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ABSTRACT
Doodle polls allow people to schedule meetings or events based on

the time preferences of participants. Each participant indicates on

a web-based poll form which time slots they find acceptable and

a time slot with the most votes is chosen. This is a social choice

mechanism known as approval voting, in which a standard assump-

tion is that all voters vote sincerely—no one votes no on a time slot

they prefer to a time slot they have voted yes on. We take a game

theoretical approach to understanding what happens in Doodle

polls assuming participants vote sincerely. First we characterize

Doodle poll instances where sincere pure Nash Equilibria (NE) exist,

both under lexicographic tie-breaking and randomized tie-breaking.

We then study the quality of such NE voting profiles in Doodle

polls, showing that the price of anarchy and price of stability are

both unbounded, even when a time slot that many participants vote

yes for is selected. Finally, we give some conditions under which

the quality of the NE (and strong NE) is good.

KEYWORDS
approval voting; Doodle polls; Nash equilibria; price of anarchy

ACM Reference Format:
Barbara M. Anthony and Christine Chung. 2018. How Bad is Selfish Doodle

Voting?. In Proc. of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018,
IFAAMAS, 3 pages.

1 INTRODUCTION AND MODEL
Online scheduling apps such as Doodle (www.doodle.com) are an

increasingly popular tool for scheduling meetings and other events.

In a Doodle poll, the poll initiator posts a set of possible meeting

times, then asks participants to check off the times they are available

to meet. This mechanism employed by Doodle for recommending

the best time slot is a social choice function equivalent to approval
voting, where each voter in an election must indicate approval

or disapproval of each of the candidates. In a Doodle poll, the

participants are the “voters" and the time slots are the “candidates."

There has been extensive research done in approval voting dating

back to the 1970s. For surveys on approval voting from the voting

theory literature see [2, 5, 7].

We assume each voter has a privately-held, normalized, utility

value (or valuation) for each candidate time slot. To measure the

quality of a time slot, we consider the social welfare, or total utility

of all voters, for that slot. But while Alrawi et al. [1] study the
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effect of more “protective" voting behavior compared with more

“generous" voting behavior on the social welfare of thewinning time

slot, this work analyzes the price of anarchy and price of stability
in Doodle polls. The price of anarchy (POA) (resp., price of stability
(POS)) is the worst case ratio, over all possible instances of the

game, of the social welfare of an optimal slot to the social welfare

of the winning slot(s) at the “worst" (resp., “best") pure NE.

We define a Doodle poll instance to be a triple I = (A,V ,U ),

where A = {a1,a2, . . . ,am } is the set of time slots or alternatives,
V = {v1,v2, . . . ,vn } is the set of voters, and U is the n ×m matrix

of utility values 0 ≤ ui j ≤ 1 that each voter i = 1 . . .n privately

holds for each alternative j = 1 . . .m. We say that voter vi prefers
alternative aj to ak wheneverui j > uik . Given an instance I , we use
another n ×m matrix denoted by R = [r1, r2, . . . , rn ] to represent

the voting profile (or strategy profile), where ri is a binary vector

over them alternatives in A, representing the vote or strategy of

voter i , with ri (j) = 1 (a yes vote) if voter vi approves alternative aj ,
and ri (j) = 0 (a no vote) otherwise. We consider only pure strategies
in this work.

Let s(aj ) =
∑n
i=1 ri (aj ), or the total count of votes of approval

for alternative aj , be the score for an alternative aj . The default

Doodle mechanism (approval voting) chooses the set of one or

more winning alternatives, W , which maximize the total score,

that isW = argmaxaj ∈A s(aj ). The most commonly-studied tie-

breaking rules in the event of multiple alternatives with maximum

score (|W | > 1) are lexicographic tie-breaking, in which the sin-

gle winning alternativew ∈W that comes first in the established

tie-breaking order over A is chosen, and randomized tie-breaking,

which choosesw fromW uniformly at random.

A pure Nash equilibrium (NE) is a strategy profile where no player

can unilaterally defect to an alternate strategy (i.e. flip some of their

voting bits) such that their payoff strictly increases. We useOPT (I )
to denote an optimal alternative, one which maximizes the social

welfare in a given Doodle poll instance I , and u(a) to denote the

total utility (social welfare) of alternative a ∈ A. Hence OPT (I ) =
argmaxaj ∈A

∑n
i=1 ui j and u(OPT (I )) = maxaj ∈A

∑n
i=1 ui j .

As justified in many classical and recent works, e.g.,[2, 3, 6, 8],

we assume all voters are sincere in their voting, i.e., if ri (aj ) = 1

then ri (ak ) = 1 for all k , j where uik > ui j . Let sincere pure NE
refer to a pure NE where all voters are voting sincerely (and may

defect only to sincere strategies) and let Ns (I ) denote the set of

sincere pure NE for Doodle poll instance I .
Given a Doodle instance I , we define sincere price of anarchy

POA(I ) for that instance to be u(OPT (I ))
minR∈Ns (I ) u(w (R)) , and sincere price

of stability for an instance I to be u(OPT (I ))
maxR∈Ns (I ) u(w (R)) , where u(w(R))

is the social welfare of the winning alternative given profile R.
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We define the sincere price of anarchy (resp., stability) of Doodle

polls to be the worst-case POA(I ): maxI ∈I POA(I ), (resp., POS(I ):
maxI ∈I POS(I )), where I is the set of all Doodle poll instances.

2 SINCERE PURE NASH EQUILIBRIA
Since we analyze price of anarchy and price of stability only over

the space of instances that admit sincere pure Nash equilibria, we

present our results regarding what these types of instances look

like, under both lexicographic and randomized tie-breaking.

Lemma 2.1 (Adapted from [4]). A voting profile is a sincere
pure NE if the two largest scores differ by two or more, under either
lexicographic or randomized tie-breaking.

We refer to an alternative aj ∈ A as a favorite of voter vi if
ui j ≥ uik for all k , j . And an alternative aj ∈ A is a kth favorite of
votervi if there are exactly k −1 alternatives j ′ for whichui j′ > ui j .

Corollary 2.2. If two or more voters have a favorite alternative
in common, then there is a sincere pure NE where the set of winning
alternativesW consists precisely of that favorite alternative, under
both lexicographic and randomized tie-breaking.

Corollary 2.3. If the number of voters exceeds the number of
alternatives, that is, n > m, then there is a sincere pure NE, under
both lexicographic and randomized tie-breaking.

The above results collectively describe a rather large space of

instances where a sincere pure NE always exists. Furthermore, the

following lemma ensures the existence of a sincere pure NE when

n =m.

Lemma 2.4. If the number of voters equals the number of alter-
natives, that is, n =m, then there is a sincere pure NE, under lexico-
graphic tie-breaking.

These conditions greatly limit the potential instances which

may not have a sincere pure NE. However, we have found that

sincere pure NE do not always exist, under either lexicographic or

randomized tie-breaking.

Theorem 2.5. Sincere pure NE do not always exist in Doodle polls
under lexicographic tie-breaking.

We now provide a broad categorization of instances which do

have sincere pure NE under randomized tie-breaking, but again

show that sincere pure NE do not always exist. We say an n × n
instance does not have distinct ith favorites if for i ∈ 1, 2, . . . ,n − 1,

some alternative is the ith favorite of two or more voters.

Lemma 2.6. If an n×n instance does not have distinct ith favorites,
then it has a sincere pure NE under randomized tie-breaking.

Lemma 2.6 together with Corollary 2.3 indicates that the space of

instances under consideration in this work, those that admit sincere

pure NE, is quite general and large, and in the case of n =m, only

instances that meet the strict structural requirement of distinct ith
favorites do not have sincere pure NE.

Theorem 2.7. Sincere pure NE do not always exist in Doodle polls
under randomized tie-breaking.

Finally, we find that both price of anarchy and price of stability

are unbounded, regardless of which tie-breaking mechanism is

used.

Theorem 2.8. The sincere price of anarchy is unbounded in Doodle
polls, under both lexicographic and randomized tie-breaking.

Theorem 2.9. Sincere price of stability is unbounded in Doodle
polls, even when |OPT | ≈ n − 2. Furthermore, the claim holds under
both randomized and lexicographic tie-breaking.

3 BOUNDS ON POS AND STRONG POA
In this section we describe some situations where price of stability

is good. Since Corollary 2.2 guarantees that there is a NE which

selects an optimal alternative, the following additional corollaries

identify situations in which POS is 1.

Corollary 3.1. In a Doodle poll instance I , if an optimal alterna-
tive is a favorite of two or more voters, then POS(I ) = 1.

Corollary 3.2. If there are two or more ‘indifferent’ voters with
identical valuations on all alternatives in a Doodle poll instance I ,
then POS(I ) = 1.

We also provide the following characterization of the set of

Doodle polls instances where the expected social welfare in the

best NE is optimal.

Theorem 3.3. Given a Doodle poll instance I under randomized
tie-breaking, POS(I ) = 1 if and only if there is no alternative that
n − 1 voters prefer to an optimal alternative. I.e., for each non-optimal
alternative, at least 2 players prefer an optimal alternative to it.

A strong NE is a voting profile where no subset (or “coalition")

of voters can all simultaneously defect and improve their payoff.

All strong NE are NE, and strong NE may not always exist. The

strong POA (resp., POS) is defined as the ratio of the total utility of

an optimal alternative to the total utility of the alternative chosen

in the worst (resp., best) strong NE, assuming one exists.

We now state our result that strong POA is at most 4 when there

is an alternative with utility at least
3n
4
, or more generally:

Theorem 3.4. Given a Doodle poll instance I = (A,V ,U ) that
admits a strong NE, if u(aj ) ≥ ρn for some aj ∈ A, 1 ≥ ρ > 1/2, then
strong POS(I ) ≤ strong POA(I ) ≤ 1/(ρ − 1/2), which approaches 2
as ρ approaches 1.

4 CONCLUSION
Our results have shown that there are many natural Doodle in-

stances that admit sincere pure Nash Equilibria. In particular, al-

most all instances where the number of voters is at least the number

of candidates (that is, n ≥ m) admit sincere pure NE under both

randomized and lexicographic tie-breaking. It remains future work

to determine when sincere pure NE exist in the case wherem > n
(the number of candidates exceeds the number of voters), which

is not common in standard approval voting settings, but is not so

unusual to encounter in a Doodle poll.

While the price of anarchy and price of stability are both un-

bounded, the conditions we found that give rise to these cases seem

rather particular and unlucky. We also show that there is also a

large set of realistic Doodle instances where POS = 1; for example,

POS = 1 when the optimal time slot is the favorite of at least two

voters. Finally, we also show that strong POA is reasonable when

there is at least one time slot with total utility more than n/2.
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