
A Search-Based Approach to Solve Pursuit-Evasion Games
with Limited Visibility in Polygonal Environments

Robotics Track

Alberto Quattrini Li
University of South Carolina

Columbia, South Carolina, USA
albertoq@cse.sc.edu

Ra�aele Fioratto
Politecnico di Milano

Milano, Italy
ra�aele.�oratto@mail.polimi.it

Francesco Amigoni
Politecnico di Milano

Milano, Italy
francesco.amigoni@polimi.it

Volkan Isler
University of Minnesota

Minneapolis, Minnesota, USA
isler@cs.umn.edu

ABSTRACT
A pursuit-evasion game is a non-cooperative game in which a pur-
suer tries to detect or capture an adversarial evader. We study a
pursuit-evasion game which takes place in a known polygonal envi-
ronment. The goal of the pursuer is to capture the evader by moving
onto its location. The players can observe each others’ locations
only if they can “see” each other – i.e., if the line segment connect-
ing their locations lies entirely inside the polygonal environment.
The complexity of representing the information available to the
players at a given time makes solving pursuit-evasion games with
visibility limitations di�cult. We represent the state of the game
using an e�cient visibility-based decomposition of the environ-
ment paired with a more classical grid-based decomposition. The
optimal players’ strategies are computed using a min-max search
algorithm improved with speci�c speedup techniques that preserve
optimality. We show that our decomposition is complete for a rash
evader, which hides from the pursuer and does not move from its
hiding location when the pursuer is not visible. Simulations in real-
istic indoor environments and comparison with a Monte Carlo tree
search algorithm validate our approach.

KEYWORDS
pursuit-evasion; limited visibility; min-max search
ACM Reference Format:
Alberto Quattrini Li, Ra�aele Fioratto, Francesco Amigoni, and Volkan Isler.
2018. A Search-Based Approach to Solve Pursuit-Evasion Games with Lim-
ited Visibility in Polygonal Environments. In Proc. of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),
Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Pursuit-evasion games model several robotics applications, such
as surveillance and search and rescue [4]. Typically, these games
involve two players, a pursuer and an evader. The pursuer (or some-
times a team of pursuers) tries to detect or capture the evader. Due
to their practical relevance, there has been signi�cant interest in

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

p

e

Figure 1: Instance of our setting showing the visibility re-
gions for the pursuer (red dot) and the evader (blue dot)
and the abstract representation of the min-max tree used to
solve the problem.

studying and solving such games in complex environments and
with realistic assumptions regarding players’ sensing capabilities.

The approaches to pursuit-evasion games can be divided into
two main categories with respect to the environment: discrete space,
where the environment is topologically represented as a graph
(e.g., [3, 22]), and continuous space, where the game happens in a
geometric space (e.g., [25]). Furthermore, various assumptions have
been made about the capabilities of the players: evader arbitrarily
faster than pursuer (e.g., [7]) vs. same bounded velocity for both
players (e.g., [28]); full visibility for both players (e.g., [2]) vs. limited
and full visibility for pursuer and evader, respectively (e.g., [6]).
Moreover, di�erent variants of the goal of the game have been
considered. For example, the goal could be to physically capture
the evader, namely the position of the evader should coincide with,
or be within a certain distance from, the position of the pursuer
(e.g., [2]). Other works, like that of [7], consider a game in which
the goal is just to detect (�nd or see) the evader. Another possible
goal is to maintain visibility of the evader over time (e.g., [20]).

In this paper, we focus on a pursuit-evasion game in simply-
connected polygons (i.e., without internal “holes”), in which the
two players have a priori knowledge about the environment, the
same speed, and line-of-sight visibility: the two players can see
each other only if the line segment connecting them lies completely
inside the polygon (namely, their visibility is limited by obstacles).
These assumptions are realistic when considering for example a
practical scenario in which a pursuer and an evader move inside

Session 47: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1693

an indoor environment just relying on their vision only. The goal
of the pursuer is to capture an evader that tries to actively escape.

We formulate an adversarial search problem to calculate the
optimal capture path (if any), measured according to the number of
time steps. We solve this problem by using an algorithm based on
min-max search (see Figure 1 for an example of our problem). The
complexity of representing the information available to the players
at a given time makes solving pursuit-evasion games with sensing
limitations di�cult if care is not taken in limiting the size of the
state space. Considering a high-resolution regular grid partition,
as usually done in robotics path planning, is not always viable due
to the high number of states to consider (this is further justi�ed in
our simulations). Hence, we use a visibility-based partition of the
environment, which is coarser than a uniform grid but captures all
relevant visibility information. The partition is built by connecting
with a line the mutually visible vertices of the polygon, thus em-
bedding visibility information in the resulting decomposition. In
this way, we signi�cantly circumvent the problem of the high com-
puting e�ort, as the number of cells resulting from the proposed
partition is drastically reduced. We show that our discretization
is complete for a rash evader model in which the evader can hide
from the pursuer but does not move from one hiding location to
another when the pursuer is not visible. We also present a collection
of techniques in order to further reduce the computational e�ort.
Simulations in realistic indoor environments show the e�ectiveness
of our approach, also compared to a Monte Carlo tree search based
approach.

2 RELATEDWORK
The literature on pursuit-evasion games is vast. The term visibility-
based pursuit-evasion game is used for games in which one or more
pursuers with a visibility sensor try to detect an evader which is ar-
bitrarily faster and whose position is unknown [17]. In contrast, the
lion-and-man game is played by a pursuer and an evader that have
the same speed and global visibility [25]. See [4] for an overview of
recent results on these two games. Our problem can be considered
as lion-and-man game with visibility constraints.

Detection of an evader with limited visibility is considered in [6].
Sti�er and O’Kane [26, 27] present an algorithm that computes a
shortest path to detect the evader in a simply-connected polygon.
Experimental results show the e�ectiveness of the approach. In this
work, we consider the problem of not only detecting the evader,
but also capturing it.

Regarding the lion-and-man game with limited visibility, Isler
et al. [10] present a randomized strategy to solve the problem of
detecting an evader by a single pursuer with line-of-sight visibil-
ity and the problem of capturing it by two pursuers in simply-
connected polygons. The expected time to capture the evader is
O (nT 2

1 +T2 · (n2 lnn)), where n is the number of vertices andT1 and
T2 are the time it takes for the two pursuers to travel the diameter
of the polygon (i.e., the distance between the two furthest points in
the polygon), respectively. The authors also show a modi�cation
of the proposed strategy so that a single pursuer can capture the
evader, but the expected capture time may signi�cantly increase
compared to the case with two pursuers.

The work of [21] deals with the lion-and-man problem, where
both have equal speeds and the lion has a line-of-sight visibility.
The authors show that the lion can capture the man in any mono-
tone polygon using a deterministic strategy with a capture time of
O (n7D13), where n is the number of vertices of the polygon and D
is the diameter of the polygon.

The study in [12] addresses how many pursuers are necessary to
capture an evader in an environment with obstacles in the lion-and-
man game assuming the visibility-based discrete-time model. In a
general hole-free polygon of n vertices, the authors show that in
the worst-case �(n1/2) pursuers are both necessary and su�cient.
In an environment with h holes, the upper bound on the number of
pursuers is O (n1/2h1/4) for h n

2/3, and O (n1/3h1/2) otherwise.
This body of work provides theoretical guarantees on the prob-

lem; however, it does not answer the question: what is the optimal
solution (path) to capture an evader in a given environment? In this
paper, we devise a search-based approach to answer the question,
which reasons on an e�cient state-space representation informed
by the geometry for a simply-connected polygon. Such an approach
can be used to� nd an optimal path to capture an evader in realistic
indoor environments.

We� nally note that a method using a min-max search based
approach to maintain visibility of an evader who actively avoids
tracking with a team of pursuers on a graph is proposed in [18]. In
contrast, we are considering a polygonal environment where the
pursuer not only has to detect the evader but needs to physically
capture it.

3 PROBLEM FORMULATION
In this paper, we study the following pursuit-evasion game be-
tween a pursuer and an evader. It takes place in a two-dimensional
simply-connected1 polygon P , which is a priori known to both the
players. We consider them as points in the plane. This is without
loss of generality for translating robots, if we enlarge the polygon
boundary to account for the real size of the two players, as usually
done in path planning [16].

We assume that time t is discretized and players move in turns of
a unit time step (e.g., 1 s). We denote p (t) and e (t) as the pursuer’s
and the evader’s location at time step t , respectively. Both the
pursuer and the evader have a maximum velocity � , which is the
longest distance they can travel in a unit time step. In each turn, one
of the players can move, in general to arbitrary locations according
to its velocity. (Note that our formal model is turn-based, but in
reality both players can move at the same time.)

Both players have line-of-sight visibility, namely, from a point
q 2P they can see all the points that can be joined to q with a line
segment that completely lies in P . In this sense, their knowledge
of the position of the other player is limited. We call VR(q) the set
of all points visible from a point q 2P , the visibility region. This
implies that at t the pursuer in position p (t) and the evader in e (t)
can see each other if and only if p (t) 2 VR(e (t)) (or, equivalently, if
e (t) 2 VR(p (t))). Given that both players have a limited visibility,
at time step t , they have knowledge about the region cleared so
far CR(p (t)) (CR(e (t))), a subset of P . This includes the current

1A polygon is simply-connected if any simple closed curve inside the polygon can be
shrunk to a point.

Session 47: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1694

v v'

p w

Figure 2: A situation for which, in the worst case, for the
evader (red point) there is no gain in being general.

visibility region VR(p (t)) (VR(e (t))), but also regions that have been
cleared at previous time steps and not possibly recontaminated
(similarly to the events the work in [7] considers). Thus, we de�ne
E (t) = {e (t) |e (t) 2P ^ e (t) < CR(p (t))} as the current knowledge
of the pursuer about the possible positions of the evader, when it
is not visible. Similarly, we have the same kind of knowledge for
the evader over the current possible positions of pursuer: P (t) =
{p (t) |p (t) 2 P ^ p (t) < CR(e (t))}. Clearly, if the two players
are visible to each other, we have singletons E (t) = {e (t)} and
P (t) = {p (t)}. Note that initially, at t = 0, E (0) and P (0) correspond
to P \ VR(p (0)) and P \ VR(e (0)), respectively.

The pursuer wins the game when, at a� nite time t⇤ (that it tries
to minimize), its location is the same as the evader’s location (which
tries to maximize t⇤), namely, p (t⇤) = e (t⇤). Otherwise, the evader
wins the game if it can escape forever (or for a time T representing
the duration of the game).

We call general evader one allowed to move at every turn: if the
two players are not visible to each other, the evader can stay hidden
an amount of time (which could be given by the distance between
the last known position of the pursuer and the point where the
evader disappeared), and then moves to an arbitrary location not in
the current visibility region of the pursuer. Another evader model
is called rash evader model, that allows us to e�ciently solve the
game in a complete fashion [11]. In this model, the evader can run
and hide in an arbitrary hiding location which is not visible by
the pursuer. However, the evader does not move from one hiding
location to another unless the pursuer becomes visible.

Note that both evader models can be conveniently restricted to
going and hiding behind vertices ofP . Selecting any other location,
di�erent from a vertex, is dominated by choosing one of the vertices
of the polygon to hide; that is, for any other location, there exists
a vertex where it is better for the evader to hide. The reason is
that, given line-of-sight visibility, any other location would either
make the traveled distance to reach another shadow area (created
by a re�ex vertex2) where to hide longer or the pursuer would
detect the evader earlier. Such an insight motivates the e�cient
decomposition described in the next section.

In general, the rash model is not unreasonable. Suppose a sce-
nario in which the evader goes around a corner and the pursuer
loses sight of the evader. Would it make sense for the evader to
hide behind some vertex � for a while and then move to another
vertexw before the pursuer shows up (Figure 2)? Intuitively, since
the pursuer is not visible throughout this time, the evader could go
tow in the� rst place without the risk of revealing itself during the
transition. The rash model captures this intuition as it allows the

2A vertex� of a polygon P is called re�ex vertex if its internal angle is strictly greater
than � .

evader to choose an arbitrary vertex to hide behind but does not
allow further movement until the pursuer becomes visible. How-
ever, in the above scenario, could it be that there are two paths
toward vertices � and � 0 and, after hiding behind � for some time
t , the evader infers that the pursuer moved toward � 0 and decides
to attempt an escape towardw? The answer is not clear, because
the pursuer can prevent such inferences by waiting t steps before
it commits to � or � 0.

At this point, we do not know whether rash strategies are as
powerful as general strategies for the evader. In most practical
environments, the rashmodel seems to be as powerful as the general
model. For example in cases similar to the one shown in Figure 2,
we have the situation described above, in which the pursuer is
following the evader along a corridor and then the evader hides in
one of the two pockets in the room. By hiding there, as the evader
does not have knowledge about the current position of the pursuer,
if the evader tries to get again to the corridor, it risks to be seen
and possibly captured by the pursuer. As such, in the following, we
focus on an algorithm to� nd the optimal solution to capture a rash
evader.

4 SOLVING THE GAME
In this section, we show how our pursuit-evasion game can be
formulated as an adversarial search problem with an e�cient state-
space representation using a visibility-based decomposition of the
environment. We show that the decomposition is complete for a
rash evader model. The game has two phases: detection and capture.
In the� rst phase, the pursuer tries to cover the environment with its
sensors in order to� nd the evader (note that this phase is necessary
because of the limited visibility). In the second phase, the pursuer
tries to reach the same position of the evader. Both phases are
formulated as a search problem.

4.1 Formulation as a Search Problem
For a given state-space representation discretizing the environment,
the pursuit-evasion game introduced in the previous section can
be solved as a search problem. See, e.g., [24, Chapter 5] for further
information on this classical approach.

In our case, the state s (t) is a triple ((p (t),E (t)), (e (t), P (t)), cp)
composed of the current positions p (t) and e (t) of pursuer and
evader, of their current knowledge about the opponent E (t) and
P (t), and of the current player cp 2 {p, e} that is playing at turn t .

For now, let us assume that the representation of the state space
is powerful enough so that any subset of P can be represented.
The general formulation of our search problem for solving the
pursuit-evasion problem is as follows.

Initial state. The initial state s (0) = ((p (0),E (0)), (e (0), P (0)),p)
is given by the initial positions of the two players and their initial
knowledge about the possible positions of the opponent.

Player. We assume that the pursuer starts the game, and so
consequently at an even round the pursuer plays, whereas at an
odd round the evader plays.

Actions. From a state s (t) = ((p (t),E (t)), (e (t), P (t)), cp), appli-
cable actions for a player cp are to move to any reachable point
q
0 2 P (given its maximum speed) and to perceive the environ-

ment from the new point q0. A point q0 is reachable from p (t) or

Session 47: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1695

e (t) if there is a path between the two points that is safe (namely,
inside the polygon and not colliding with the boundary of the envi-
ronment). Player cp = {p, e} \ {cp} that does not play in s (t) has no
action, but can perceive.

Transition function. The new state of the game resulting from
performing an applicable action during the player cp turn “cpmoves
to q0” is a new state s (t + 1), where the position of the player cp is
updated to q0 and also players’ knowledge is updated. Note that the
number of applicable actions (and of new states resulting from the
transition function) depends on the state-space representation. If it
is too� ne (e.g., by using a� ne-grained grid over the environment)
we get too many states; while, if it is too coarse, the players have
too few applicable actions, making the representation not complete
for the problem.

Terminal test. The terminal test checks whether (a) p (t) = e (t)
in a state s (t) = ((p (t), {e (t)}), (e (t), {p (t)}), cp) or (b) there has
been a loop in the path from the initial state to the current state or
(c) t > T , where T is the maximum time of the game.

Utility. The utility (or payo�) function evaluates the terminal
states s (t). If the pursuer wins, it returns �(s (t)) (where �(s (t))
computes the number of time steps t to reach s (t)) and, if the
evader wins (in the case of (b) or (c)), it returns +1.

A solution to the above search problem is a� nite sequence of
states S = hs (0), s (1), . . . , s (t)i such that s (0) is the initial state and
s (t) is a state that satis�es the terminal test. An optimal solution is
a solution S

⇤ that is optimal in terms of the number of time steps
t
⇤ (that the pursuer tries to minimize, while the evader tries to
maximize).

4.2 Solution of the Search Problem
Given the search problem de�ned above, the e�ciency in� nding a
solution is related to the representation of the state space. The key
insight to e�ciently solve the problem is that we distinguish two
phases of the game: (a) when not in direct visibility, the pursuer
needs to detect the evader; (b) once found, the pursuer needs to cap-
ture the evader. In each phase, we can use a di�erent environment
representation derived from a decomposition that partitions the
polygon P in a set of disjoint cells C (

S
c 2C c = P) and returns

a subset of points D = {d | d belongs to a c 2 C}. Moreover, for
each phase, a search problem (of the type discussed in the previous
section) is instantiated.

Given D, derived from a decomposition representing an envi-
ronment P , we have the following state representation sD (t) =
((p (t),E (t)), (e (t), P (t)), cp), where p (t), e (t) 2 D. The actions are
represented as follows. From a current point q 2 D that belongs to a
cell c 2 C , we have that possible next points q0 2 D are in neighbor
cells c 0 that can be reaches with the current speed of the robot
in one time step. Note that any representation, however, should
guarantee completeness.

In robotics, it is common to tile P with a� nite regular grid of
cells Ge such that each point q 2 P belongs to a cell of the grid.
Cells are identical squares with edge e and can be either free or
occupied (by the boundaries of the environment). The position d
encoded in a state is given by the center of a cell c and the next pos-
sible actions are the movements to the center of the neighbor cells.

Figure 3: Polygonal decomposition of an environment.

However, depending on e , the number of cells can be really high
and this decomposition does not encode any visibility information.

Now, we present an alternative decomposition informed by the
geometry of the environment, which allows us to largely reduce
the number of possible cells (and so the number of possible actions
and states). Speci�cally, we consider the cells that derive from
drawing a line (that we call inducing line) between each pair of
visible vertices of the polygon and that lies inside the environment
(see Figure 3). These lines, by intersecting with other lines and with
the boundary of the polygon, induce some cells. We refer to the
resulting partition as visibility-based decomposition. By construction,
this decomposition generates convex cells for which the following
result holds.

P����������4.1. Let x and � be two points of a cell obtained by
the visibility-based decomposition. Let z be a vertex of P . Points x
and z are mutually visible if and only if � and z are mutually visible.

In our representation, when the players are not visible, we use the
visibility-based decomposition and we keep track of only the entry
and the exit points to and from a visibility-based decomposition cell
by discretizing (sampling) the cell boundaries. Thus, the positions
d encoded in the state are points along the edges of a cell c . We
refer to the resulting state representation as the detection-phase
representation. Note that at a time step t it is not necessary to
reason on all of the cells, but just on those whose inducing lines are
not entirely contained in the visibility region of a player. Moving to
the inducing lines that lie in one’s visibility region does not change
the information set of the player. In the corresponding detection-
phase search problem, the actions of the pursuer are given by the
inducing lines of the cells in which the evader could hide (i.e., that
are not yet cleared). Under the rash evader model, the evader does
not move during the detection phase.

Instead, when the players are visible to each other, the current
knowledge of a player about the opponent is the opponent’s actual
position. As the game evolves in a turn-based fashion, when deter-
mining the possible successor states, a player needs to take into
account the set of points reachable from its current position in a
time step, according to the velocity � . We call capture-phase repre-
sentation a grid-based decomposition of the environment, where
cells c are squares with a given edge length e imposed over the
environment and points d are the center of the cells.

To summarize, the search can be divided in two phases: detection
and capture. The� rst phase uses the visibility-based decomposition,
while in the second one the grid decomposition is employed. We
can prove that our decompositions preserve the completeness of a
search algorithm that uses the corresponding state space.

Session 47: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1696

T������4.2. A strategy to capture the rash evader that hides
behind a vertex exists if and only if a complete search algorithm (like
min-max) can� nd a solution in the state space of the detection-phase
and capture-phase representations up to a given discretization.

P����. Only if: This direction is trivial because if the search
algorithm� nds a valid solution, then a capture strategy exists.

If:Now, suppose that there exists a strategy to capture the evader.
We must show that a strategy still exists when we restrict the
representation of the information available to the players to the
detection-phase and capture-phase representations. Then the the-
orem follows from the completeness of min-max search. Notice
that when the players see each other their information state is the
opponent’s location. In this case, a� ne grid decomposition is used
(capture-phase representation) and the solution is complete up to a
given resolution level.

When the players are not visible, under the rash model, the
pursuer’s information can be represented as the set of possible
vertices the evader can be hiding behind (namely, the vertices in
the areas not yet cleared by pursuer). The evader, when hiding, does
not move. What a�ects its strategy is where the pursuer enters its
line of sight. By Proposition 4.1, this event corresponds to crossing
a cell boundary in the visibility-based decomposition. Therefore,
the detection-phase representation captures it up to discretization
of the entrance point. (The idea is that points d that are sampled on
the inducing lines deriving from the visibility-based decomposition
should not leave enough room to let the evader escape. In particular,
the discretization depends on the amount of distance the players
can cover in one time step.) Hence, in all cases, the successor states
needed to ensure a solution are captured by the detection-phase
and capture-phase representations. ⇤

Our visibility-based decomposition of the environment is of-
ten used in work that deals with visibility constraints, such as in
art gallery or watchman problems. However, the analysis usually
performed in those works does not directly apply to our problem.
For example, in the art gallery problem [15], it is required that all
points are statically covered by guards placed in the environment,
and it is not required that an evader is captured by a pursuer that
dynamically covers only a portion of the environment.

We use a min-max approach with branch-and-bound as search
algorithm, for which we provide a sketch about how it operates.
Starting from the initial state, the terminal test is applied. If it is true,
then the game ends. Otherwise, the successor states are recursively
found in a depth-�rst way according to the current state and player
turn until a leaf node is encountered. When it is encountered, the
utility function introduced in the previous section is applied to
compute the values for the players, that are propagated upward to
the non-leaf nodes. Other branches are then evaluated and possibly
pruned if their current value is worse than the one already found
(either for the pursuer or the evader). The worst-case computational
complexity of our min-max-search-based approach is exponential
in the number of time steps needed to reach a terminal state. How-
ever, as the results of the next section show, our approach can
solve pursuit-evasion games for realistic indoor environments in
reasonable time.

To improve more the e�ciency of our approach, we introduce
some speedup techniques that are expected to reduce the computa-
tional e�ort, preserving the quality of the solutions.

Actions within a time step. Determination of applicable ac-
tions distinguishes between two cases: if line-of-sight is not es-
tablished, only the pursuer perform actions. We can consider only
those that lead the pursuer to the adjacent cells derived from the
visibility-based decomposition. As such, the time step would be
scaled accordingly and added to the current utility, as the rash
evader is not performing any action. If the two players can see each
other, actions leading to the furthest grid cells that are reachable
within a time step are considered, according to the velocity of the
players. (This general behavior is combined with a number of spe-
cial cases, not detailed here, like when the evader moves to a close
grid cell and hides behind a vertex.) Di�erently from considering
just actions going to the adjacent grid cells, this reduces the depth
of the branches that the search algorithm evaluates at the cost of
slightly increasing the branching factor. The optimality is still pre-
served, as intuitively both pursuer and evader want to get closer or
escape further, respectively.

Dominated actions.When the players are mutually visible, we
consider a subset of possible actions available to the evader: we
discard the actions that would lead to points q where the pursuer
is located or that it can reach in one time step (in case no action is
available, the evader stays put in its location). The completeness
and the optimality are preserved, as if the evader moves to a point
that is guarded by the pursuer, then at the next time step it would
be captured.

Duplicated states.When selecting a state to expand, duplicates
that have been already expanded can be discarded: considering the
next player move, a state s (t) = ((p (t),E (t)), (e (t), P (t)), cp) can be
safely discarded if 9s (t 0) = ((p (t 0),E (t 0)), (e (t 0), P (t 0)), cp) already
expanded (t 0 < t) such that p (t) = p (t 0), e (t) = e (t 0), and, in the
case of the pursuer, E (t 0) ✓ E (t) and �(s (t 0)) > �(s (t)), while in
the case of the evader P (t 0) ✓ P (t) and �(s (t 0)) < �(s (t)) (where
�(s (t)) is the cost to reach the state s (t) from the initial state s (0)).
The algorithm is still complete and optimal as duplicated states
will eventually lead to the same states already expanded, and those
states with a cost greater for the pursuer (lesser for the evader) than
the cost of at least one already expanded (duplicated) state are not
considered.

Alpha-beta pruning with heuristic. Every node in the search
tree carries two values, � and � , representing the best values found
so far in a branch for the pursuer and evader, respectively. The
pruning condition for a particular branch is triggered whenever
� � � , namely when it is discovered that a branch leads to a
solution that is worse or equal to a solution already found. Pearl [23]
demonstrates that �-� pruning preserves optimality. In the best-
case scenario, the worst-case computational complexity can be
reduced toO (b

p
d), where b and d are the branching factor and tree

depth, respectively. However, the complexity highly depends on
the order in which the successor states are expanded. The approach
in this work is to sort new states in increasing order of heuristic
value when pursuer has to move and vice versa for the evader. This
is done in order to select as early as possible the “best” move from
the point of view of the moving player according to a heuristic

Session 47: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1697

function h(s (t)) = d (p (t), e (t))/� , where d (·, ·) is a function that
calculates the distance between the two players. The heuristic value
encoded in a state can then be used to estimate the depth of the
solution. The idea is to imagine that the pursuer is always able to
move at full speed while the evader remains on its position the
whole time. This estimate is added to the current time step t . If
the result is greater than or equal to the time (cost) of the current
best candidate solution, the branch is pruned. This operation is safe
because this is a best-case scenario with respect to the pursuer (that
is also unlikely to happen).

L����4.3. The heuristic function h(s (t)) = d (p (t), e (t))/� is a
lower bound on the optimal capture time t⇤ for the pursuer.

P����. Suppose that at time step t the pursuer makes an esti-
mate and completes its turn by making a move. Now is the turn
of the evader, and 4 di�erent situations regarding the distance
d (p (t), e (t)) can occur:

(1) it stays the same, therefore the best-case estimated depth of
the solution from the point of view of the pursuer becomes
1 + h(s (t + 1)) > h(s (t)),

(2) it increases, leading to the same case as in the previous one,
(3) it decreases and the pursuer manages to capture its adver-

sary; however, this cannot happen since the evader would
discard this action,

(4) it decreases and the pursuer is not able to win, since the
evader manages to escape; thus the depth of the solution is
certainly higher than the one originally estimated.

As such, h(s (t)) is a lower bound on the optimal capture time t⇤ for
the pursuer. ⇤

With such a lemma, we can prove that a branch can be safely
pruned according to h(s (t)).

T������4.4. The current evaluated branch can be pruned if its
current cost �(s (t)) summed to h(s (t)) is greater than or equal to the
cost of the best candidate solution, preserving the optimality.

P����. Suppose that a current evaluated branch with �(s (t)) +
h(s (t)) greater than or equal to the current cost of the best candidate
solution is expanded. Given that h(s (t)) is a lower bound according
to Lemma 4.3, after some iterations, the value would be worse than
the best solution found so far. As such, �-� pruning will discard
that branch, proving the theorem. ⇤

5 SIMULATION RESULTS
It is not trivial to� nd methods against which our approach can be
fairly compared. For example, some employ multiple pursuers and
some work on graphs [8, 14]. In particular, methods working on
graphs are not easily applicable to our problem, as metric informa-
tion about space is lost. Hence, to assess the validity of our approach
in solving pursuit-evasion games with limited visibility, we compare
our proposed enhanced version of the min-max algorithm with an
implementation of Monte-Carlo Tree Search (MCTS) proposed in
[5]. The main idea of MCTS is to select the most promising strategy
based on the outcome of a high number of playouts, consisting in
simulating the game until the end by selecting moves at random. In
every node there are two values that are updated during execution:

one is the ratio between the number of wins and the number of
playouts simulated from there; the other one indicates how many
times the node has been visited. The algorithm, brie�y described
here, is composed of four steps that are repeated as long as there is
time available for a single iteration.
(1) Selection. Recursively apply a selection criteria from the root
down to a leaf node, which usually has a low number of simulations
played from it and further investigation by the algorithm is neces-
sary. The selection criteria we use is derived from the Multi-Armed
Bandit theory [13] and selects the child node i that maximizes the

quantity Ri
ni +C

q
lnnp
ni , where Ri is the algebraic summation of the

outcomes of previous playouts that start either from node i or one
of its descendants, ni is the number of visits performed on node i ,
C is a tunable exploration parameter, by default equal to

p
2 but in

general selected empirically based on the problem, and np is the
number of visits of i’s parent node p.
(2) Expansion. The selected node is expanded using speci�c crite-
ria; for instance, the pursuer might prefer to generate a node that
allows reducing the distance to its adversary quicker.
(3) Simulation. Starting from the newly expanded node, a game is
simulated, selecting moves at random. Two situations can occur: a
goal node is reached, and either +1 or -1 is returned depending on
the player that has turn respectively wins or loses (plus the number
of time steps), or the maximum allowed simulation depth is reached,
then a tie situation occurs and 0 is returned.
(4) Backpropagation. The result of the simulation is propagated
up to the root, updating the values of nodes along the path.

Our proposed method and the Monte-Carlo Tree Search ap-
proach are run with simulated experiments in several indoor envi-
ronments available in Radish repository [9]. As such environments
are mainly represented with grid maps, we manually converted
them to simple polygons. We report here four representative envi-
ronments (boundaries of environments are considered as obstacles):
the� rst one (albert-b-laser) has a unique short corridor with rooms
attached to it (Figure 4), the second one (utk-claxton) has long corri-
dors (Figure 5), the third one (fr079) has a unique long corridor but
a complex structure of rooms such that some of them are reachable
only through other rooms directly attached to the corridor (Fig-
ure 6), and the last one (ubremen-cartesium) has a simpler structure
characterized by a large open space and some small rooms (Fig-
ure 7). The size of the environments is approximately 30m ⇥ 24m,
140m ⇥ 80m, 38m ⇥ 13m, and 41m ⇥ 11m, respectively (note that
the size of the environments has been estimated by considering
10 cm the size of the grid cell, as this information is not reported in
the datasets: this seems to be reasonable in terms of average size of
rooms). Such environments have been selected as a representative
sample of realistic indoor environments without holes.

Table 1 shows the number of cells that derive from imposing a
high-resolution grid on these environments and from partitioning
the environments with the visibility-based decomposition. It can
be noted that the number of cells is greatly abated in all cases, but
especially for the second environment, because of the presence of
less rooms.

We call a combination of initial positions (that cover the whole
environment; see Figures 4–7) and environment a setting. For each
setting, we run our approach and the MCTS method on a computer

Session 47: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1698

3 m

1 2 3 4 5

6
7 8 9

10 11
12 13

14 15

Figure 4: Indoor environment albert-b-laser (points indicate
the initial positions of the players, also later).

3 m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 5: Indoor environment utk-claxton.

Figure 6: Indoor environment fr079.

Figure 7: Indoor environment ubremen-cartesium.

equipped with a 3.50GHz i7-4710HQ processor and 8GB RAM to
�nd the optimal pursuit strategy that guarantees capturing the
evader. We have our own implementation of the simulator and
the search algorithm in �++ (the state space is generated online),
as no generic graph library, like BGL [19], is easily adaptable to
our case. We use CGAL library [1] for handling simple polygons
and arrangements deriving from the partition of the environment
(we use the “exact_predicates_exact_construction_kernel”, namely
rational arithmetic).

We set a timeout of 5 hours for each run. For all of the runs that
�nd a solution, we report the average and standard deviation of the
number of time steps t⇤. We consider two maximum velocities for

Environment Number of grid cells Number of visibility-based cells
albert-b-laser 71628 4604
utk-claxton 117625 2964

fr079 70000 17950
ubremen-cartesium 96118 48669

Table 1: Number of grid cells (where the size of the cell edge
is 10 cm) and number of cells deriving from the visibility-
based decomposition.

Speed = 0.1m/s Speed > 0.1m/s
Map Number of time steps Computing time (s) Number of time steps Computing time (s)

albert-b-laser 57.2 (44.0) 172.8 (328.4) 42.7 (31.0) 136.7 (1520.0)
utk-claxton 213.9 (155.3) 568.8 (1121.7) 144.6 (93.2) 210.7 (465.7)

fr079 324.2 (159.9) 786.4 (1256.7) 281.2 (182.2) 231.3 (173.4)
ubremen-cartesium 306 (149.6) 942 (2066.4) 248.5 (164.2) 223.7 (301.7)

Table 2: Results (average and standard deviation over the re-
sults for each setting) for the indoor environments under
the rash evader model in which both players use min-max.

Low simulation depth and timeout High simulation depth and timeout
Map Number of time steps Computing time (s) Number of time steps Computing time (s)

albert-b-laser 40.0 (51.7) 926.4 (948.4) 50.1 (34.0) 1543.7 (658.0)
utk-claxton 130.2 (124.3) 1202.1 (526.4) 140.8 (137.3) 1879.2 (538.4)

fr079 250.9 (125.7) 1531.2 (452.0) 270.1 (366.7) 1944.3 (652.2)
ubremen-cartesium 225.9 (149.5) 1286.3 (2064.8) 237.1 (149.6) 1543.4 (2077.5)

Table 3: Results (average and standard deviation over the
samples for each map) in both con�gurations regarding the
relevant parameters where both players use MCTS for com-
puting their strategy.

Low simulation depth and timeout High simulation depth and timeout
Map Number of time steps Computing time (s) Number of time steps Computing time (s)

albert-b-laser 91.3 (44.0) 1858.7 (1893.1) 74.7 (51.4) 4969.0 (2907.5)
utk-claxton 173.3 (101.6) 2135.5 (2036.5) 152.9 (97.2) 2363.9 (1988.8)

fr079 301.3 (186.3) 2221.9 (1715.8) 290.6 (153.6) 3447.7 (1615.6)
ubremen-cartesium 292.2 (170.3) 3004.6 (2457.6) 261.5 (157.2) 5305.1 (2314.4)

Table 4: Results (average and standard deviation over the
samples for each map) in both con�gurations regarding the
relevant parameters where only the pursuer use MCTS and
evader use min-max.

the players: � = 0.1m/s and � that depends on the environment,
namely in albert-b-laser, fr079, and ubremen-cartesium � = 0.5m/s,
while in utk-claxton � = 1m/s.

Overall, considering all the combinations of parameters, pairs of
starting points, and algorithms utilized to compute a strategy, the
total number of simulation runs made is about 10, 000.

Table 2 reports experimental results for the four environments.
In all experiments we employed the speedup techniques we pre-
sented in the previous section. We actually run some experiments
considering a grid decomposition without the speedup techniques.
However, most of the simulated runs did not terminate within the
timeout and so the results are not reported here, experimentally
proving the goodness of the proposed speedup techniques. The
values reported in each entry are the average and the standard devi-
ation (in parentheses) over the npoints ⇥ (npoints - 1) combinations
of initial positions for the corresponding environment (without con-
sidering the same initial position for both players), where npoints is
the number of starting points de�ned for each map. The timeout has

Session 47: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1699

Figure 8: Simulation instance (pursuer and evader paths are
in green and red, respectively).

been never reached. In every environment the proposed method is
able to� nd a solution. The relatively high standard deviation could
be explained by the fact that the number of time steps to capture
the evader is highly dependent on the initial positions of the two
players. For example, in the� rst environment, from positions 12
(pursuer) and 14 (evader), both players can see each other from the
start of the game and the evader is basically trapped in that room,
while from positions 14 (pursuer) and 9 (evader) the pursuer has
to clear a large area before reaching the area where the evader is
located. This is re�ected also on the computational time for�nding
solutions, which varies greatly with the setting: the more time steps
required, the higher the computational time. Under the rash evader
model it seems that there is a roughly linear relation between them.

Figure 8 shows an instance of the solution foundwith the starting
position of the two players. As can be noted, the pursuer tries to
clear one contaminated region after another considering the worst
case position of the evader, in such a way that the evader can be
trapped and cannot recontaminate the cleared region. Finally, when
the evader is found, it is trapped in a corner, as the pursuer is able
to guard the line that prevents the evader from escaping that area.

In utk-claxton environment, the number of time steps to capture
the evader is relatively large because of the presence of very long
corridors. If the pursuer starts in the middle, it has� rst to go to one
side, and, if the evader is not in that area, it has to go to the other
side. A similar situation happens in fr079 and ubremen-cartesium
because of their complex structure. If speed is increased, both the
number of time steps and computational time decrease, because
the game is more fast paced and the pursuer is able to close the
distance to its adversary and trap it near a corner of the map faster.

When both players use MCTS to compute their strategy, they
tend to make suboptimal moves, and the number of time steps is
lower than in a min-max context. Table 3 shows the quantitative
results relative to velocities � = 0.5m/s in albert-b-laser, fr079, and
ubremen-cartesium and� = 1m/s in utk-claxton. The computational
time increases because the timeout for a single turn of MCTS is
often encountered: the algorithm runs several simulations that
have a high number of randomly sampled moves before either
reaching a terminal state or encountering the maximum allowed
depth. This condition is emphasized when both of these parameters
are increased. The timeout for a single turn of MCTS for the�rst
set of experiments (left hand-side of Table 3 and Table 4, see later)
is� xed to 45 s and the maximum allowed simulation depth to the
value of the heuristic function in the state when line-of-sight is
established for the� rst time. In the second set of experiments (right
hand-side of the tables), both timeout and maximum simulation

depth are doubled. When both players use MCTS (Table 3), both
their strategies are suboptimal in general and it is possible that the
evader is captured with a shorter path than in the case in which both
players used min-max (and both strategies are optimal, Table 2).

The next comparison involves the utilization of MCTS only for
the pursuer, whereas the evader uses min-max. Table 4 summarizes
the experimental results (with the velocities that depend on the
environment, as in Table 3). In this case, only the pursuer is playing
sub-optimally, therefore, on average, it needs to make more moves
before capturing its adversary. When lower timeout and maximum
simulation depth are employed, this situation is more noticeable.
Conversely, when both timeout and simulation depth are increased,
the number of time steps approaches that of the min-max case. The
computing times are higher than those of Table 3 because min-max
should be recomputed at every turn for the evader, and it usually
lasts more than a single iteration of MCTS.

Overall, the case where both players use min-max seems to
provide superior performance with respect to MCTS and, in the
realistic indoor environments we considered, it is possible to� nd a
deterministic solution against the rash evader model in a reason-
able computing time. A possible explanation could be that, as the
environment is highly structured, usually contaminated regions
are disjoint, and passages between rooms and corridors are narrow,
allowing the pursuer to protect the area cleared so far. Actually, in
the environments we considered, recontamination does not hap-
pen. In more general environments, where recontamination could
happen and the evader can “loop” between two areas that can be
recontaminated, our algorithm cannot� nd equilibrium determin-
istic solutions. In such a case, a randomization over some of the
solutions in necessary, as shown in [10].

6 CONCLUDING REMARKS
In this paper we have presented a method for� nding the optimal
pursuit path in a simply-connected polygon when the pursuer and
the evader have line-of-sight visibility. There is no closed-form
solution known for this game. Our approach models the pursuit-
evasion problem as a search problem and� nds the optimal solution
using a min-max-search-based approach. We presented an e�cient
representation of the state of the game using a visibility-based
decomposition of the environment. We showed that such a decom-
position is complete for a rash evader model and we provided some
speedup techniques that preserve the optimality of the solution.
Simulations, comparing our method with a Monte-Carlo tree search
method, showed that the proposed approach can e�ectively�nd
deterministic solutions in realistic indoor environments for the rash
evader model.

Future work will investigate how to further reduce the size of
the game tree by, for example, collapsing some cells of the de-
composition or using a triangulation that preserves the visibility
information but reduces the depth of the resulting tree. Another
possibility is to use a hierarchical decomposition. In a broader per-
spective, building on the insights given by the solution found by our
approach, it could be interesting to derive a formal characterization
of the kind of environments where a deterministic strategy for a
single pursuer guarantees capture no matter what the evader does.
Finally, the case of a general evader model should be studied.

Session 47: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1700

REFERENCES
[1] 2014. CGAL - Computational Geometry Algorithms Library. (2014). http:

//www.cgal.org/
[2] D. Bhadauria, K. Klein, V. Isler, and S. Suri. 2012. Capturing an evader in polygonal

environments with obstacles: The full visibility case. Int J Robot Res 31, 10 (2012),
1176–1189.

[3] R. Borie, C. Tovey, and S. Koenig. 2009. Algorithms and Complexity Results for
Pursuit-evasion Problems. In Proc. IJCAI. 59–66.

[4] T. Chung, G. Hollinger, and V. Isler. 2011. Search and pursuit-evasion in mobile
robotics - A survey. Auton Robot 31, 4 (2011), 299–316.

[5] R. Coulom. 2006. E�cient selectivity and backup operators in Monte-Carlo tree
search. In Proc. CG. 72–83.

[6] B. Gerkey, S. Thrun, and G. Gordon. 2006. Visibility-based Pursuit-evasion with
Limited Field of View. Int J Robot Res 25, 4 (2006), 299–315.

[7] L. Guibas, J.-C. Latombe, S. LaValle, D. Lin, and R. Motwani. 1999. A Visibility-
Based Pursuit-Evasion Problem. Int J Comput Geom Ap 9, 4/5 (1999), 471–494.

[8] G. Hollinger, S. Singh, and A. Kehagias. 2010. Improving the E�ciency of Clearing
with Multi-agent Teams. Int J Robot Res 29, 8 (2010), 1088–1105.

[9] A. Howard and N. Roy. 2003. The Robotics Data Set Repository (Radish). http:
//radish.sourceforge.net/. (2003).

[10] V. Isler, S. Kannan, and S. Khanna. 2005. Randomized pursuit-evasion in a
polygonal environment. IEEE T Robot 21, 5 (2005), 875–884.

[11] V. Isler, S. Kannan, and S. Khanna. 2006. Randomized pursuit-evasion with local
visibility. SIAM J Discrete Math 20, 1 (2006), 26–41.

[12] K. Klein and S. Suri. 2013. Capture Bounds for Visibility-based Pursuit Evasion.
In Proc. SOCG. 329–338.

[13] L. Kocsis and C. Szepesvári. 2006. Bandit Based Monte-Carlo Planning. In Proc.
ECML. 282–293.

[14] A. Kolling and S. Carpin. 2007. The GRAPH-CLEAR problem: de�nition, theo-
retical properties and its connections to multirobot aided surveillance. In Proc.

IROS. 1003–1008.
[15] A. Kröller, T. Baumgartner, S. Fekete, and C. Schmidt. 2012. Exact solutions and

bounds for general art gallery problems. ACM J Exp Algorithmic 17, 1 (2012).
[16] S. LaValle. 2006. Planning Algorithms. Cambridge University Press.
[17] S. LaValle, D. Lin, L. Guibas, J.-C. Latombe, and R. Motwani. 1997. Finding an

unpredictable target in a workspace with obstacles. In Proc. ICRA, Vol. 1. 737–742.
[18] V. Lisý, B. Bosanský, andM. Pechoucek. 2012. Anytime algorithms for multi-agent

visibility-based pursuit-evasion games. In Proc. AAMAS. 1301–1302.
[19] A. Lumsdaine, L.-Q. Lee, and J. Siek. 2002. The Boost Graph Library: User Guide

and Reference Manual. Addison-Wesley.
[20] R. Murrieta-Cid, R. Monroy, S. Hutchinson, and J.-P. Laumond. 2008. A Com-

plexity result for the pursuit-evasion game of maintaining visibility of a moving
evader. In Proc. ICRA. 2657–2664.

[21] N. Noori and V. Isler. 2014. Lion and man with visibility in monotone polygons.
Int J Robot Res 33, 1 (2014), 155–181.

[22] T. Parsons. 1978. Pursuit-evasion in a graph. In Theory and Applications of Graphs,
Y. Alavi and Don R. Lick (Eds.). Lecture Notes in Mathematics, Vol. 642. Springer,
426–441.

[23] J. Pearl. 1982. The Solution for the Branching Factor of the Alpha-beta Pruning
Algorithm and Its Optimality. Commun ACM 25, 8 (1982), 559–564.

[24] S. Russell and P. Norvig. 2010. Arti�cial Intelligence: A Modern Approach. Pearson.
[25] J. Sgall. 2001. Solution of David Gale’s Lion and Man Problem. Theor Comput Sci

259, 1-2 (2001), 663–670.
[26] N. Sti�er and J. O’Kane. 2012. Shortest paths for visibility-based pursuit-evasion.

In Proc. ICRA. 3997–4002.
[27] N. Sti�er and J. O’Kane. 2017. Complete and optimal visibility-based pursuit-

evasion. Int J Robot Res 36, 8 (2017), 923–946.
[28] B. Tovar and S. LaValle. 2008. Visibility-based Pursuit - Evasion with Bounded

Speed. Int J Robot Res 27, 11-12 (2008), 1350–1360.

Session 47: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1701

