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1 MOTIVATION

Existence can perhaps be viewed an exercise of searching
high-dimensional, rugged, and approximated (using training
data) landscapes for (often time-delayed) rewards. Bounded
rationality imposes limits on the success of solutions that can
be found by agents acting alone, causing them to potentially
get stuck in ’effective local minima’ [14]. To overcome these
limits, agents can communicate and work together.

Historically, machine learning problems and algorithms
were far enough from these limits that all problems could
be abstracted as a single agent/model which was optimizing
a loss using signals from the environment. However, we are
now entering an era where the theoretical and engineering
insights from multiagent systems and collective intelligence
are becoming, again, critical for the continued growth and
usefulness of large-scale real-world machine learning.

Theoretically, for example, modern reinforcement learn-
ing algorithms and problems are now high-dimensional and
rugged enough that a collection of agents are often run in
parallel (sometimes asynchronously) to speed up training
because learning is fundamentally experience-based - the
diversity and uniqueness of search trajectories of agents is
of prime importance. Beyond reinforcement learning, ma-
chine learning models have gained from being trained as a
collective through approaches ranging from student-teacher
mechanisms (to transfer learning more effectively between
agents), to population/evolutionary methods (to search more
broadly the landscapes).

Engineering-wise, because we are still far from replicat-
ing human intelligence, we must build better interfaces for
how humans and algorithms could collaborate for increased
performance. But because humans are known to have very
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low communication bandwidth and are prone to biases, work
must be done to understand not only how humans learn indi-
vidually (for which there is extensive neuroscience, cognitive
science, etc) but also how they learn from each other - what
kind of data and model approximations do they make (and
the biases and ensue), what network topologies are best for
collaboration or exploration, what cognitive models do they
use to sample and update their beliefs, etc. For example, per-
sonal AI assistants need to be able to learn more seamlessly
from humans interaction.

2 COMPLETED WORK

2.1 Networked Evolution Strategies

Deep reinforcement learning algorithms run many learning
agents in parallel to speed up learning and to minimize use
of correlated data. There is evidence that the network struc-
ture of communication between nodes significantly affects the
convergence rate and accuracy in decentralised optimization
[5,6]. To our knowledge, no work has explored theoretically
and experimentally how the topology of communication be-
tween learning agents affects deep reinforcement learning. In
this work, we introduce the notions of ensembles, network
topology and independent node-level agent updates to the
Evolution Strategies paradigm. We prove that to sample the
search space efficiently (parametrized by the variance of pa-
rameter updates), agents need to communicate within certain
families of sparse network topologies. Our key findings [1]
and contributions are as follows:

(1) We derive Monte-Carlo estimates for update rules
for fully-connected and sparsely-connected inter-agent
learning based on biased inter-agent sampling, and ad-
ditionally provide an upper bound for the variance of
the Monte-Carlo estimate over a population of agents,
which suggest sparser networks for higher variance.

(2) Using this sparser family of communication networks,
we observe faster and higher learning than when using
fully-connected networks. Because the networks are
sparser, learning incurs a lower communication cost.

(3) We observe that this family of networks result in a
multiplicative effect in total reward: networks with
only 1,000 agents produce results competitive to fully-
connected networks with 4,000 agents.

(4) We find that sparser graphs can achieve up to 33.5%
higher reward than a corresponding fully-connected
network, and that they can reach the fully-connected
maximum up to 32% earlier.
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2.2 Bayesian Optimality in the Wisdom of
the Crowd

Fundamental to improving how human groups function is to
understand how humans build and sample from their internal
belief distributions, how they update their belief distribution
after observing those of their peers, the conditions under
which these sampling and update strategies fail, and how
to aggregate each individual’s belief into a collective belief.
Although there has been extensive earlier work on how sec-
ondary factors (such as the effect of confidence [10,11]) affect
the accuracy of groups estimates, there has been limited re-
search on modeling the update and sampling procedure them-
selves (comparing model prediction to individual prediction),
and on investigating how these procedures affect individual
and group accuracy (comparing to the ground truth). In this
work, we build upon the literatures of both cognitive science
and the ‘Wisdom of the Crowd’ with the goal of modeling
how humans learn from and influence [2,3,4,7,8,9] each other
in order to understand how group accuracy emerges. We
collect a large novel dataset (17K predictions from 2K peo-
ple) and investigate a large variety of update and sampling
models and find that, surprisingly, simple conjugate normal
models do best at fitting the belief update and sampling
behavior of humans. Because we also have data of the same
individuals over different rounds, we also find that there is a
collective tuning process where the more inaccurate individu-
als were in the past, the more they learn to trust the group’s
belief. We then reproduced previous subsampling strategies
for improving the WoC strategies: we selected individuals
that have been shown to be historically accurate (known
as ’superpredictors’), and individuals that are resistant to
social influence [12] and find that - although improvements
can indeed be reproduced - they are dwarfed in comparison
to when individuals are selected as per our novel metric of
how far they are from the optimally Bayesian prediction. We
then demonstrate that these results can also be observed in
a separate dataset collected from a large prediction market,
where we also show how to estimate influence in the absence
of an explicit social signal (as in our data collection) using
both heuristic geometrical and HMM models. However, we
also find that social learning and improvement breaks down
when the belief distribution of others is ambiguous (not sta-
tistically unimodal): when this signal of collective agreement
is absent, then humans are then better off not updating their
belief based on those of their peers.

3 FUTURE WORK

Regarding how to coordinate and improve learning between
multiple AI agents, I am interested in two directions. One
significant contribution would be to mathematically formalize
learning between AI nodes, perhaps as a distributed opti-
mization problem (building upon the formalism of Simulated
Annealing or Free Energy minimization), or as an information-
theoretic multi-sensor problem. Another direction is to forgo
the static network topology and rethink the problem as a

dynamic rewiring problem, where the network topology is
also learned.
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