x⃗), do any HL primitive action,

any � anyOne
∗, i.e., do any sequence of HL actions.

This corresponds at the low level to executing refinements of high-

level actions/action sequences, which we represent by the following

low-level programs:

3
Wewill assume that the sets of complete refinements of different high-level actions are

disjoint (see Assumption 1 below). So once we have finished executing at the low level

a sequence a⃗ that is a refinement of some high-level action, there will be a unique high-

level action α that the sequence a⃗ refines, i.e., such that Do (m (α), sl , do (a⃗, sl)).

oneMonit � setp({ π x⃗ .m (Ai (x⃗)) | Ai ∈ Ah }),

i.e., do any refinement of any HL primitive action,

monit � oneMonit
∗,

i.e., do any sequence of refinements of HL actions.

The agent being monitorable means that its possible runs/behaviors

are those of monit, i.e., the space of possible behaviors of the agent

is CRMl (monit, S0). Note that if we have bisimilar models, the

converse follows, i.e., any executable high-level action sequence

has an executable refinement at the low-level.

Inverse Mapping. We want to be able to map a sequence of

low-level actions back into a unique abstract high-level action se-

quence it refines. To allow this, as in [7], the following assumption

is required:

Assumption 1. For any distinct ground high-level action terms α
and α ′ it is the case that:

(a) Dl ∪ C |= ∀s, s′.Do (m (α), s, s′) ⊃
¬∃δ .T rans∗ (m (α ′), s, δ, s′)

(b) Dl ∪ C |= ∀s, s′.Do (m (α), s, s′) ⊃
¬∃a∃δ .T rans∗ (m (α), s, δ, do (a, s′))

(c) Dl ∪ C |= ∀s, s′.Do (m (α), s, s′) ⊃ s < s′

Part (a) ensures that different high-level primitive actions have

disjoint sets of refinements; (b) ensures that once a refinement of

a high-level primitive action is complete, it cannot be extended

further; and (c) ensures that a refinement of a high-level primitive

action will produce at least one low-level action.

Given this assumption, one canwritem−1Ml
(do(a⃗, S0)) = α⃗ to state

that α⃗ is the unique sequence of high-level actions that the low-level

action sequence a⃗ refines; this notation is defined as follows:

m−1Ml
(s) = α⃗ � Ml |= ∃s′.lpm (s) = s′ ∧ Do (m (α⃗), S0, s′)

lpm (s) = s′ � Do (monit, S0, s′) ∧ s′ ≤ s ∧
∀s′′.(s′ < s′′ ≤ s ⊃ ¬Do (monit, S0, s′′))

where, lpm (s) denotes the largest prefix of s that can be produced

by executing a sequence of high-level actions. Note that we extend

this notation to apply to any set of action sequences El as well, i.e.,
m−1Ml

(El , sl) = {α⃗ | a⃗ ∈ El andMl |= Do(m(α⃗), sl ,do(a⃗, sl))}.

5 HIERARCHICAL AGENT SUPERVISION
To facilitate supervision of agents that have complex behavior, we

want to use abstraction. We assume that the supervision specifica-

tion is expressed as a high-level program, which is quite natural.

Given this, we would like to first obtain a supervisor for the high-

level agent, and then use it to obtain a supervisor for the low level

that ensures that the refinement of the specification is satisfied.

Example (cont.) Going back to our running example, we can

represent our supervision specification that says that any shipment

that has been ordered, in our case just 123, must eventually be

delivered, and if it is a Priority shipment, it should never be delayed,

by the following high-level program δhSpec :

&
sID∈ShpOrd [πa .a; (Pr ior ity (sID)) ⊃ ¬Delayed (sID))?]∗;

Delivered (sID)?

Session 39: Logics for Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1436

Ensuring that HL and LL Controllability Match for Atomic Actions.

To be able to use the high-level model to characterize controllable

sets of low-level runs of the agent, including the MPS for a given

specification, we must first ensure that the formalization of the

controllability of individual actions at the high level (in terms of the

Au predicate) accurately reflects the controllability of the actions’

implementations at the low level. It is easy to show the following:
4

Lemma 5.1. For any Es ⊆ Ah
, Es , ∅,

Dh ∪ C |= Controllable (set(ES), anyOne, s) ≡
∀au .Auh (au, s) ∧ Poss (au, s) ⊃ Do (set(ES), s, do (au, s))

i.e., at the high level, any set of executable atomic actions ES is

controllable wrt the set of all atomic actions the agent may execute

in situation s provided that ES includes all the executable uncon-

trollable actions in s . Indeed, we assume that the supervisor can

block any set of controllable high-level actions while leaving the

other actions unconstrained.

However, it is easy to construct examples where the low level

cannot enforce such supervision specifications. Suppose that we

have the high-level actions α , β , and γ , all of which are controllable

and executable in S0, with the following mapping:

m(α) = a;u1 m(β) = a;u2 m(γ) = b .

We assume that low-level actions a and b are always controllable

and executable and u1 and u2 are always uncontrollable and ex-

ecutable. Suppose that we have a high-level specification which

allows the agent to perform only α . The high-level MPS could

achieve this by not allowing other actions (β or γ) to be executed.

However, if we map this specification to the low level, the low-level

MPS cannot achieve a similar result, as it needs to allow the exe-

cution of (a;u1) only. However, since u2 is uncontrollable, it may

happen and by definition, uncontrollable actions cannot be stopped;

thus, there is no way to disable refinements of action β without dis-

abling refinements of α . In other words, while setp({m(α),m(β)})
is controllable,m(α) andm(β) when considered individually, are

not controllable. The high-level model cannot represent this kind

of example by classifying individual actions as controllable or not

(using Auh (ah , s)).
To enable us to exploit the high-level model of the agent to per-

form supervision of the low-level agent, we need to ensure that

the specification of controllable and uncontrollable actions (i.e.,

Auh (a, s)) in the high-level model is consistent with the controlla-

bility of the associated programs at the low-level. We do this by

assuming that the agent models satisfy the following:

Assumption 2 (Local Controllability). IfMh ∼m Ml and a⃗
is anm-refinement of an executable α⃗ (wrtMh ∼m Ml), then
(a) for any set of ground high-level actions Eh ,

Mh |= Controllable (set(Eh), anyOne,do(α⃗ , S0))
if and only if

there exists a set of ground low-level action sequences El such that
Ml |= Controllable (set(El), oneMonit,do(a⃗, S0))
andm−1Ml

(El ,do(a⃗, S0)) = Eh ;

(b) Ml |= Controllable (set({ϵ }),monit,do(a⃗, S0))
if and only if

Mh |= Controllable (set({ϵ }), any,do(α⃗ , S0)).
4
For proofs of our results, see [8].

Intuitively, part (a) ensures that if we have a controllable set

of atomic actions (wrt (anyOne in do(α⃗ , S0)) at the high level, we

can always find a set of refinements of exactly these actions that

is controllable (wrt (oneMonit in do(a⃗, S0)) at the low level; more-

over, if we have an uncontrollable set of atomic actions at the high

level, there is no set of refinements of exactly these actions that is

controllable at the low level, i.e., the set really is uncontrollable. Ad-

ditionally part (b) ensures that if the supervisor can direct the agent

to stop at the low level, i.e., the set of runs {ϵ } is controllable (wrt
(monit in do(a⃗, S0)), and thus there is no refinement of a high-level

action that starts with an uncontrollable low-level action, then the

supervisor can also direct the agent to stop at the high level, i.e.,

{ϵ } is also controllable (wrt (any in do(α⃗ , S0)) at the high level, and

no uncontrollable action is executable there as well, and vice versa

(in fact, the latter follows from part (a)).

Example (cont.) Suppose that at the low level, the agent has ex-

ecuted a⃗ = takeRoad (sID,Rdi ,o,d); takeRoad (sID,Rdc ,o,d) which
corresponds to the high-level α⃗ = takeRoute (sID,RtC ,o, d). At the
high level, the set of all executable actions is Ah =

{takeRoute (sID,RtD ,o,d),delay (sID)} and the only controllable sub-
sets are Ah , {delay (sID)} and ∅. At the low level, the controllable

subsets are {takeRoad (sID,Rdd ,o,d),delayBW (sID),
delayRM (sID)}, {delayBW (sID),delayRM (sID)}, and ∅, which cor-

respond to the high-level ones. set({ϵ }) is not controllable at either
levels. So the local controllability assumption is satisfied.

Hierarchical Controllability of High-Level Specifications. The local

controllability assumption (part (a)) ensures that the controllability

of atomic actions at the high level accurately represents the control-

lability of their refinements. Can we generalize this to show that

if we have a controllable set of runs Eh (wrt (any in do(α⃗ , S0)) at
the high level, we can always refine it and obtain a set El of runs
which are refinements for the runs in Eh and that is controllable

(wrt (monit in do(a⃗, S0)) at the low level? Indeed we can, as the

following result shows:

Theorem 5.2. If Mh ∼m Ml and a⃗ is an m-refinement of an

executable α⃗ , and Assumptions 1 and 2 (part(a) ⊃) hold, then for

any set of ground high-level action sequences Eh such that Mh |=

Controllable (set(Eh), any,do(α⃗ , S0)),
there exists a set of ground low-level action sequences El such that

El ⊆ CRMl (monit,do(a⃗, S0)) and
Ml |= Controllable (set(El),monit,do(a⃗, S0)) and
m−1Ml

(El ,do(a⃗, S0)) = Eh .

We can also show a similar result in the concrete to abstract

direction, i.e., if we have a controllable set of refinements of high

level action sequences El , the corresponding set of high-level runs

m−1Ml
(El ,do(a⃗, S0)) must also be controllable at the high level:

Theorem 5.3. If Mh ∼m Ml and a⃗ is an m-refinement of an

executable α⃗ , and Assumptions 1 and 2 (part(a) ⊂ and part (b)) hold,

then for any set of ground low-level action sequences El such that

El ⊆ CRMl (monit,do(a⃗, S0))

ifMl |= Controllable (set(El),monit,do(a⃗, S0)), then,

Mh |= Controllable (set(m−1Ml
(El ,do(a⃗, S0))), any,do(α⃗ , S0)).

Session 39: Logics for Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1437

An immediate consequence of the above is that any set of high-level

action sequences that is uncontrollable (wrt (any in do(α⃗ , S0)) has
no refinement set that is controllable (wrt monit in do(a⃗, S0)), as
if there was such a set, then Eh would have to be controllable by

Theorem 5.3.

As we will see, we can use the above results to show that if we

have a supervision specification represented by a high-level SD

program δhSpec , the MPS for the specification at the high level is

in fact the abstract version of the MPS for it at the low level. To

state this precisely however, we need a way of mapping the high-

level supervision specification program δhSpec , which is SD, into a

low-level program whose runs are the refinements of δhSpec .

To support this, we extend the mappingm to a mappingmp that

maps any SD high-level program δh to a SD low-level program that

implements it:

mp (δh) � setp({δh [A (⃗t)/atomic(m (A (⃗t))) for all A ∈ A,
and F (⃗t)/m (F (⃗t)) for all F ∈ F]}).

Note that when we replace a high-level action A(⃗t) by the low-

level program implementing it,m(A(⃗t)), we enclose the latter in
the atomic() construct to prevent it from being interleaved with

refinements of other high-level actions, as we want any low-level

execution of the agent to be a sequence of refinements of high-level

actions. We also use the setp() construct to avoid committing to a

particular high-level action that is being refined until we have to.

We can then use mp to map an arbitrary supervision specifi-

cation represented by a high-level SD program δhSpec to the SD

low-level program that implements itmp (δ
h
Spec).

Example (cont.) Applying mp to the high-level specification

δhSpec given earlier yields the following low-level specification:

mp (δhSpec) = δ
l
Spec =

&
sID∈ShpOrd [πa .a; ((Exp1(sID) ∨ Exp2(sID)) ⊃

¬(DelayedBD (sID) ∨ DelayedRM (sID)))?]∗;
(Unloaded (sID) ∧ Siдned (sID))?

Now we are ready to state our result: the high-level MPS for the

supervision specification represented by a high-level SD program

δhSpec is the abstract version of theMPS for themapped specification

at the low level, i.e., formally:

Theorem 5.4. If Mh ∼m Ml and a⃗ is an m-refinement of an

executable α⃗ , and Assumptions 1 and 2 hold, then for any supervi-

sion specification represented by a high-level situation-determined

program δhSpec ,

m−1Ml
(CRMl (mps (monit,mp (δ

h
Spec),do(a⃗, S0)),

do(a⃗, S0)),do(a⃗, S0)) =

CRMh (mps (any,δhSpec ,do(α⃗ , S0)),do(α⃗ , S0)).

Example (cont.) The complete runs of the high-level MPS and

low-level MPS are as follows:

CRMh (mps (any, δhSpec , S0), S0) =
{takeRoute (sID, RtA, o, d); takeRoute (sID, RtB, o, d);
deliver (sID) }

CRMl (mps (monit,mp (δhSpec), S0), S0) =
{[takeRoad (sID, Rdi , o, d); takeRoad (sID, Rda, o, d);
takeRoad (sID, Rdb1, o, d);unload (sID);дetSiдnature (sID)],
[takeRoad (sID, Rdi , o, d); takeRoad (sID, Rda, o, d);
takeRoad (sID, Rdb2, o, d);unload (sID);дetSiдnature (sID)]}

It is easy to confirm that the result of Theorem 5.4 holds.

6 HIERARCHICALLY SYNTHESIZED MPS
Let’s assume that we have precomputed the high-level MPS for

some high-level specification in some high-level situation, which for

convenience we equivalently represent as a set of high-level action

sequences E
mps
h . We can define a low-level programmpsi (E

mps
h)

that refines this high-level MPS E
mps
h into the corresponding low-

level MPS (note that now represents the current situation):

mpsi (E
mps
h) = ϵ ∈ Emps

h ? |

(mps (oneMonit,mp (firsts(E
mps
h)), now);

mpsi (rests(E
mps
h , last (m−1Ml

(now))))),

where

last (γ⃗) = β if γ⃗ = α⃗ ′β and undefined if γ⃗ = ϵ ,
firsts(E) = {α ′ | α ′γ⃗ ∈ E for some γ⃗ }, and
rests(E, β) = {γ⃗ | βγ⃗ ∈ E }.

We can show that the resulting hierarchically synthesized MPS,

mpsi (E
mps
h), is correct since it has exactly the same set of com-

plete runs as the low-level MPSmps (monit,mp (δ
h
Spec), do(a⃗, S0))

obtained by mapping δhSpec to the low level:

Theorem 6.1. IfMh ∼m Ml and a⃗ is anm-refinement of an exe-

cutable α⃗ , and Assumptions 1 and 2 hold, then for any supervision

specification represented by a high-level situation-determined pro-

gram δhSpec

CRMl (mpsi (E
mps
h), do (a⃗, S0)) =

CRMl (mps (monit,mp (δhSpec), do (a⃗, S0)), do (a⃗, S0))

where Emps
h = CRMh (mps (any, δhSpec , do (α⃗, S0)), do (α⃗, S0)).

The hierarchically synthesized MPSmpsi (E
mps
h) will generally

be much easier to compute than the low-level MPS mps (monit,

mp (δ
h
Spec),do(a⃗, S0)). To get the latter, one has to search the whole

space of all refinements of all high-level action sequences. To get

the former, one only needs to repeatedly search for the local MPS of

the set of refinements of high-level atomic actions that are allowed

by the high-level MPS at each step; the search horizon is much

shorter, a single high-level action. One does need to precompute

the high-level MPSmps (any,δhSpec ,do(α⃗ , S0)), but the search space

for this would typically be much smaller than for the low-level MPS.

One may also compute mpsi (E
mps
h) incrementally. The fact that

we have the high-level MPS as a guide ensures that we can do this

without losing maximal permissiveness. Note thatmpsi (E
mps
h) is a

sequence of set(E), so it is always SD, like the low-level MPS, thus

ensuring that they can always perform the same transitions.

Session 39: Logics for Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1438

Example (cont.) Initially,mps (monit,mp (δ
h
Spec), S0) needs to

consider both of the following action sequences:

[takeRoad (sID, Rdi , o, d); takeRoad (sID, Rda, o, d)]
[takeRoad (sID, Rdi , o, d); takeRoad (sID, Rdc , o, d)]

After the latter, the uncontrollable actions delayRM or delayBW
may happen next, which would violate the specification given

that shipment 123 is of type Exp2. So it will only include the

former as a prefix in the resulting MPS. mpsi (E
mps
h) however,

only needs to consider refinements of takeRoute (sID,RtA,o,d), i.e.,
[takeRoad (sID,Rdi ,o,d); takeRoad (sID,Rda ,o,d)]. The high-level

MPSmps (any,δhSpec , S0) has already decided that taking route C

should not be allowed, as it may be followed by the uncontrollable

action delay, which is ruled out since 123 is of type Priority.

Observe that, so far, we have assumed that we have complete

information about the situation in which the agent runs in both

the high-level and low-level models. But this is not essential. If the

high-level MPS for the given supervision specification is the same

in all models of the high-level action theory (i.e., it is similar to a

conformant plan) and we have a sound abstraction, then we can

still use this high-level MPS to obtain a correct hierarchically syn-

thesized MPS for each low-level model as shown above. Of course,

if we have incomplete information at the low level too, then there is

no guarantee that the resulting low-level MPS will be the same for

every model of the low-level action theory. However, one typically

has more information at the low level than at the high level, so this

case is not that unusual. More generally, an agent with incomplete

informationmay also acquire new information online, as it executes.

In this case, a more complex notion of online supervision/MPS is

required [6]. Extending our hierarchical approach to this case is

left for future work.

7 DISCUSSION
Our approach is inspired by the hierarchical supervisory control

of discrete event systems [33, 34, 37], but the foundations of our

work is different: the framework is based on a rich first-order logic

language; we use a notion of bisimulation to relate the models of the

high-level and low-level theories; in addition to actions (which ab-

stract over programs), our high-level theory includes fluents (which

abstract over formulas); and through preconditions for actions, we

are able to enforce local constraints on the low-level agent.

Aucher [5] reformulates the results of supervisory control the-

ory in terms of model checking problems in an epistemic temporal

logic. van der Hoek et al. [31] formalize how the abilities of coali-

tions of agents are affected by the transfer of control over variables.

Alechina et al. [1] regulate multi-agent systems using norms. Un-

like our work, these approaches are not based on first order logic.

Gabaldon [20] incorporates norms as preconditions of actions in

Golog [22]. The above approaches do not consider abstraction.

Grossi and Dignum [21] use a KD45 multi-modal logic corre-

sponding to a propositional logic of contexts to model norms at

different levels of abstraction. Also, Salceda and Dignum [32] pro-

pose a method to refine abstract norms specified in institutional

regulations to concrete norms and eventually into rules and proce-

dures represented in PDL [25] such that agents in the organization

can be rewarded/punished based on these norms. These approaches

use propositional logics. There is also related work in the area of

model checking and synthesis of hierarchical systems [2–4, 9].

In AI, behavior composition [17, 36] involves synthesizing a con-

troller that realizes a virtual target behavior by coordinating the

execution of set of available behaviormodules. A notion of controller

generator (i.e., an implicit representation of all controllers) is also

studied. Felli et al. [18] relate the controller generator to a notion of

MPS. These approaches model behaviors as finite state transition

systems. Sardina et al. [30] synthesize a controller that orches-

trates the concurrent execution of a library of available ConGolog
programs to realize a target program, but the controller is not max-

imally permissive. These approaches do not consider abstraction.

In planning, several notions of abstraction, including precondition-

elimination abstraction, Hierarchical Task Networks (HTNs) and

macro operators have been studied [28]. HTNs in ConGolog [19] and
complex actions specified as Golog programs [24] have also been

investigated. While these approaches focus on improving the ef-

ficiency of planning, our work provides a generic framework for

customizing the agent behavior. Moreover, the former uses a single

BAT, and the latter compile the abstracted actions into a new BAT

that contains both the original and abstracted actions. Also, the

latter only deals with deterministic complex actions and does not

provide abstraction for fluents.

In this paper, we developed an account for hierarchical super-

vision where given a high-level MPS based on an abstract spec-

ification, we synthesize a MPS for the low-level agent based on

the refined specification. For simplicity, we focused on a single

layer of abstraction, but the framework supports extending the

hierarchy to more levels. Our approach can be extended to use

ConGolog programs (in addition to the action theory) to specify

the possible behaviors of the agent at both the high and low level;

one way to do this is to “compile” the program into the BAT D to

get a new BAT D ′ whose executable situations are exactly those

that can be reached by executing the program, as in [14]. In future

work, we will explore how “compatible” low-level specifications on

the concrete agent behavior can also be incorporated into the low-

level MPS. Moreover, we will investigate an account of hierarchical

supervision for agents that execute online and can acquire new in-

formation (e.g., through sensing) as they operate. Another direction

for future research is investigating how the local controllability

condition can be verified.

The framework developed in this paper is very general and han-

dles arbitrary first-order representations of the dynamic system’s

states. In such a general setting not much can be said about the

computational aspects. However, we can get an effective setting

from the computational point of view if we restrict, for example, the

high level to be propositional. In this way we get a finite state ab-

stract system on which doing supervision becomes effective, (under

the assumption that we are able to compute refinements of atomic

actions). Similar results can be obtained for first-order bounded

action theories [13]. We leave these questions for future work.

ACKNOWLEDGMENTS
We acknowledge the support of Sapienza Ateneo Project “Immer-

sive Cognitive Environments” and the National Science and Engi-

neering Research Council of Canada.

Session 39: Logics for Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1439

REFERENCES
[1] Natasha Alechina, Nils Bulling, Mehdi Dastani, and Brian Logan. 2015. Practical

Run-Time Norm Enforcement with Bounded Lookahead. In Proceedings of the

14th International Conference on Autonomous Agents and Multiagent Systems.

ACM, 443–451.

[2] Rajeev Alur and Mihalis Yannakakis. 2001. Model checking of hierarchical state

machines. ACM Transactions on Programming Languages and Systems 23, 3 (2001),

273–303.

[3] Benjamin Aminof, Orna Kupferman, and Aniello Murano. 2012. Improved model

checking of hierarchical systems. Information and Computation 210 (2012), 68–86.

[4] Benjamin Aminof, Fabio Mogavero, and Aniello Murano. 2014. Synthesis of

hierarchical systems. Science of Computer Programming 83 (2014), 56–79.

[5] Guillaume Aucher. 2014. Supervisory Control Theory in Epistemic Temporal

Logic. In Proceedings of the 13th International Conference on Autonomous Agents

and Multiagent Systems. Springer.

[6] Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance. 2016. Online

Agent Supervision in the Situation Calculus. In Proceedings of the 25th Interna-

tional Joint Conference on Artificial Intelligence. IJCAI/AAAI Press, 922–928.

[7] Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance. 2017. Abstraction

in Situation Calculus Action Theories. In Proceedings of the 31st AAAI Conference

on Artificial Intelligence. AAAI Press, 1048–1055.

[8] Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance. 2018. Hierarchical

Agent Supervision - Extended Version. Technical Report EECS-2018-01. York

University.

[9] Laura Bozzelli, Aniello Murano, Giuseppe Perelli, and Loredana Sorrentino. 2017.

Hierarchical Cost-Parity Games. In 24th International Symposium on Temporal

Representation and Reasoning, TIME. 6:1–6:17.

[10] C. G. Cassandras and S. Lafortune. 2008. Introduction to Discrete Event Systems

(second ed.). Springer.

[11] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. 2000. ConGolog,

A Concurrent Programming Language Based on the Situation Calculus. Artificial

Intelligence 1, 1–2 (2000), 109–169.

[12] Giuseppe De Giacomo, Yves Lespérance, and Christian J. Muise. 2012. On super-

vising agents in situation-determined ConGolog. In International Conference on

Autonomous Agents and Multiagent Systems, AAMAS 2012. IFAAMAS, 1031–1038.

[13] G. De Giacomo, Y. Lespérance, and F. Patrizi. 2016. Bounded situation calculus

action theories. Artificial Intelligence 237 (2016), 172–203.

[14] Giuseppe De Giacomo, Yves Lespérance, Fabio Patrizi, and Sebastian Sardiña.

2016. Verifying ConGolog Programs on Bounded Situation Calculus Theories.

In Proceedings of the 30th AAAI Conference on Artificial Intelligence. AAAI Press,

950–9568.

[15] Giuseppe De Giacomo, Yves Lespérance, and Adrian R. Pearce. 2010. Situation

Calculus Based Programs for Representing and Reasoning about Game Structures.

In Principles of Knowledge Representation and Reasoning: Proceedings of the 12th

International Conference.

[16] Giuseppe De Giacomo, Hector J. Levesque, and Yves Lespérance. 2004. Trans and

Final for Mutual Exclusive Blocks. (2004). Unpublished Note.

[17] Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardina. 2013. Automatic

behavior composition synthesis. Artificial Intelligence 196 (2013), 106–142.

[18] Paolo Felli, Nitin Yadav, and Sebastian Sardiña. 2017. Supervisory Control for

Behavior Composition. IEEE Trans. Automat. Control 62, 2 (2017), 986–991.

[19] Alfredo Gabaldon. 2002. Programming hierarchical task networks in the situation

calculus. In AIPSŠ02 Workshop on On-line Planning and Scheduling.

[20] Alfredo Gabaldon. 2011. Making Golog Norm Compliant. In Proceedings of

the 12th International Workshop on Computational Logic in Multi-Agent Systems.

Springer, 275–292.

[21] Davide Grossi and Frank Dignum. 2004. From Abstract to Concrete Norms in

Agent Institutions. In Proceedings of the 3rd International Workshop on Formal

Approaches to Agent-Based Systems, Vol. 3228. Springer, 12–29.

[22] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and

Richard B. Scherl. 1997. GOLOG: A logic programming language for dynamic

domains. The Journal of Logic Programing 31, 1-3 (1997), 59–83.

[23] J. McCarthy and P. J. Hayes. 1969. Some Philosophical Problems From the

Standpoint of Artificial Intelligence. Machine Intelligence 4 (1969), 463–502.

[24] Sheila A. McIlraith and Ronald Fadel. 2002. Planning with Complex Actions.

In Proceedings of the 9th International Workshop on Non-Monotonic Reasoning.

356–364.

[25] John-Jules Ch. Meyer. 1988. A different approach to deontic logic: deontic logic

viewed as a variant of dynamic logic. Notre Dame Journal of Formal Logic 29, 1

(1988), 109–136.

[26] Robin Milner. 1971. An Algebraic Definition of Simulation Between Programs.

In Proceedings of the 2nd International Joint Conference on Artificial Intelligence.

William Kaufmann, 481–489.

[27] Robin Milner. 1989. Communication and concurrency. Prentice Hall.

[28] Dana Nau, Malik Ghallab, and Paolo Traverso (Eds.). 2004. Automated Planning:

Theory & Practice. Morgan Kaufmann Publishers Inc.

[29] Ray Reiter. 2001. Knowledge in Action. Logical Foundations for Specifying and

Implementing Dynamical Systems. The MIT Press.

[30] Sebastian Sardiña and Giuseppe De Giacomo. 2009. Composition of ConGolog

Programs. In Proceedings of the 21st International Joint Conference on Artificial

Intelligence. 904–910.

[31] Wiebe van der Hoek, Dirk Walther, and Michael Wooldridge. 2014. Reasoning

About the Transfer of Control. CoRR abs/1401.3825 (2014).

[32] Javier Vázquez-Salceda and Frank Dignum. 2003. Modelling Electronic Orga-

nizations. In Proceedings of the 3rd International Central and Eastern European

Conference on Multi-Agent Systems (Lecture Notes in Computer Science), Vol. 2691.

Springer, 584–593.

[33] KCWong andWMWonham. 1996. Hierarchical control of discrete-event systems.

Discrete Event Dynamic Systems 6, 3 (1996), 783–800.

[34] WM Wonham. 2017. Supervisory Control of Discrete-Event Systems (2017 ed.).

University of Toronto.

[35] WMWonham and PJ Ramadge. 1987. On the supremal controllable sub-language

of a given language. SIAM J Contr Optim 25, 3 (1987), 637–659.

[36] Nitin Yadav, Paolo Felli, Giuseppe De Giacomo, and Sebastian Sardina. 2013.

Supremal Realizability of Behaviors with Uncontrollable Exogenous Events. In

Proceedings of the 23rd International Joint Conference on Artificial Intelligence.

IJCAI/AAAI, 1176–1182.

[37] H Zhong and WM Wonham. 1990. On consistency of hierarchical supervision in

discrete-event systems. IEEE Trans. Automat. Control 35, 10 (1990), 1125–1134.

Session 39: Logics for Multiagent Systems 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1440

	Abstract
	1 Introduction
	2 Preliminaries
	3 Agent Supervision
	4 Abstracting Agent Behavior
	5 Hierarchical Agent Supervision
	6 Hierarchically Synthesized MPS
	7 Discussion
	References

