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ABSTRACT
Trust is critical to the success of human-agent teams, and a criti-
cal antecedents to trust is transparency. To best interact with hu-
man teammates, an agent explain itself so that they understand its
decision-making process. However, individual differences among
human teammates require that the agent dynamically adjust its
explanation strategy based on their unobservable subjective beliefs.
The agent must therefore recognize its teammates’ subjective beliefs
relevant to trust-building (e.g., their understanding of the agent’s
capabilities and process). We leverage a nonparametric method to
enable an agent to use its history of prior interactions as a means
for recognizing and predicting a new teammate’s subjective beliefs.
We first gather data combining observable behavior sequences with
survey-based observations of typically unobservable perceptions.
We then use a nearest-neighbor approach to identify the prior
teammates most similar to the new one. We use these neighbors’ re-
sponses to infer the likelihood of possible beliefs, as in collaborative
filtering. The results provide insights into the types of beliefs that
are easy (and hard) to infer from purely behavioral observations.
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1 INTRODUCTION
Trust is critical to the success of human-agent interaction (HAI)
[9, 11]. Tomaximize the performance of human-agent teams, people
should trust their agent teammates to perform a task autonomously
when they are more suited than humans for the task. When the
agents are less suited, then people should perform the task them-
selves. Failure to do so results in disuse of agents in the former case
andmisuse in the latter [14]. Real-world case studies and laboratory
experiments show that failures of both types are common [9].

Research has shown that people will more accurately trust an
agent if they have a more accurate understanding of its decision-
making process [7]. Explanations (whether created manually [3] or
automatically [22]) have shown to contribute to that understand-
ing in a way that typically improves trust calibration with human
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teammates. However, the agents in these prior studies gave the
same explanations to all of its teammates. Such a “one-size-fits-all”
approach cannot accommodate the individual differences that are
ubiquitous in people’s trust relationships with autonomous sys-
tems (e.g., [7, 8, 19]). Furthermore, even once the agent identifies
a particular teammate’s trust-relevant traits, it must also identify
his/her different communication preferences (e.g., for reading un-
certainty as a percentage vs. a frequency [23]) before constructing
an effective explanation targeted for the given teammate.

An agent therefore needs to recognize its teammate’s current
subjective beliefs, as relevant to the trust relationship between
them. There is a wide range of methods for recognizing hidden
states of other agents [20], even trust-relevant hidden states [2]. Our
focus here is more similar to affect recognition [24], rather than
recognition of domain-level plans and intentions. Furthermore,
our specific recognition problem limits the agent’s information
to only trust-related observations (e.g., did the person follow or
ignore its advice?). In addition to this difference in input, we also
seek a specific output: recognizing subjective beliefs collated from a
variety of trust-related survey instruments in the field [4, 12, 15, 21].
For example, an agent may want to determine whether its teammate
believes it to have high ability, benevolence, and integrity, three
critical dimensions of trust [12].

As is common in recognition domains, we hypothesize that peo-
ple who exhibit similar behaviors when interacting with the agent
will also share similar subjective beliefs. We operationalize this
hypothesis by using a nearest-neighbor approach, commonly used
in collaborative filtering [16, 17], but also in more relevant domains
(e.g., in activity recognition [1]). We therefore avoid having to select
or construct a generative/causal model of trust out of the many
candidates in the literature. However, without a generative/causal
model, we run the risk that the observable behaviors may not be
meaningfully connected to the trust-related subjective beliefs that
we seek to recognize. Wemust first quantify the degree to which dif-
ferent subjective beliefs can be inferred from observable data (if at
all), before we can consider more accurate methods for recognition.

We perform this quantification using data gathered in a human-
subject study combining direct observation of human behavior with
intermittent surveys of typically unobservable subjective beliefs.
We then use this data set as our recognition model for inferring
those beliefs (i.e., potential answers to the survey instruments) from
the observable behavioral sequences. By quantifying the accuracy of
such inference, we gain useful insight into what aspects of human-
agent trust are easier to infer from purely behavioral measures
than others. Furthermore, by analyzing the data through a lens
of individual behavior sequences, we can more easily identify the
differences in the trust relationship across our human population.
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2 HUMAN-AGENT INTERACTION SCENARIO
We illustrate our methodology in the context of an online HAI
testbed1. For the current study, we configured the testbed to imple-
ment a scenario in which a human teammate works with a different
robot across eight reconnaissance missions (see Figure 1). Each
mission requires the human teammate to search 15 buildings in
a different town. The virtual robot serves as a scout: it scans the
buildings for potential danger and relays its findings. The robot
has an NBC (nuclear, biological, and chemical) weapon sensor, a
camera that can detect armed gunmen, and a microphone that can
identify suspicious conversations.

The human must choose between entering a building with or
without protective gear. If there is danger inside the building, the
human will be fatally injured if not wearing the protective gear. In
such cases, our experiment imposes a 3-minute time penalty, in lieu
of actually killing the participants. If the human teammate fails to
enter all 15 buildingswithin 10minutes, themission is a failure. Four
buildings in each mission contain threats (a different four in each
mission sequence), so entering all of them without protective gear
almost guarantees mission failure. On the other hand, it takes time
to put on and take off protective gear (20 seconds each). Therefore,
putting on the protective gear for all 15 buildings also leads to
mission failure. So the human is incentivized to consider the robot’s
findings to make a more informed decision as to wearing or not
wearing the protective gear.

2.1 Robot Variations
The virtual robot chooses a recommendation as to whether its team-
mate should or should not put on protective gear by following a
policy generated from a Partially Observable Markov Decision Pro-
cess (POMDP) [5]2. The participant needs to decide only whether
to follow or ignore the robot’s findings (safe/dangerous), before
pressing a button to enter/exit the room. In the testbed implemen-
tation for the current study, the participant works with a different
robot for each mission. Each of the eight robot represents a different
combination along the following three binary dimensions:

Explanation: Half of the robots provide an assessment of a
building’s safety as being safe or dangerous, with no addi-
tional information (e.g., “I have finished surveying the doc-
tor’s office. I think the place is safe.”). The other half of the
robots augment their decisions with additional information
that should help its teammate better understand its ability
(e.g., decision-making), one of the key dimensions of trust
[12]. These robots give a confidence-level explanation that
augments the decision message with additional information
about the robot’s uncertainty in its decision. One example
of a confidence-level explanation would be: “I have finished
surveying the Cafe. I think the place is dangerous. I am 86%
confident about this assessment.” The robot uses its current
probabilistic belief state (derived from its POMDP model of
the world) to fill in the percentage confidence.

Acknowledgment: Half of the robots send an additional mes-
sage every time they make an assessment that turns out to
be incorrect; the other half do not send any such message. In

1The details of the testbed appear in a prior publication, omitted for blind review
2The details of the POMDP appear in a prior publication, omitted for blind review

each mission, the team searches 15 buildings, and the robot
makes an incorrect assessment of three of them. An example
of the robot’s acknowledgement would be “It seems that my
assessment of the informant’s house was incorrect. I will up-
datemy algorithmswhenwe return to base after themission.”
This acknowledgment is inspired by a prior investigation in
organizational trust that found that an acknowledgement of
a mistake, paired with a promise to improve, would improve
trust under certain conditions [18]. One can view this action
as an attempt by the robot at trust repair, which plays a
critical role in maintaining long-term organizational trust
[10].

Embodiment: Half of the robots look like a robotic dog, with
ears, nose and highlighted eyes, suggesting possibly embed-
ded sound, NBC, and vision sensors. The other half look
like a stereotypical “robot-looking” robot (depicted in Figure
1). This variation is motivated by studies showing that dog-
like robots are treated differently than those with a more
traditionally robotic appearance [6, 13].

2.2 Participants
The domain of the testbed scenario is relevant to the military, so we
recruited 73 participants from a higher-education military school
in the United States. Participants were awarded extra course credit
for their participation. 61 participants finished all eight missions
and completed a post-mission survey after each. However, when
possible, we also include the data from any completed individual
mission that also has a corresponding filled-out post-mission survey,
even if the participant did not complete all eight missions.

2.3 Data Gathered
Our agent’s aim is to recognize its teammate’s relevant subjective
beliefs, which we capture via self-report in our post-mission survey
(filled out by each participant after each of the eight missions).
This survey includes items to measure the participants’ trust in
and understanding of the robots’ decision-making processes. We
modified items on interpersonal trust to measure subjective belief in
the robot’s ability, benevolence, and integrity [12]. We also included
the NASA Task Load Index [4], Situation Awareness Rating Scale
[21], and a measure of trust in oneself and teammates [15]. In
all, the survey contained 43 different subjective belief items, all
with responses along a numeric scale (1–7), that we used as the
recognition output in this investigation.

We also collected logs of the participants’ behavior in the system,
allowing us to extract the decision sequence of each participant
as the agent’s recognition input. We seek to quantify the degree
to which these observable behaviors can be used by an agent to
infer the unobservable subjective beliefs, as represented by the
survey questions. While surveys render beliefs observable (subject
to the vagaries of self-report), the robot cannot ask its teammates
43 questions before and after each of the 15 buildings for all eight
missions. We instead want to understand whether and how well the
robot can infer a person’s response to such potential questioning
based on the behavior it can already unobtrusively observe.
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Figure 1: HRI testbed with HTML front-end.

3 BEHAVIORAL SEQUENCES
The order in which the eight robots were teamed with the par-
ticipants was randomized, but (importantly for this investigation)
each participant searched the eight towns in the same order. Every
human-robot team visited the buildings of a given town in the same
order as well. The presence of threats in each building was also
identical for every participant. All of the robots had a faulty camera
that failed to identify armed gunmen, but their NBC sensors and mi-
crophones were perfectly accurate. As a result, the sensor readings
received by all of the robots and their eventual recommendations
(but not the framing of that recommendation) were also identical
for a given building. In particular, the robot makes an incorrect
assessment of the danger level for 3 out of 15 buildings in each town.
For example, the first two rows of Table 1 list the threats (NBC or
armed gunman or blank if neither) that exist in each of the build-
ings in Mission 2. The third row lists the robot’s assessment as to
whether the building is safe or not. The fourth row lists the robot’s
confidence in that assessment, which it communicates accurately
to those participants receiving the confidence-level explanation.

Therefore, we canmakemeaningful comparisons of the sequence
of participant behaviors—15 decisions to follow or ignore the robot’s
recommendation—across different participants in each of the eight
missions, even though they may be interacting with different robots.
For example, Table 1’s first two rows show that Building 6 ofMission
2 is always a false negative by the robot, regardless of explanation,
acknowledgment, or embodiment. We can then reliably judge each
participant’s sixth decision to follow or ignore the robot as a bad
or good decision, respectively. Similarly, we can examine each
participant’s seventh decision to potentially see whether the robot’s
error in the previous building has led to persistent trust loss.

We exploit this property of the domain to describe the partic-
ipants’ behavior in a mission as simply the sequence of their fol-
low/ignore decisions. The 15 buildings in each mission lead to a
behavioral sequence of 15 decisions. The bottom four rows of Table
1 show the four most common behavioral sequences exhibited in
Mission 2, which we have manually labeled as follows:

Compliant: The most common sequence in Mission 2 is one
that is fully “Compliant” (i.e., 15 “follow” decisions). Such
a decision sequence will cause the participant to die three
times per mission (Buildings 6, 8, and 15 in Mission 2).

Correct: More successful is the second-most common sequence,
where the participants do not die at all. These participants
correctly ignore the robot’s false negatives in Buildings 6, 8,
and 15. In general, participants following this optimal strat-
egy ignore the robot if and only if (iff) the robot’s confidence
is less than 80%.

Follow confident: In the third-most common sequence, the
participants seem to ignore the robot whenever its confi-
dence is less than 90%. In other words, they use too high of a
confidence threshold for trusting the robot, compared to the
“Correct” sequence. These participants will correctly ignore
the robot’s false negatives, too, but they will also incorrectly
ignore the robot’s true positives (e.g. in Room 2).

Never protect: Finally, participants following the fourth-most
common sequence never choose to put on protective gear,
treating the building as safe regardless of the robot’s assess-
ment. These participants fare the worst, as they suffer the
deaths from both the “Compliant” sequence (by following the
robot’s false negatives) and the “Follow confident” sequence
(by not following the robot’s true positives).

The specific sequences of “follow” and “ignore” decisions that qual-
ify as the “Correct”, “Follow confident”, and “Never protect” se-
quences change frommission to mission, depending on the location
of threats within the building sequence.

3.1 Behavioral Distance
The hypothesis underlying our approach is that people who have
exhibited similar outward behaviors will also have similar sub-
jective beliefs. To operationalize this hypothesis, we first need a
definition of similarity. Given that our behavioral sequences all
have the same length, the Hamming distance between them makes
a natural metric of similarity. In other words, we simply count
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Building 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Threat NBC Gun Gun Gun
Robot Safe Unsafe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe
Confidence 97% 86% 96% 97% 96% 63% 96% 63% 97% 96% 97% 97% 97% 97% 63%
Compliant (11) F F F F F F F F F F F F F F F
Correct (8) F F F F F I F I F F F F F F I
Follow confident (6) F I F F F I F I F F F F F F I
Never protect (5) F I F F F F F F F F F F F F F

Table 1: Mission 2 ground truth, robot recommendation, and the most common follow (F) and ignore (I) behaviors (number of
matching participants in parentheses)

the number of positions at which two behavioral sequences differ.
Smaller counts mean fewer differences, which mean more simi-
larity between the two behaviors. For example, the “Compliant”
behavior from Table 1 would have a Hamming distance of 3 from
the “Correct” behavior (e.g., differing in only Buildings 6, 8, and 15,
the robot’s false-negative recommendations). Using this metric, the
“Follow confident” behavior is closer to “Correct” than “Compliant”,
while the “Never protect” behavior is the opposite.

Given the binary nature of our decisions, there are 215 = 32, 768
possible behaviors. However, people are likely to cluster around a
much smaller subset of “reasonable” behaviors and ignore unrea-
sonable ones (e.g., alternate following and ignoring the robot each
building, or do the opposite of what the mostly reliable robot rec-
ommends for every building). Because the behavioral patterns are
being thus generated by a somewhat rational process, we will most
likely observe a smaller space of feasible patterns than we would in
less-constrained pattern-recognition domains. We therefore gain
computational efficiency from the nature of plan, activity, and in-
tent recognition [20], even though we do not explicitly model plans,
activities, or intentions within our purely behavioral sequences.

Having translated our data set into a space of behavioral compar-
ison points, we can then apply a nearest-neighbor approach to find
the participants most similar to the one whose subjective beliefs we
are currently trying to recognize. If there are multiple participants
whose behavior is at the same minimal Hamming distance from
our target behavior, we do not break the tie. Instead, we generate a
distribution from the frequency count across the tied participants.
For example, the “Compliant” behavior will be the nearest neighbor
for any new participant who is always following as well.

3.2 Behavioral Overlap
We first examine the commonality of behavioral sequences, bro-
ken down by mission. Because each mission presents a different
sequence of threats, we cannot combine sequences across missions.
Fortunately, there is a great deal of commonality of behaviors within
each mission, as illustrated in Table 2. The second column lists how
many total participants completed each mission. The third column
lists how many distinct behavioral sequences were exhibited by at
least one participant (n ≥ 1). We filter out less common behaviors
in the fourth and fifth columns, which list how many distinct be-
havioral sequences were exhibited by at least three (n ≥ 3) and five
(n ≥ 5) participants, respectively.

Mission Total n ≥ 1 n ≥ 3 n ≥ 5
Behaviors Behaviors Behaviors Behaviors

1 72 55 2 2
2 68 40 4 4
3 66 25 5 4
4 64 27 4 3
5 63 24 4 3
6 62 17 3 3
7 63 23 4 3
8 62 20 4 3

Table 2: Number of distinct behaviors per mission, across
different frequency thresholds.

Mission Follow Never
Compliant Correct Confident Protect

1 0 9 5 0
2 11 8 6 5
3 14 12 6 9
4 15 11 3 11
5 9 18 4 9
6 20 16 2 10
7 9 19 1 11
8 16 16 4 10

Table 3: Frequency of most common behaviors across all
missions (highest count for each mission in bold).

Table 2 shows that behaviors are much more diverse in Mission
1, with very little overlap: only two behavioral sequences are per-
formed by at least three different users each. The overlap increases
on subsequent missions, most likely due to participants gaining a
better understanding of the task (i.e., and thus behaving less ran-
domly). In fact, the first mission is quite anomalous with respect
to these behaviors. In the other seven missions, the behavior with
the largest n is the “Compliant” sequence. However, no participant
chooses this behavioral sequence in Mission 1. It thus appears that
Mission 1 stimulates more exploratory actions by the participants,
leading to more diversity within their behaviors. It also implies an
ordering effect that will skew an aggregation of results over all of
the missions, but which we can still account for when examining
individual behavioral sequences.
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As it turns out, all of the n ≥ 5 behaviors in Table 2 are in our
list of four identifiable sequences, as specified in Section 3. Table 3
shows the detailed breakdown of how many participants exhibit
those four sequences across the eight missions. We see further evi-
dence of the anomalous behavior during the first mission, where
every single participant ignored the robot at least once (no “Com-
pliant” participants) and chose to use protective gear at least once
(no “Never protect” participants). There is also a general increas-
ing trend in the number of “Correct” participants as the missions
progress, another ordering effect (i.e., participants calibrate their
threshold for the robot’s confidence) that will interfere with an
aggregate-level analysis of the data.

4 RECOGNIZING SUBJECTIVE BELIEFS
The subjective beliefs we seek to recognize are exemplified by the
questions asked in our post-mission survey. We must therefore
predict a new participant’s potential answer to such questions,
based on his/her behavior as observed so far. We can use the behav-
iors and survey responses of the other participants to implement
a 1-nearest-neighbor algorithm, as a simple collaborative-filtering
approach to recognition.

4.1 Predicting Self-Reported Beliefs
If we want to recognize, for example, whether a new participant
believes that “The robot is capable of performing its tasks”, we
can construct a probability distribution over the responses of the
other participants in the behavioral cluster containing the new
participant. For example, consider a participant who exhibited the
“Follow confident” behavior in Mission 2. This participant’s nearest
behavioral neighbors (by Hamming distance) would include the
participants who also performed the “Follow confident” strategy
(or did so with little deviation). As Table 3 shows, there are five
other such participants when n ≥ 1. We then extract the histogram
of those participants’ survey responses to “The robot is capable of
performing its tasks.” One participant in this group responded with
a neutral 4, another with a more agreeing 5, and the other three
with an even more positive 6 (on a 7-point Likert scale). The robot
could use this frequency count to predict that this new participant
will also agree with this statement, responding with a 6 with a 60%
probability and with a 4 or 5 with a 20% probability each.

To evaluate the results, we take each participant in our data set,
treating the remaining participants as the robot’s knowledge base.
We construct different versions of this knowledge base by changing
our threshold for the frequency of our clusters, as illustrated in
Table 2. A more inclusive knowledge base (lower n threshold) may
capture more diverse behaviors, but risks being skewed by outliers.
A less inclusive knowledge base (higher n threshold) will be more
concentrated on “typical” behaviors and should thus generalize
well, but may miss out on rarer (but still relevant) behaviors.

As a baseline, we also generate predictions from a distribution
of responses across all of the other participants in the knowledge
base. This baseline thus constitutes a “typical” model that has been
aggregated over all of the participants. It would therefore answer
with the same belief state for every new participant, regardless
of observed behavior. For example, using all of the participants’
responses to the statement “The robot is capable of performing

its tasks.” yields a distribution of ⟨.17, .06, .08, .15, .23, .23, .08⟩ over
the possible responses 1–7. One can see the clear difference between
this distribution and the distribution specified above for the “Fol-
low confident” cluster: ⟨.00, .00, .00, .20, .20, .60, .00⟩. In particular,
17% of the total participants strongly disagreed that the robot was
capable, while none of the participants who exhibited the “Follow
confident” behavior disagreed at all.

We examine the predictions made using only the (behaviorally)
nearest neighbors vs. using all of the participants. For each question
in the survey, we count how many participants get a more accurate
prediction (higher probability given for their actual response) using
the former vs. the latter. Our example participant’s actual response
to the survey item was a 6, which was predicted with a 60% proba-
bility using just the cluster, but with only a 23% probability using
the entire population. We can repeat this process for each of our
participants to identify those for whom the cluster gives a more
accurate prediction. The more participants for whom the cluster is
more accurate, the more useful behavioral observations will be in
predicting responses to the given survey item.

On the other hand, survey items for which the cluster does not
provide a more accurate prediction represent beliefs that are harder
to infer from observed behavior. Such cases may arrive when (for
example) two participants who have differing beliefs nevertheless
exhibit the same behavior. No matter what method the agent uses,
it will not be able to distinguish the beliefs of such participants.

Table 4 shows the questions for which our nearest-neighbor
approach is more accurate than the baseline for the highest per-
centage of participants, averaged over all eight missions. The first
observation is that our approach is more accurate than the baseline
for a clear majority of the participants. In fact, when using all of
the behaviors in our knowledge base (n ≥ 1), the result consistently
exceeds the baseline for approximately 80% of the participants.
Notably, the accuracy declines as we prune out the less common
behaviors. It is likely that the pruning leads to overgeneralization,
mapping too many participants to the most common behaviors.

Looking at the questions themselves reveals additional insights
into the recognizability of the corresponding subjective beliefs.
Most of the questions appearing in Table 4 are directly related to
the trust level that the participant has in the robot. The participants’
observable behaviors clearly make it easy to recognize whether they
felt the robot was “capable” and “qualified” and whether they had
“confidence” in its various capabilities. In other words, participants
who made similar choices about whether to follow or ignore the
robot’s recommendation also expressed similar levels of trust in
the robot’s capability and decisions.

While this may seem straightforward, it is illuminating to also
look at the questions for which the nearest-neighbor approach was
more accurate than the aggregate model on a lower percentage
of participants. Looking at Table 5, we first see that the overall
accuracy drops to roughly 2/3, even for the n ≥ 1 knowledge base.
The more selective knowledge bases perform even worse. In fact,
the n ≥ 3 and n ≥ 5 knowledge bases are outperformed by the
baseline on a majority of participants on two questions.

These two questions, as well as others that appear in Table 5,
concern the participants’ own experience and capability, not the
robot’s. People who behave similarly may thus have very dissimilar
feelings about their own task performance. As a result, the robot
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n ≥ 1 n ≥ 3 n ≥ 5 Survey Item
83.6% (3) 72.8% (3) 74.6% (1) “The robot is capable of performing its tasks.”
84.6% (2) 73.4% (1) 74.2% (2) “I feel confident about the robot’s capability.”
83.4% (4) 72.8% (2) 74.0% (3) “The robot’s capable of making sound decisions based on its sensor readings.”
82.4% (7) 72.3% (4) 73.6% (4) “I feel confident about the robot’s sensors.”
82.4% (8) 69.9% (7) 71.3% (5) “The robot has specialized capabilities that can increase our performance.”
81.8% (9) 70.1% (6) 70.3% (6) “To what extent do you believe you can trust the decisions of the robot?”
82.4% (6) 68.7% (9) 69.7% (7) “The robot’s camera is capable of making accurate readings.”
81.6% (10) 69.1% (8) 69.7% (8) “The robot is well qualified for this job.”
85.0% (1) 71.3% (5) 69.1% (9) “How successful were you in accomplishing what you were asked to do?”
79.7% (13) 68.7% (10) 69.1% (10) “I feel confident about the robot’s camera’s sensing capability.”
83.0% (5) 67.6% (11) 68.2% (11) “I feel confident about the robot’s NBC sensor’s sensing capability.”

Table 4: Questions for which nearest neighbors improved over the highest percentage of users (rank in parentheses).

n ≥ 1 n ≥ 3 n ≥ 5 Survey Item
64.8% (43) 44.3% (43) 42.4% (43) “To what extent do you believe you can trust the decisions you will make, if you were

to make the decision without the robot?”
65.2% (42) 45.5% (42) 46.7% (42) “How hurried or rushed was the pace of the task?”
66.6% (40) 50.0% (40) 50.2% (41) “I understand how the robot’s camera’s sensing capability works.”
66.4% (41) 50.0% (39) 50.2% (40) “I understand how the robot’s microphone’s sensing capability works.”
69.9% (29) 50.8% (37) 50.2% (39) “How would you rate the expected performance of the robot relative to your expected

performance?”
69.3% (34) 49.6% (41) 50.4% (38) “How hard did you have to work to accomplish your level of performance?”
66.6% (39) 50.8% (38) 50.4% (37) “How well do you think you will perform the next mission, if you were to perform

the mission without the robot?”
70.1% (28) 51.6% (34) 51.4% (36) “How mentally demanding was the task?”
69.9% (31) 51.0% (36) 51.8% (35) “I understand the robot’s decision-making process, e.g. how and why the robot makes

its decisions.”
67.8% (38) 52.1% (33) 52.1% (34) “I understand how the robot’s sensing capability (e.g. the NBC sensors, camera,

microphone) works.”
68.2% (37) 52.3% (32) 52.3% (33) “I understand how the robot makes its decisions.”
68.7% (36) 55.5% (26) 54.9% (27) “The robot’s actions and behaviors are not very consistent.”
68.9% (35) 51.4% (35) 53.3% (31) “To what extent did you lose trust in the robot when you noticed it made an error?”
Table 5: Questions for which nearest neighbors improved over the lowest percentage of users (rank in parentheses).

may not be able to recognize these feelings from just the observed
behavioral sequence, regardless of the recognition procedure used.

Table 5 also includes questions pertaining to the participant’s
understanding of how the robot functions. Again, the indication
is that, just because two participants’ behaviors are similar, their
understanding (or at least their perception of their own understand-
ing) of the robot may not be. Thus, the participants’ behavior may
not be sufficient for the robot to recognize whether they have a suf-
ficiently accurate understanding of it. Therefore, while the results
in Table 4 suggest that this nearest-neighbor approach works well
for recognizing levels of trust, we may need additional modeling
support or human input to recognize levels of understanding.

4.2 Dynamics of Recognition
The results presented so far have used behavioral sequences of
length 15, i.e., the complete mission sequence. We would also like
to know whether the nearest-neighbor approach might be able to

provide useful predictions earlier. To do so, we consider prefixes
of each participants’ behavior, such as an initial subsequence of
“follow”-”follow”-”follow”-”ignore”-”follow”, ignoring the actions to
come afterward. We then find the nearest neighbors in the knowl-
edge base, where we consider only the initial subsequences of the
other observed behaviors when computing the Hamming distance.
Table 6 shows the results for subsequences of length 5 and 10 for
the questions that were answered the most accurately with the
full-length sequences (the n ≥ 5 column from Table 4).

Not surprisingly, using only the first five actions results in much
lower accuracy than when using the entire sequence. The partici-
pants’ responses to the post-mission survey were naturally given
only after all 15 actions, so ten actions have passed between the
first five decisions and the subjective beliefs revealed in the sur-
vey. Taking this into consideration, it is actually a pleasant sur-
prise that the first five actions are sufficiently informative for our
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length = 5 length = 10 length = 15 Survey Item
65.6% (1) 77.5% (1) 74.6% (1) “The robot is capable of performing its tasks.”
61.1% (6) 75.6% (3) 74.2% (2) “I feel confident about the robot’s capability.”
59.2% (12) 74.8% (4) 74.0% (3) “The robot’s capable of making sound decisions based on its sensor readings.”
63.9% (2) 76.2% (2) 73.6% (4) “I feel confident about the robot’s sensors.”
62.1% (3) 71.5% (6) 71.3% (5) “The robot has specialized capabilities that can increase our performance.”
56.2% (19) 69.7% (10) 70.3% (6) “To what extent do you believe you can trust the decisions of the robot?”
61.3% (5) 70.5% (8) 69.7% (7) “The robot’s camera is capable of making accurate readings.”
60.1% (9) 73.2% (5) 69.7% (8) “The robot is well qualified for this job.”
49.4% (36) 68.0% (13) 69.1% (9) “How successful were you in accomplishing what you were asked to do?”
58.4% (16) 70.7% (7) 69.1% (10) “I feel confident about the robot’s camera’s sensing capability.”
59.4% (11) 63.5% (17) 68.2% (11) “I feel confident about the robot’s NBC sensor’s sensing capability.”

Table 6: Questions for which nearest neighbors (using only sequences with n ≥ 5) improved over the highest percentage of
users (rank in parentheses).

nearest-neighbor approach to still outperform the aggregate base-
line prediction. In fact, recognizing the participants’ feeling about
the robot’s capability outperforms the baseline for a significantly
high percentage of participants for all lengths of sequences.

However, some subjective beliefs are much harder to recognize
with only five observations. In particular, the participants’ feeling
about their own performance (“How successful were you in accom-
plishing what you were asked to do?”) cannot be predicted any
better with five observations than with none. It is encouraging to
note that the accuracy of the nearest-neighbor prediction greatly in-
creases once we have received ten observations. This effect is most
likely due to the timing of the robot’s failures. Most of the robot’s
failures occur after the five-step cutoff, so there are few behavioral
differences in the short subsequence to distinguish between the
participants who will succeed overall vs. those who will fail.

4.3 Recognizing the Agent’s Effect on its
Teammate

In the analysis so far, we viewed the agent as performing keyhole
recognition, where it observes its teammate’s behavior passively
and tries to interpret it. However, the reality is that the agent per-
forms such recognition only to serve its own decision-making on
how best to interact with its human teammate. The agent’s deci-
sions will then affect its teammates’ beliefs and behavior, hopefully
improving the overall team’s performance. Fortunately, we can use
behavioral sequences to recognize these effects as well. Further-
more, we can do so without using the survey and instead relying
on only the objective behaviors of the person and agent.

If we give the robot the freedom to choose its explanation, ac-
knowledgment, and embodiment (i.e., choosing which of the eight
variations of Section 2.1 to be), then it needs to understand the
effect of that choice on its current teammate. Table 7 shows the
number of participants whose behavior falls into one of the four
main clusters under each possible variation. It is clear from the
different distribution that appears in the top vs. bottom half of the
graph that the presence or absence of additional transparency (i.e.,
communicating the robot’s confidence level) is the key determining
factor. For robots that give no explanation, participants gravitate
toward either following the robot’s recommendation every time

or never choosing to put on protective gear (regardless of the ro-
bot’s recommendation). Indeed, once the participants realize that
the robot will occasionally make a mistake, they are left to guess
when those mistakes might occur when no confidence level is pro-
vided. In fact, no participants were able to be 100% correct with no
explanation from the robot, although 9 came close through luck.

When the robot provides its confidence level as well, the par-
ticipants most often behave correctly, although a large number of
them fall into the “Follow Confidence” behavior, miscalibrating
the threshold for trusting the robot’s confidence. Therefore, the
confidence-level explanation should be sufficient for the partici-
pants to follow the “Correct” strategy, yet many do not. We can
examine Table 7 to identify other effects that might suggest ways
in which the agent could distinguish and possible repair the deci-
sion failures its teammate is making. However, at this aggregate
level of granularity, we do not see any effect of acknowledgment
or embodiment when a confidence-level explanation is given.

We instead need to look at the individual participants’ behaviors,
focusing on only the conditions when a confidence-level explana-
tion was provided. In particular, for each participant, we identify
the conditions (if any) under which s/he followed the “Correct”
strategy. For most of these participants, there is no obvious interac-
tion between the acknowledgment, embodiment, and participant’s
correctness. For example, a few participants made no errors when
working with the dog-shaped robot that acknowledged its errors
and when working with the robot-shaped robot that did not ac-
knowledge them, but they did make errors when working with the
other two robots. In other words, there is no consistent effect of
acknowledgment and embodiment for these participants.

Fortunately, there were many participants who did exhibit a
consistent dependency between their correctness and the robot’s
variation (the number of participants are in parentheses):

Always Correct (11): These participants made correct deci-
sions for all fourmissionswith robots that offered a confidence-
level explanation. For these participants, the acknowledg-
ment and embodiment did not matter.

Correct iff no acknowledgment (3): These participantsmade
correct decisions for both missions with a robot who offered
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Explanation Acknowledgment. Embodiment. Follow Never
Compliant Correct Confident Protect

No No Robot 40 (17) 2 (0) 0 (0) 20 (13)
No No Dog 41 (23) 2 (0) 0 (0) 18 (12)
No Yes Robot 39 (27) 3 (0) 0 (0) 19 (8)
No Yes Dog 40 (21) 2 (0) 1 (0) 19 (10)
Yes No Robot 2 (2) 37 (32) 14 (7) 9 (5)
Yes No Dog 5 (1) 33 (25) 17 (8) 7 (6)
Yes Yes Robot 2 (1) 36 (29) 15 (6) 9 (4)
Yes Yes Dog 1 (0) 40 (22) 12 (8) 9 (6)

Table 7: Size of behavior clusters under each of the eight robot variations (number of exact matches in parentheses)

confidence-level explanations, but did not acknowledge er-
rors with a promise to learn. These participants made incor-
rect decisions when the robot did offer such an acknowledg-
ment. Embodiment had no effect.

Correct iff embodiment is dog (1): One participantmade cor-
rect decisions for both missions in which the robot offered
confidence-level explanations and had a dog-like appearance.
This participant made incorrect decisions when the robot
looked like a robot, but acknowledgment had no effect.

Correct iff embodiment is robot (6): In contrast to the pre-
vious participant, these participants made correct decisions
when interacting with the robot-like robot, but made mis-
takes with the dog-like robot.

Never Correct, always Compliant (1): One participant fol-
lowed the robot’s recommendation throughout all of the
missions and thus never followed the “Correct” strategy
with any robot.

Never Correct, always Never protect (3): Three participants
never chose to use protective gear and thus never followed
the “Correct” strategy. Their behavior represents less of an
issue of trust and more an issue of motivation, in that the in-
game time penalty for dying did not outweigh the real-world
wait time of putting on protective gear.

Never Correct, other (10): These participants never followed
the “Correct” strategy, but never followed any of the other
three identified strategies either.

Although these groups represent small samples, they suggest
possible strategies for our agent. For example, offering the acknowl-
edgment has no effect for most of these groups and even has a
negative effect on the second one. Our robot should probably not
employ such an acknowledgment, unless it can also perform the
machine learning to carry through on its promise of improvement.
The data also suggest that the dog-like embodiment is more likely
to be detrimental than a more robot-like one. However, the agent
should be alert to the possibility that a specific teammate may prefer
the dog embodiment, so that if it notices errors being made despite
its explanation, it should consider changing. Unfortunately, this
current level of analysis does not provide much insight into how to
get the participants who make mistakes in every mission to work
effectively with the agent. Of course, by gathering more data, we
can repeat this same methodology to potentially arrive at more
robust conclusions.

5 CONCLUSION
The proposed methodology provides a very flexible method for
using behavioral and belief data to support the online recognition of
subjective beliefs from observed behaviors in anHAI domain. It does
so without constructing any generative or causal model of those
beliefs. Yet our nearest-neighbor approach was still able to capture
individual differences to a degree that it could consistently generate
more accurate recognition than a baseline model of “typical” beliefs
and behaviors. Perhaps more importantly, the results provide a
metric on the recognizability of different beliefs when given only
behavioral data. The focus on individual participants’ behaviors
also provides insight into ordering effects and other anomalies that
may be obfuscated within aggregate data.

It is important to note that there is no inherent obstacle to ex-
panding this methodology to inform generative and causal models
as well. In fact, we can potentially use this same methodology to
understand the effect of our different robots on those subjective
beliefs. For example, one obvious next step is to examine the groups
identified in Section 4.3 to identify any significant differences in
survey responses between (for example) those who always interpret
the robot’s explanation correctly and those who always make at
least one mistake. A cursory analysis found some general trends
(e.g., those who were always correct generally responded more
positively to “In general, people really do care about the well-being
of others.”). However, more analysis is needed to establish harder
evidence for potential causation.

By examining the behavioral sequences at the individual level,
our approach avoids the information loss inherent to statistical ag-
gregation. The recognizing agent has access to all of the individual
differences across prior human interactions, and it can bring that
knowledge to bear when deciding dynamically how to best interact
with a new person. In summary, our methodology provides a poten-
tially rich launching pad for further investigations into leveraging
prior interactions with people into online methods for recognizing
and adapting to a new teammate’s subjective beliefs.
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