
Recognising Assumption Violations
in Autonomous Systems Verification

Extended Abstract

Angelo Ferrando

DIBRIS, Genova University, IT

Angelo.Ferrando@dibris.unige.it

Louise A. Dennis
∗

CS Dept, Liverpool University, UK

L.A.Dennis@liverpool.ac.uk

Davide Ancona

DIBRIS, Genova University, IT

Davide.Ancona@unige.it

Michael Fisher

CS Dept, Liverpool University, UK

MFisher@liverpool.ac.uk

Viviana Mascardi

DIBRIS, Genova University, IT

Viviana.Mascardi@unige.it

ABSTRACT
When applying formal verification to a system that interacts with

the real world we must use amodel of the environment. This model

represents an abstraction of the actual environment, but is necessar-

ily incomplete and hence presents an issue for system verification.

If the actual environment matches the model, then the verification

is correct; however, if the environment falls outside the abstrac-

tion captured by the model, then we cannot guarantee that the

system is well-behaved. A solution to this problem consists in ex-

ploiting the model of the environment for statically verifying the

system’s behaviour and, if the verification succeeds, using it also

for validating the model against the real environment via runtime

verification. The paper reports on a demonstration of the feasibility

of this approach using the Agent Java PathFinder model checker.

Trace expressions are used to model the environment for both static

formal verification and runtime verification.

KEYWORDS
Runtime Verification;Model Checking; Autonomous Systems; Trace

expressions

ACM Reference Format:
Angelo Ferrando, Louise A. Dennis, Davide Ancona, Michael Fisher, and Vi-

viana Mascardi. 2018. Recognising Assumption Violations in Autonomous

Systems Verification. In Proc. of the 17th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden,
July 10–15, 2018, IFAAMAS, 3 pages.

1 INTRODUCTION
Static formal verification of autonomous systems that interact with

the real world requires a model of the world to successfully accom-

plish the verification process. In [6, 9], L. A. Dennis, M. Fisher et al.

recommend using the simplest environment model, in which any

combination of the environmental predicates that correspond to

possible perceptions of the autonomous system is possible.

Consider for example an intelligent cruise control agent in an

autonomous vehicle, that can perceive the environmental pred-

icates safe , meaning that it is safe for the vehicle to accelerate,

∗
Louise A. Dennis was supported by EPSRC grant EP/L024845/1, Verifiable Autonomy

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

at_speed_limit , meaning that the vehicle reached its speed limit,

driver_brakes and driver_accelerates , meaning that the driver is brak-

ing/accelerating.

In order to formally verify the behaviour of the cruise control

agent, we might randomly supply subsets of {safe , at_speed_limit ,
driver_brakes , driver_accelerates } to it: the generation of each ran-

dom subset causes branching in the state space exploration during

verification so that, ultimately, all possible combinations are ex-

plored.

This model is an unstructured abstraction of the world, as it makes

no specific assumptions about the world behaviour and deals only

with the possible incoming perceptions that the system may react

to. Unstructured abstractions obviously lead to significant state

space explosion.

The state space explosion problem can be addressed by making

assumptions about the environment. For instance, we might assume

that a car can not both brake and accelerate at the same time:

subsets of environmental predicates containing both driver_brakes
and driver_accelerates should not be supplied to the agent during

the static verification stage, as they do not correspond to situations

that we believe likely in the actual environment. This structured
abstraction of the world is grounded on assumptions that help prune

the possible perceptions and hence control state space explosion.

Structured abstractions have advantages over unstructured ones,

provided that the assumptions they rely on are correct. Let us sup-

pose that the cruise control system crashes if the driver is acceler-

ating and braking at the same time. If the subsets of environmental

predicates generated to verify it never contain both driver_brakes
and driver_accelerates , then the static formal verification succeeds

but if one real driver, for whatever reason, operates both the accel-

eration and brake pedals at the same time, the real system crashes!

In this paper we propose an approach for exploiting all the ad-

vantages of structured abstractions, while mitigating their risks.

Our proposal consists in modelling the structured abstraction in

a formalism that can be used both for statically verifying the au-

tonomous system’s behaviour via model checking and for validating

the model against the real environment by means of runtime verifi-

cation (RV). If performed during a testing stage, RV of the actual

environment against its structured abstraction allows the developer

to identify situations not foreseen in the initial assumptions. He/she

can revise them, generate a new structured abstraction, re-verify it

via model checking, re-validate it via RV once again, reaching in the

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1933



end a “safe” abstraction. If RV takes place after system deployment

and assumption violations are detected, mechanisms for handing

control to a human, a failsafe system, or for performing ad hoc

reasoning about the current system safety should be invoked.

To demonstrate the feasibility of the proposed approach, we im-

plemented it on top of the MCAPL framework [7] (which provides

a model-checker, Agent Java Pathfinder (AJPF) for rational agents)

using trace expressions [1–3] as the single formalism to generate

both the environment model and the runtime monitor
1
.

The choice of trace expressions instead of more widely used

formalisms for model checking like Linear Temporal Logic (LTL)

[10] is due to their expressive power: in [2], D. Ancona, A. Ferrando,

and V. Mascardi demonstrated that trace expressions are able to

express and verify sets of traces that are context-free – and even

more.

2 RESULTS AND DISCUSSION
AJPF’s property specification language uses LTL extended with

modalities for BDI concepts such as beliefs (B (a,b) is interpreted as
meaning agent a believes b). In this language □ means “it is always

the case” and ♢ means “it is eventually the case”.

We carried out experiments using a simple rational agent for

intelligent cruise control implemented in Gwendolen [5], that

reacted to the perceptions safe , at_speed_lim, driver_brakes , and
driver_accelerates . When model checked using a typical hand-

constructed unstructured abstraction, verification takes 949 states

and 18:55 minutes to verify that it is always the case that eventually

the car believes is it safe or that it is in the process of braking:

□(B (car , safe) → □(♢B (car , safe) ∨ B (car ,brakinд))) (P1)

The condition B (car , safe) → at the start of the formula considers

the possibility that the car never believes it is safe and braking is

only triggered when the safe belief is removed.

To test our approach, we first constructed a trace expression to

represent an unstructured environment, similar to the one created

by hand, i.e., one where the four percepts could all either be true

or false at any moment. Verifying (P1) in an abstract model gener-

ated from this trace expression took 949 states and 20:04 minutes:

the behaviour was exactly the same as that for the unstructured

model that had been created manually. This validated that trace

expressions without constraints create unstructured abstractions

that behave the same way as hand crafted ones.

We then investigated the effect of structuring the model using a

trace expression that assumed both that the driver only accelerated

when it was safe to do so, and that the driver never accelerated

and braked at the same time. With this abstraction (P1) takes 4:45

minutes to prove using 355 states – this has more than halved the

time and the state space.

To illustrate how we cope with the risk that a structured abstrac-

tion may not reflect reality, we consider a version of the cruise

control agent with slight variations. It is widely considered impor-

tant that an autonomous vehicle should not be able to override the

1
This implementation can be found in the MCAPL distribution,

mcapl.sourceforge.net. In particular the version used to generate the

results reported here can be found in the the runtime_verification branch of

the distribution. The technical details are documented in the manual (also available

from the distribution) and the experimental results can be found in the University of

Liverpool Data Catalogue DOI: 10.17638/datacat.liverpool.ac.uk/438

actions of a driver. Our original agent violated this rule – it would

only actually accelerate when the driver pressed the acceleration

pedal if it was safe to do so, and it would brake whenever it de-
tected unsafe conditions even if the driver was currently trying to

accelerate. We adapted the program, removing these restrictions.

This modified program could not be verified in the unstructured

model because our property is not actually true in that model – if

the driver continually accelerates in an unsafe situation then the car

can never brake. However, it is true in the structured model which

assumes that the driver never accelerates if the situation is unsafe.

We ran this program in a simple simulator of a motorway. In the

simulation it was indeed possible to cause a crash by accelerating

in unsafe conditions. This is where the runtime monitor fits in. The

monitor logs an exception at the moment when an unsafe accelera-

tion takes place and generates an error message revealing that the

constraint that the driver does not accelerate when conditions are

unsafe has been violated.

The example shows how we have addressed the development of

a principled mechanism for creating structured abstractions in a

way that allows us to provide at least some guarantee of the validity

of our results. We have demonstrated how trace expressions can be

used as a unifying formalism to generate both a structured abstrac-

tion for model checking and a runtime monitor. Their expressive

power paves the way to addressing challenging scenarios where:

(1) the behaviour of the system is modeled with a trace expres-

sion τ without expressive power limitations (for example,

an expression representing the set of all anbn traces, for any

n ∈ N; this set of traces cannot be modeled in LTL) to allow

specifications of complex environments;

(2) τ is over-approximated by a Java model as shown in [8];

(3) the model checking stage is performed using the generated

over-approximating Java model;

(4) the runtime verification stage uses τ , with all its expressive

power; empirical results show that in most cases verifying

whether a trace belongs to the language defined by a trace

expression is linear in the lenght of the trace: this means

that – even when the highest modeling expressivity of the

formalism is exploited –, performances of RV remain accept-

able.

In the future, we aim at providing arguments that the behaviour

of the abstract environments generated by the system genuinely

expresses the behaviour specified by the trace expressions. It would

also be desirable to express a greater range of constraints in these

models – for instance, the constraint that some belief can only

occur after some action is taken (e.g., that a car can only reach the

speed limit after an acceleration has been performed) where at the

moment we only model constraints between beliefs.

Finally, we plan to apply our approach to a real case study. The

scenario we have in mind is a cyberphysical system which must

demonstrate its dependability in order to be acceptable by the

society and be trusted by its users, like in [4]: in a remote patient

monitoring system where the program integrates sensory input,

formal guarantees should be provided on the fact that the system

respects some given medical guidelines (model checking stage),

and a RV stage looking at sensors perceptions should monitor that

those guidelines are continuously met.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1934



REFERENCES
[1] Davide Ancona, Matteo Barbieri, and Viviana Mascardi. 2013. Constrained global

types for dynamic checking of protocol conformance in multi-agent systems. In

SAC. ACM, 1377–1379.

[2] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2016. Comparing Trace

Expressions and Linear Temporal Logic for Runtime Verification. In Theory and
Practice of Formal Methods (Lecture Notes in Computer Science), Vol. 9660. Springer,
47–64.

[3] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2017. Parametric

Runtime Verification of Multiagent Systems. In AAMAS. ACM, 1457–1459.

[4] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2018. Improving Flex-

ibility and Dependability of Remote Patient Monitoring with Agent-Oriented

Approaches. (2018). International Journal of Agent-Oriented Software Engineer-

ing. To appear.

[5] Louise A. Dennis. 2017. Gwendolen Semantics: 2017. Technical Report ULCS-17-
001. University of Liverpool, Department of Computer Science.

[6] Louise A. Dennis, Michael Fisher, Nicholas K. Lincoln, Alexei Lisitsa, and San-

dor M. Veres. 2014. Practical verification of decision-making in agent-based

autonomous systems. Automated Software Engineering (2014), 1–55. https:

//doi.org/10.1007/s10515-014-0168-9

[7] Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H. Bordini.

2012. Model checking agent programming languages. Autom. Softw. Eng. 19, 1
(2012), 5–63. https://doi.org/10.1007/s10515-011-0088-x

[8] Angelo Ferrando. 2016. The Early Bird Catches the Worm: first Verify, then

Monitor! (2016). Presented at Vortex’16. Downloadable from http://trace2buchi.

altervista.org/wp-content/uploads/2017/10/paper.pdf.

[9] Michael Fisher, Louise A. Dennis, and Matthew P. Webster. 2013. Verifying

autonomous systems. Commun. ACM 56, 9 (2013), 84–93.

[10] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (SFCS ’77). IEEE Computer

Society, Washington, DC, USA, 46–57. https://doi.org/10.1109/SFCS.1977.32

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1935

https://doi.org/10.1007/s10515-014-0168-9
https://doi.org/10.1007/s10515-014-0168-9
https://doi.org/10.1007/s10515-011-0088-x
http://trace2buchi.altervista.org/wp-content/uploads/2017/10/paper.pdf
http://trace2buchi.altervista.org/wp-content/uploads/2017/10/paper.pdf
https://doi.org/10.1109/SFCS.1977.32

	Abstract
	1 Introduction
	2 Results and Discussion
	References



