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ABSTRACT
Existing reduced model techniques simplify a problem by applying

a uniform principle to reduce the number of considered outcomes

for all state-action pairs. It is non-trivial to identify which outcome

selection principle will work well across all problem instances in a

domain. We aim to create reduced models that yield near-optimal

solutions, without compromising the run time gains of using a

reduced model. First, we introduce planning using a portfolio of
reduced models, a framework that provides flexibility in the re-

duced model formulation by using a portfolio of outcome selection

principles. Second, we propose planning using cost adjustment, a
technique that improves the solution quality by accounting for the

outcomes ignored in the reduced model. Empirical evaluation of

these techniques confirm their effectiveness in several domains.
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1 INTRODUCTION AND BACKGROUND
A reduced or simplified model of a large Markov Decision Process

(MDP) helps to cope with the complexity of solving large stochas-

tic planning problems [10]. Reduced models simplify the problem

by partially or completely ignoring the uncertainty, thereby re-

ducing the set of reachable states a planner needs to consider [3–

5, 7, 9, 11, 13–15]. While the existing reduced model techniques

accelerate the planning process, they do not guarantee bounded-

optimal performance and it is often hard to predict when they will

work particularly well. For example, consider a robot navigating

through a building. A plan generated by a simple reduced model

might work well when the robot is moving through uncluttered

region, but a more informative reduced model or the full model may

be required to reliably navigate through a narrow corridor [12].

Hence, we consider reduced models with different levels of detail,

created by different outcome selection principles.

We introduce two frameworks that help create reduced models

that efficiently balance the trade-off between solution quality and
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planning time. First, we introduce planning using a portfolio of re-
duced models, a framework that provides flexibility in switching

between different outcome selection principles to customize re-

duced models. Second, we introduce planning using cost adjustment,
a technique that improves the solution quality of reduced models

by altering the costs of actions to account for the consequences of

ignored outcomes in the reduced model.

Consider a Stochastic Shortest Path (SSP) MDP defined byM =
⟨S,A,T ,C, s0, SG ⟩, and let θ (s,a) denote the set of all outcomes of

action a in state s inM , θ (s,a)= {s ′ |T (s,a, s ′)>0}.
A reduced model of an SSP M is represented by the tuple

M ′ = ⟨S,A,T ′,C, s0, SG ⟩ and characterized by an altered transi-

tion function T ′ such that ∀(s,a) ∈ S ×A,θ ′(s,a) ⊆ θ (s,a), where
θ ′(s,a) = {s ′ |T ′(s,a, s ′) > 0} denotes the set of outcomes in the

reduced model for action a in state s . That is, the reduced model con-

siders a modified transition function with a subset of the outcomes

for each (s,a) pair. In this work, we normalize the probabilities of

the outcomes included in the reduced model so that they sum to

one. The outcome selection process in a reduced model framework

accounts for two decisions: the number of outcomes, and how the

outcomes are selected. An outcome selection principle (OSP) per-
forms the outcome selection process per (s,a) pair in the reduced

model, thus determining the transition function for the (s,a) pair.
The OSP can be some simple function such as always choosing the

most likely outcome or a more complex function. Traditionally, a

reduced model is characterized by a single OSP. That is, a single

principle is used to determine the number of outcomes and how

the outcomes are selected across the entire model.

2 PORTFOLIO OF REDUCED MODELS
We define a generalized framework, planning using a portfolio of
reduced models, that facilitates the creation of reduced models that

can better capture the domain features by switching between dif-

ferent OSPs, each of which represents a different reduced model.

The framework is inspired by the benefits of using portfolios of

algorithms to solve complex problems [8].

Definition 2.1. Given a portfolio of finite outcome selection prin-

ciples, Z = {ρ1, ρ2, ..., ρk }, k>1, amodel selector, Φ, generatesT ′

for a reduced model by mapping every state-action pair to an OSP,

Φ : S×A→ ρi , ρi ∈ Z, such thatT
′(s,a, s ′) = TΦ(s,a)(s,a, s

′), where

TΦ(s,a)(s,a, s
′) denotes the transition probability corresponding to

the OSP selected by the model selector.

Trivially, model selectors used by the existing reduced models

are a special case of the above definition, as Φ always selects the

same ρi for every (s,a) pair. Typically, in planning using a portfolio
of reduced models (PRM), the model selector utilizes more than one

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

2057



Figure 1: Sailing Domain – Runtime Savings (%)

outcome selection principle to determine T ′. Each (s,a) pair may

have a different number of outcomes and a different mechanism

to select the specific outcomes. For example, for a certain (s,a)
pair, the model selector may select the most likely outcome, and for

another (s,a) pair, it may greedily select two outcomes based on the

heuristic values. Although the model selector could use multiple

ρi , the resulting reduced model is still an SSP.

A 0/1 reduced model (0/1 RM) is a PRM with a model selec-

tor that selects either one or all the outcomes of an action in a

state to be included in the reduced model. A 0/1 RM is character-

ized by a model selector, Φ
0/1, that either ignores the stochasticity

completely (0) by considering only one outcome of (s,a), or fully
accounts for the stochasticity (1) by considering all the outcomes

of (s,a) in the reduced model. Thus, for every SSP, there exists a

0/1 reduced model that guarantees goal reachability with proba-

bility 1, if a proper policy exists inM . In the worst case, devising

an efficient Φ for a PRM may involve evaluating every ρi ∈ Z. Let
τmax denote the maximum time taken for this evaluation. Then the

worst case time complexity for a Φ to generate T ′ for a PRM and

0/1 RM are O(|A| · 2 |S | ·τmax ) and O(|A| · |S |
2 ·τmax ), respectively.

These bounds underscore the need for developing faster techniques

to evaluate and identify relevant OSPs. Approximate model selec-

tors that reasonably balance the trade-off can be computed using

heuristics or based on state features.

3 COST ADJUSTMENT
One of the reasons for the sub-optimality of existing reduced model

approaches is that certain outcomes are completely ignored. We

introduce planning using cost adjustment, a technique that accounts
for the ignored outcomes by adjusting the action costs in the re-

duced model, thus resulting in near-optimal action selection.

Definition 3.1. A cost adjusted reduced model (CARM) of an

SSPM is a reduced model represented by the tupleM ′ca = ⟨S,A,T
′,

C ′, s0, SG ⟩ and characterized by an altered cost function C ′ such
that ∀(s,a) in reduced model,

C ′(s,a) ← Q∗(s,a) −
∑

s ′∈θ ′(s,a)

T ′(s,a, s ′)V ∗(s ′).

In the above definition, Q∗(s,a) and V ∗(s ′) denote the optimal

Q-value and optimal value of the action in M . Given an SSP and

its reduced model (not necessarily PRM), the costs are adjusted

Figure 2: Sailing Domain – Cost Difference (%)

for every (s,a) in the reduced model to account for the ignored

outcomes. Since the costs are adjusted based on the difference

in values of states, this may lead to negative cost cycles in the

reduced model. Therefore, the necessary and sufficient condition

for non-negative cost in a CARM is that the transition function in

the reduced model satisfies Q∗(s,a) ≥
∑
s ′∈θ ′(s,a)T

′(s,a, s ′)V ∗(s ′).

Proposition 3.2. A CARM that preserves goal reachability yields
optimal action selection for the SSP.

Planning with Approximate Cost Adjustment. Since generating a

CARMmay involve solving the SSP to estimate the optimal values of

the outcomes, we propose an approximation that estimates the costs

in the reduced model. A feature-based cost function estimates

the cost of an action in a state using the features of the state
®f (s),

C ′(s,a) = д( ®f (s),a), with д :
®f × A → R. The resultant reduced

model with approximate costs is referred to as approximately cost
adjusted reduced model (ACARM). Given a set of state features

that significantly affect the cost of actions, the feature-based costs

are estimated by generating and solving sample problems. The

cost adjustments are computed for the samples using their exact

solutions and the feature-based costs are learned and projected

onto the target problem.

4 RESULTS AND CONCLUSION
We present the results (Figures 1 and 2) of our approach on the

sailing domain [6]. All results are averaged over 100 trials and the av-

erage times include the time spent on re-planning. ACARM-MLOD

and ACARM-0/1 RM use feature-based costs. The deterministic

problems are solved using the A* algorithm [2], and the others are

solved using LAO* [1], and complemented by re-planning when

necessary. The lower difference in cost values indicates that the

performance of the technique is near optimal. In most problems,

ACARM-0/1 RM yields almost optimal results without compromis-

ing the run time gains of using a reduced model. We have obtained

similar results in several other domains.

In summary, we propose two general methods that help create

robust reduced models of large SSPs. Our results contribute to a

better understanding of how disparate reduced model techniques

could be used together to leverage their complementary benefits.
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