
Robust Multi-Agent Path Finding
Dor Atzmon, Roni Stern, Ariel Felner

Ben Gurion University of the Negev, Israel

Glenn Wagner

Carnegie Mellon University, USA

Roman Barták

Charles University, Czech Republic

Neng-Fa Zhou

CUNY Brooklyn College, USA

ACM Reference Format:
DorAtzmon, Roni Stern, Ariel Felner, GlennWagner, Roman Barták, andNeng-

Fa Zhou. 2018. Robust Multi-Agent Path Finding. In Proc. of the 17th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

INTRODUCTION AND DEFINITIONS
In the multi-agent path-finding problem (MAPF) a plan is needed

to move a set of n agents from their initial location to their goals

without collisions. A solution to a MAPF problem is a plan π =
{π1, . . . πn } such that ∀i ∈ [1,n], πi is a sequence of move/wait

actions that move agent ai from si to дi . πi (t) denotes the location
of ai after executing the first t move/wait actions in π without ex-

periencing any delay. So, πi (0) = si and πi (|πi |) = дi . We introduce

and study a new type of MAPF problem where we seek a plan that

is robust to k unexpected delays per agent. This form of robust-

ness is especially suitable for agents with a control mechanism that

guarantees each agent is at most k steps from its pre-defined plan.

Definition 1 (k-delay Conflict). A k-delay conflict

〈
ai ,aj , t

〉
in a

plan π occurs iff ∃∆ ∈ [0,k] such that πi (t) = πj (t + ∆).
A plan is a called a valid k-robust plan if it does not have any

k-delay conflicts. Informally, this means that no conflicts will occur

even if some of the agents are delayed by up to k time steps. Next,

we show how to find a plan π that is valid k robust and has the

minimal sum-of-costs (

∑
πi ∈π |πi |), i.e., a plan that has the minimal

sum-of-costs among all plans that are valid k robust.

A∗-BASED SOLUTIONS
A*-based MAPF algorithms [2, 4, 5, 9] search for a plan in a n-agent
state-space, which includes all the possible ways to place n agents

into |V | vertices, one agent per vertex.
An action in this state space represents n single-agent move/wait

actions, one single-agent action per agent. An action is applicable

if its constituent single-agent actions do not create conflicts.

One way to adapt A
∗
solvers to return k-robust plans is to modify

state generation to prevent combinations of single-agent actions

that lead to k-delay conflicts. To preserve optimality, however, the

n-agent state-space needs to be modified to keep track of the last k
steps of each agent in each state. An A*-based MAPF solver over

this state-space can find an optimal k-robust plan, but the size of
this state space grows exponentially with k .

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

S1

A

B

g1

g2S2

Con: {}
𝝅𝟏: s1,A,B,g1
𝝅𝟐: s2,B,g2
Cost: 5

Con: {a2,B,1}
𝝅𝟏: s1,A,B,g1
𝝅𝟐: s2,s2,B,g2
Cost: 6

Con: {a1,B,2}
𝝅𝟏: s1,A,A,B,g1
𝝅𝟐: s2,B,g2
Cost: 6

Con: {}
𝝅𝟏: s1,A,B,g1
𝝅𝟐: s2,B,g2
Cost: 5

Con: {a2,B,1-3}
𝝅𝟏: s1,A,B,g1
𝝅𝟐: s2,s2,s2,s2,B,g2
Cost: 8

Con: {a1,B,1-3}
𝝅𝟏: s1,A,A,A,B,g1
𝝅𝟐: s2,B,g2
Cost: 7

(a) (b) (c) GOAL!

Figure 1: a MAPF instance and its two CTs

Plan cost Plan time (ms)

k=0 k=1 k=2

m k=0 k=1 k=2 All KR IKR(A) IKR(S) KR IKR(A) IKR(S)

4 21 22 22 6 15 14 15 193 110 67

6 31 32 32 5 28 26 20 990 388 94

7 36 37 39 7 31 26 17 1,618 826 184

8 41 41 43 6 29 23 20 2,625 1,051 229

9 48 49 51 9 379 218 76 20,006 4,408 556

10 49 51 53 41 162 124 78 22,464 7,097 875

Table 1: Average plan cost and planning runtime for differ-
ent CBS-based k-robust solvers, on an 8x8 open grid

CONFLICT-BASED SEARCH SOLUTIONS
MAPF algorithms based on Conflict-Based Search (CBS) [3] find an

optimal plan by iteratively identifying and resolving conflicts. Each

agent in CBS is associated with a set of constraints of the form

⟨ai ,v, t⟩, representing that agent ai is prohibited from occupying

vertex v at time step t . A consistent path for agent ai is a path

that satisfies all of ai ’s constraints, and a consistent plan is a plan

composed only of consistent paths. CBS finds consistent plans by

invoking a low-level solver for each of the agents individually. Such

a plan may have conflicts, and CBS resolves them by imposing

constraints on the conflicting agents. CBS generates a constraint
tree (CT) to search for combinations of constraints and agents that

will result in a plan that is conflict-free and optimal.

k-Robust CBS
We propose k-robust CBS (kR-CBS), a k-robust version of CBS. It

differs from CBS in how it identifies and resolves conflicts.

Identifying k-delay conflicts. CBS adds constraints to resolve
conflicts, while kR-CBS adds constraints to resolve k-delay conflicts.
This means that after the low-level solver returns a consistent path,

kR-CBS simulates the resulting plan and checks for conflicts with

the k-last locations of all other agents.
Resolving conflicts (splitting CT nodes). Let N be a node in

the CT selected to be expanded next by kR-CBS, and let

〈
ai ,aj , t

〉
be a k-delay conflict in N . Note that there is no k-robust plan in

which ai is at v at time t while aj is at v at time t +∆. Therefore, at
least one of the constraints, ⟨ai ,v, t⟩ or ⟨aj ,v, t +∆⟩, must be added

to the CT and must be satisfied by the low-level solvers. kR-CBS
generates two children to N , each having one of these constraints.

Example. Figure 1(a) shows a 2-robust MAPF problem with

two agents whose start-goal pairs are s1-д1 and s2-д2, respectively.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1862

#agent 10 15 20 25 30 35 40 45 50

k=0

Picat 50 50 49 48 44 29 15 1 2
CBS 50 49 49 45 42 26 22 9 0

k=1

Picat 50 50 47 35 15 2 0 0 0

CBS 50 49 42 27 22 7 1 0 0

k=2

Picat 50 49 38 9 0 0 0 0 0

CBS 50 45 31 6 4 0 0 0 0

Table 2: Number of instances solved within the allocated
time out. The grids used are 32x32 grids with 20% obstacles.

Figure 1(b) shows the first two levels of the CT generated by kR-
CBS, where every nodeN showsN .constraints (labeled Con),N .π1,
N .π2, and N .cost . Observe that the plan in the root has a 2-delay

conflict ⟨a2,a1, 2⟩ at location B for ∆ = 1, since π1(2) = π2(1) = B.
To resolve this conflict, kR-CBS adds the constraint ⟨a2,B, 1⟩ to the
left child and the constraint ⟨a1,B, 2⟩ to the right child.

Improved k-Robust CBS (I-kR-CBS)
I-kR-CBS resolves conflicts in a CT node N by imposing range
constraints on its successors. A range constraint is defined by the

tuple ⟨ai ,v, [t1, t2]⟩ and represents the constraint that agentai must

avoid vertex v from time step t1 to time step t2.

Definition 2 (Sound Range Constraints). A pair of range con-

straints are called sound for k robust iff all optimal k-robust plans
satisfy at least one of these constraints.

Corollary 3. kR-CBS variants that resolves conflicts only with
sound pairs of range constraints are sound, complete, and return
optimal k-robust plans.

Corollary 4 (Symmetric range constraints). For any time
step t , vertex v , and agents ai and aj , the range constraints
⟨ai ,v, [t , t + k]⟩,

〈
aj ,v, [t , t + k]

〉
are sound for k-robust.

A pair of sound range constraints can also be asymmetric, i.e.,
constrain one agent to a longer time range than the other agent.

For example, consider a conflict

〈
ai ,aj , t

〉
over vertex v and pair

of range constraints R1 = ⟨ai ,v, [t − k, t + k]⟩ and R2 =
〈
aj ,v, [t]

〉
.

R1 and R2 are a sound pair of constraints, because a solution must

satisfy either R1 or R2, since violating both results in a k-delay
conflict. R1 and R2 are extremely asymmetric but there are asym-

metric range constraints that are more balanced. An open question

for asymmetric range constraints is how to choose which agent to

impose the more restricted constraint upon.

A DECLARATIVE SOLUTION
Some MAPF solvers express the MAPF problem in some declara-
tive language and then call a general purpose solver, e.g., a SAT

solver or a Mixed Integer Linear Program (MILP) solver, to obtain

the solution [1, 7, 8, 10]. Adapting such solvers requires simple

modifications. To demonstrate this, we implemented a MAPF solver

using Picat [12], a logic-based programming language that has three

constraint modules. The encoding we used is based on Surynek’s

SAT-based MAPF solver [8], in which there is a Boolean variable for

every triplet (a, t ,v) of agent (a), time (t), and location (v), where
this variable is true iff agent a occupies location v at time t . A set

of constraints are imposed on these variables, namely: (1) Each
agent occupies exactly one vertex at each time step. (2) No two

agents occupy the same vertex at any time (For producing k-robust

solutions: no two agents occupy the same vertex in time steps that

are closer than k from each other). (3) In every time step an agent

may only transition between two adjacent locations.

EXPERIMENTAL RESULTS
We experimented with kR-CBS and I-kR-CBS using extreme asym-

metric and symmetric pairs of range constraints. Random MAPF

problem instances were generated in an open 8x8 grid. Then a

solver for k = 0, 1, and 2 was executed and the resulting plan cost

and the CPU runtime were measured.

Table 1 shows the average plan cost and average CPU runtime

when finding k-robust solutions using kR-CBS (labeled KR) and

I-kR-CBS with the asymmetric and with the symmetric range con-

strains (labeled IKR(A) and IKR(S), respectively) for 4, 6, 7, 8, 9, and

10 agents (different rows). Note that the plan cost was identical for

all solvers and that k = 0 is equivalent to a standard CBS.

The k-robust plans do not cost much more than a plan for the

basic definition of MAPF (k = 0). This suggests that searching for k-
robust plans is advisable if one needs a safety zone or expects delays.

Next, as expected, both I-kR-CBS variants runs much faster than

kR-CBS and this improvement increases when increasing k and

when more agents exist. Symmetric constrains clearly outperform

asymmetric constraints. We conjuncture that this is due to the

arbitrary way in which we choose which agent to constrain more

when using the asymmetric range constraints.

We also experimented on 90 randomly generated instances with

30 agents on the brc202d map [6] which has 43,151 vertices. This

map is very large and the cost of a k-robust plan is often similar

to the cost of a basic plan (k = 0). The average plan cost was

3,818.35, 3,818.43, and 3,818.53 for k = 0, 1, and 2, respectively.

This emphasizes the usefulness of finding a k-robust plan, as one
can be found in such a domain without extensive cost increase.

Nevertheless, finding k-robust plans is more time consuming. In

the above experiments, 213, 284, and 381 seconds were required for

k = 0, 1, and 2, respectively.

We also compared our Picat-based solver, with our best CBS-

based solver (IKR(S)) on 32x32 grids, with 20% random obstacles

with 10, 15, . . . 50 agents, and k = 0, 1, and 2. Table 2 shows the

number of instances solved under a 5 minutes timeout, out of a total

of 50 problem instances. The results of both solvers are very similar,

and there is no clear advantage to either. We also experimented on

8x8 grids. Here, the Picat-based solver was superior in most settings.

Indeed, compilation-based approaches are known to perform well

for small and relatively dense grids [8]. Finally, we experimented the

large brc202d DAO map described earlier. Here, the Picat-based

solver was not able to solve any problem instance, even with 5

agents. By contrast, the CBS-based solver was able to find even

optimal 2-robust solutions for some instances with 95 agents.

In conclusion, there is no universal winner: for small grids, the

Picat-based solver is best, while for very large grids the CBS-based

solver is much better. This trend was also observed in prior works

in regular MAPF [8, 11].

ACKNOWLEDGEMENTS
This research was supported by the Israel Ministry of Science, the

Czech Ministry of Education, and by ISF grants #844/17 to Ariel

Felner and #210/17 to Roni Stern.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1863

REFERENCES
[1] Esra Erdem, Doga G. Kisa, Umut Oztok, and Peter Schueller. 2013. A general

formal framework for pathfinding problems with multiple agents. In AAAI.
[2] M. Goldenberg, A. Felner, R. Stern, and J. Schaeffer. 2012. A* Variants for Optimal

Multi-Agent Pathfinding. InWorkshop on Multi-agent Path finsing. Colocated with
AAAI-2012.

[3] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. 2015. Conflict-based search

for optimal multi-agent pathfinding. Artif. Intell. 219 (2015), 40–66.
[4] David Silver. 2005. Cooperative Pathfinding. In Artificial Intelligence and Interac-

tive Digital Entertainment (AIIDE). 117–122.
[5] Trevor S. Standley. 2010. Finding Optimal Solutions to Cooperative Pathfinding

Problems. In AAAI.
[6] Nathan R. Sturtevant. 2012. Benchmarks for grid-based pathfinding. Computa-

tional Intelligence and AI in Games 4, 2 (2012), 144–148.

[7] Pavel Surynek. 2012. Towards optimal cooperative path planning in hard setups

through satisfiability solving. In PRICAI. 564–576.
[8] P. Surynek, A. Felner, R. Stern, and E. Boyarski. 2016. Efficient SAT Approach to

Multi-Agent Path Finding Under the Sum of Costs Objective. In ECAI.
[9] GlennWagner andHowie Choset. 2015. Subdimensional expansion formultirobot

path planning. Artificial Intelligence 219 (2015), 1–24.
[10] Jingjin Yu and Steven M. LaValle. 2013. Planning optimal paths for multiple

robots on graphs. In ICRA. 3612–3617.
[11] Neng-Fa Zhou, Roman Barták, Roni Stern, Eli Boyarski, and Pavel Surynek. 2017.

Modeling and Solving the Multi-Agent Pathfinding Problem in Picat. In IEEE
International Conference on Tools with Artificial Intelligence (ICTAI).

[12] Neng-Fa Zhou, Håkan Kjellerstrand, and Jonathan Fruhman. 2015. Constraint
solving and planning with Picat. Springer.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1864

	Introduction and definitions
	A*-based Solutions
	Conflict-Based Search Solutions
	k-Robust CBS
	Improved k-Robust CBS (I-kR-CBS)

	A Declarative Solution
	Experimental Results
	Acknowledgements
	References

