
LightJason, a Highly Scalable and Concurrent Agent Framework:
Overview and Application

Demonstration

Malte Aschermann, Sophie Dennisen, Philipp Kraus, Jörg P. Müller
Technische Universität Clausthal, Institut für Informatik

Clausthal-Zellerfeld, Germany, 38678
[malte|philipp|sophie]@lightjason.org

jmue@tu-clausthal.de

ABSTRACT
Multiagent systems (MAS) provide useful abstractions for mod-
elling and simulating complex socio-technical systems. However,
existing open-source platforms suffer from serious issues including
limited scalability, inflexible software architecture, and poor sup-
port for web deployment. This demo presents an overview and an
application of LightJason, a highly scalable Java-based platform for
agent-oriented programming (AOP) and simulation. We outline the
architectural features of LightJason and showcase its applicability
using an example of a browser-based web application implementing
a traffic serious game devised to teach an interdisciplinary student
team in MAS and AOP.
Demonstration video: https://vimeo.com/lightjason/aamas2018

KEYWORDS
Agent-oriented programming and simulation; BDI modelling; agent
platform; traffic simulation; scalability

ACM Reference Format:
Malte Aschermann, Sophie Dennisen, Philipp Kraus, Jörg P. Müller. 2018.
LightJason, a Highly Scalable and Concurrent Agent Framework: Overview
and Application. In Proc. of the 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden, July
10–15, 2018, IFAAMAS, ?? pages.

1 INTRODUCTION
The modelling, implementation, and simulation of socio-technical
systems (STS) [14] is a major challenge for computer science. STS
are systems such as Smart Cities in which heterogeneous human
and automated entities are embedded in large-scale dynamic en-
vironments, form organisations, and act and interact in complex
ways. Modelling STS requires appropriate models and mechanisms,
such as micro-meso-macro architecture [12], normative control,
computational mechanism design [13] and social choice [7], or
game-theoretic models. From a computing perspective, dealing
with STS imposes hard requirements on underlying platforms and
software frameworks in terms of software quality, scalability, flexi-
bility of software architecture, the ability to integrate with third-
party software, and to support web deployment and execution on
cloud/high-performance computing (HPC) platforms. MAS provide

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

useful abstractions for modelling and simulating complex STS. How-
ever, existing open-source platforms like Jason [6, 16], GOAL [8] or
Jade [5] fall short of satisfying the abovementioned requirements:
Flaws in algorithmic design slow down performance; inflexible
software architectures (e.g. built-in proprietary runtime systems)
make integration with other systems (e.g. traffic simulators [4, 9])
hard, and are mostly not geared to support web deployment and
web-based visualisation of application, and to use state-of-the-art
HPC/cloud platforms. For our findings on algorithmic and archi-
tectural comparison, we refer to [1–3]. In this demo, we present
an overview and an application of LightJason, a concurrent Belief-
Desire-Intention (BDI) multi-agent framework for creating multi-
agent systems with Java. LightJason has been inspired by Jason
and AgentSpeak(L) [11]; however, it is based on a newly developed
software architecture and, compared to Jason, proposes a new con-
current semantics of the agent cycle and a very efficient implemen-
tation of agent perception. Furthermore, the logic programming
languageAgentSpeak(L++) used in LightJason provides considerable
extensions to AgentSpeak(L), e.g. lambda-expressions, multi-plan
and -rule definition, explicit repair actions, multi-variable assign-
ments, parallel execution and thread-safe variables. LightJason of-
fers a modular runtime system. By using object-oriented concepts
and Java generics, tailored runtime instances can be created for an
application, and LightJason can be easily integrated into third-party
applications.

For further background/technical information and practical ex-
amples for multi-agent applications of LightJason we refer to [3]
and the documentation at http://lightjason.org.

2 SPEEDING GAME APPLICATION
A LightJason-based browser application for teaching MAS. In this

demo, we focus on how LightJason supports integrating agent tech-
nology into state-of-the-art browser-based web applications, which
is difficult to handle with existing agent frameworks, which are
mostly stand-alone with “hard-wired” integrated development envi-
ronments (IDEs), runtime (RT), graphical user-interface (GUI) and
source editor. In LightJason, these components are modular, which
makes the framework lightweight, adaptable and easy to integrate.

Scenario. Our use-case model describes a highway traffic sce-
nario which is used to teach students multiagent system (MAS) and
AOP. The actors (vehicles, road segments with speed limits, traffic
rule enforcement) are modelled as BDI agents. For details on how
wemodelled the scenario via ASL++ scripts, see https://git.io/vxh0g.
In this demo, students have the task to write an agent program to

Demonstration AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1794

https://vimeo.com/lightjason/aamas2018
http://lightjason.org
https://git.io/vxh0g

steer a specific vehicle through a fixed-length road (four lanes with
two directions) with changing speed limits and a black-box traffic
rule enforcement (e.g., speed cameras that will be activated using
some enforcement strategy unknown to the students).

Vehicle agents can perceive information about segments, current
speed, allowed speed and an estimation of expected penalties. If and
when penalties are imposed is also modelled by means of agents,
governing areas of varying traffic limits and the environment. A
well-performing vehicle driving strategy should strive after the user
optimum, where the utility function reflects the goals to minimise
travel time and penalty for speeding, while avoiding collisions with
other vehicles.

Technical realisation. We chose a browser-based application (Web-
UI) with a web server for the simulation backend and an interface
for visualisation. In LightJason BDI logic is programmed as scripts
using a code editor, and translated into Java objects which are exe-
cuted by the RT. For visualising the current state of the environment
and agents, we used the Phaser1 game engine. Fig. 1 illustrates the
architecture of the resulting web application. The Speeding Game

Backend

Runtime (concurrent
execution of agents)

ASL++ scripts (on-disk
storage and in-memory cache)

Webserver (Jetty)

Frontend (Web-UI with phaser game-engine and visualisation
using HTML5, CSS3 and JavaScript)

WebSocketsAjax

LightJason/AgentSpeak(L++)

Figure 1: Architecture of the Speeding Game application

application consists of a JAR-bundle of programs with all necessary
components and a web-based GUI for modelling the agents and
accessing lecture material (see Fig. 1).2 The RT executes the agents
concurrently and in a scalable manner. To give feedback to the
users regarding the performance of their strategies, penalty charts
(Fig. 2b) are shown via Chart.js3. Ajax and WebSockets are used for
the communication between browser frontend and Java backend.
The web server component uses Jetty with a Servlet andWebSocket
endpoint for the web server and Bootstrap for the browser interface.

3 EVALUATION AND CONCLUSIONS
A first evaluation of the Speeding Game application was carried out
in a small-scale teaching study. In summer 2017, the Ph.D. students
of the interdisciplinary Research Training Group SocialCars4 at-
tended a series of two-day simulation labs as part of their initial
qualification programme. The students’ background was very inter-
disciplinary, covering the areas of psychology, informatics, traffic
engineering, operations research, geoinformatics, and communica-
tion technology. The purpose of the simulation labs was to increase
the mutual understanding of research fields. Each lab contained
a mix of theoretical lectures and practical hands-on workshops.
In this context, we had the opportunity to present and evaluate

1https://phaser.io/
2For details and source code, see https://git.io/vATPU and https://git.io/vATPq.
3http://www.chartjs.org/
4https://socialcars.org/

the Speeding Game application in an AOP lab for the abovemen-
tioned scenario. The objectives of the lab were twofold: 1) Give
an overview of MAS with a practical introduction to MAS models
and frameworks, while 2) taking various degrees of initial knowledge
and skills regarding programming in general and AOP in particu-
lar into account. The main goal for the participants was to learn
AOP for traffic simulations by completing three main assignments:
(i) Get familiar with the LightJason programming language Agent-
Speak(L++); (ii) Understand the execution behaviour of agents by
analysing and trying out a given baseline strategy based on an
extended Nagel-Schreckenberg model [10]; (iii) Create a new and
competitive driving strategy. At the end of the lab, students submit-
ted their results, the best strategies were determined in a contest,
and prizes were awarded. The didactic concept of the lab followed
the flipped-classroom (FC) [15] method, such that the PhD students
could put their theoretical knowledge of accompanying lectures
into practice. Lectures and exercises alternated over the two-day
workshop. While completing their assignments, students were us-

(a) Scenario with road segments (b) Penalty statistics

Figure 2: Excerpts of simulation web interface

ing the Speeding Game web application to create, evaluate, and
iteratively optimise vehicle driving strategies. At the end of each
simulation run, key performance statistics (driving time, penalty)
was shown and the students could further improve their strategy.
The chart displayed in Fig. 2b shows the variation of the collected
penalty value with the 0.25 and 0.75 quantile values over all runs.
Also, the theoretical course materials, and the reference documenta-
tion of the AgentSpeak(L++) programming language are integrated
into the Speeding Game application. This allows students to easily
access required resources at any time while working on their as-
signments. In order to evaluate satisfaction and learning success of
the lab, participants were asked to fill in a short survey5. The results
indicate that the large majority of the participants has benefited
from the course and that the objective of teaching the interdisci-
plinary set of students the main concepts of the AOP has been
achieved well (given the expectations one can have to a two-day
course). Over 50% thought that MAS modelling can be integrated in
their own research and 100% agreed to the statement that it is useful
for building complex simulations. From a technical point of view,
the idea to build a web application with a browser interface was a
good choice. Participants can use the tool without any installation
process. The browser interface was intuitive and easy-to-use. Using
the built-in IDE, modifications to the BDI agent scripts can be made
in the web application and compiled on-the-fly.

To conclude, in creating and using the Speeding Game, we largely
benefited from the use of LightJason and the architectural design
choices described in Section 2 above, i.e. integrating a scenario
visualisation and IDE elements for AOP and providing easy access
to tasks and information.

Acknowledgements. We thank Ehsan Tatasadi for creating the
web interface.
5See https://goo.gl/forms/fn1mnMcOV3g2QOFE2

Demonstration AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1795

https://phaser.io/
https://git.io/vATPU
https://git.io/vATPq
http://www.chartjs.org/
https://socialcars.org/
https://goo.gl/forms/fn1mnMcOV3g2QOFE2

REFERENCES
[1] Sebastian Albert, Philipp Kraus, Jörg P. Müller, and Anita Schöbel. 2018.

Passenger-induced delay propagation: Agent-based simulation of passengers in
rail networks. In Proceedings of the International Workshop on Simulation Sci-
ence (SimScience 2017) (Communications in Computer and Information Science).
Springer International Publishing. Forthcoming.

[2] Malte Aschermann, Philipp Kraus, and Jörg P. Müller. 2016. Slides - LightJa-
son: A BDI Framework inspired by Jason. (2016). https://lightjason.github.io/
publications/2016-eumas-slides.pdf

[3] Malte Aschermann, Philipp Kraus, and Jörg P. Müller. 2017. LightJason: A BDI
Framework inspired by Jason. InMulti-Agent Systems and Agreement Technologies:
EUMAS 2016 and AT 2016 (Lecture Notes in Computer Science), Vol. 10207. Springer
International Publishing, 58–66.

[4] Michael Balmer, Marcel Rieser, KonradMeister, David Charypar, Nicolas Lefebvre,
and Kai Nagel. 2009. MATSim-T: Architecture and simulation times. In Multi-
agent systems for traffic and transportation engineering. IGI Global, 57–78.

[5] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Devel-
oping multi-agent systems with JADE. Vol. 7. Wiley & Sons.

[6] Rafael H. Bordini, Jomi F. Hübner, and Michael Wooldridge. 2007. Programming
multi-agent systems in AgentSpeak using Jason. Wiley & Sons.

[7] Sophie Dennisen and Jörg P. Müller. 2015. Agent-based voting architecture
for traffic applications. In Proceedings of the 13th German Conference of Multia-
gent System Technologies (MATES 2015) (Lecture Notes in Artificial Intelligence),
Vol. 9433. Springer International Publishing, 200–217.

[8] Koen V. Hindriks, Frank S. De Boer, Wiebe Van Der Hoek, and John-Jules Ch.
Meyer. 2000. Agent programming with declarative goals. In International Work-
shop on Agent Theories, Architectures, and Languages. Springer International

Publishing, 228–243.
[9] Daniel Krajzewicz, Georg Hertkorn, Christian Rössel, and Peter Wagner. 2002.

SUMO (Simulation of Urban MObility) - an open-source traffic simulation. In
Proceedings of the 4th middle East Symposium on Simulation and Modelling
(MESM2002). 183–187.

[10] Kai Nagel and Michael Schreckenberg. 1992. A cellular automaton model for
freeway traffic. Journal de physique I 2, 12 (1992), 2221–2229.

[11] Anand S. Rao. 1996. AgentSpeak(L): BDI Agents Speak out in a Logical Com-
putable Language. In Proceedings of the 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW 1996). Springer Interna-
tional Publishing, 42–55.

[12] David Sanderson, Didac Busquets, and Jeremy Pitt. 2012. A micro-meso-macro
approach to intelligent transportation systems. In Proceedings of the 6th IEEE
International Conference on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW 2012). IEEE, 77–82.

[13] Guni Sharon, Josiah. P. Hanna, Tarun Rambha, Michael W. Levin, Michael Albert,
Stephen D. Boyles, and Peter Stone. 2017. Real-time Adaptive Tolling Scheme
for Optimized Social Welfare in Traffic Networks. In Proceedings of the 16th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2017). IFAAMAS, 828–836.

[14] Munindar P. Singh. 2013. Norms as a basis for governing sociotechnical systems.
ACM Transactions on Intelligent Systems and Technology (TIST) 5, 1 (2013), 1–23.

[15] Bill Tucker. 2012. The flipped classroom. Education next 12, 1 (2012).
[16] Maicon R. Zatelli, Alessandro Ricci, and Jomi F. Hübner. 2016. A Concurrent

Architecture for Agent Reasoning Cycle Execution in Jason. In Multi-Agent
Systems and Agreement Technologies: EUMAS 2015 and AT 2015 (Lecture Notes in
Computer Science), Vol. 9571. Springer International Publishing, 425–440.

Demonstration AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1796

https://lightjason.github.io/publications/2016-eumas-slides.pdf
https://lightjason.github.io/publications/2016-eumas-slides.pdf

	Abstract
	1 Introduction
	2 Speeding Game Application
	3 Evaluation and conclusions
	References

