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ABSTRACT
We study the problem of cooperative multi-agent reinforcement
learning with a single joint reward signal. This class of learning
problems is difficult because of the often large combined action
and observation spaces. In the fully centralized and decentralized
approaches, we find the problem of spurious rewards and a phenom-
enon we call the “lazy agent” problem, which arises due to partial
observability. We address these problems by training individual
agents with a novel value-decomposition network architecture,
which learns to decompose the team value function into agent-wise
value functions.
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1 INTRODUCTION
We consider the cooperative multi-agent reinforcement learning
(MARL) problem [4, 17, 25], in which a system of several learning
agents must jointly optimize a single reward signal – the team re-
ward – accumulated over time. Each agent has access to its own
(“local”) observations and is responsible for choosing actions from
its own action set. Coordinated MARL problems emerge in appli-
cations such as coordinating self-driving vehicles and/or traffic
signals in a transportation system, or optimizing the productivity
of a factory comprised of many interacting components. More gen-
erally, with AI agents becoming more pervasive, they will have to
learn to coordinate to achieve common goals.

Although in practice some applications may require local auton-
omy, in principle the cooperative MARL problem could be treated
using a centralized approach, reducing the problem to single-agent
reinforcement learning (RL) over the concatenated observations
and combinatorial action space. We show that the centralized ap-
proach consistently fails on relatively simple cooperative MARL
problems in practice. For several tasks, the centralised approach
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fails by learning inefficient policies with only one agent active and
the other being “lazy”. This happens when one agent learns a use-
ful policy, but a second agent is then discouraged from learning
because its exploration would hinder the first agent and lead to
worse team reward.

An alternative approach is to train independent learners to op-
timize for the team reward. In general, each agent is then faced
with a non-stationary learning problem because the dynamics of
its environment effectively changes as teammates change their be-
haviours through learning [14]. Furthermore, since from a single
agent’s perspective the environment is only partially observed,
agents may receive spurious reward signals that originate from
their teammates’ (unobserved) behaviour. Because of this inabil-
ity to explain its own observed rewards naive independent RL is
often unsuccessful: for example Claus and Boutilier [5] show that
independent Q-learners cannot distinguish teammates’ exploration
from stochasticity in the environment, and fail to solve even an
apparently trivial, 2-agent, stateless, 3 × 3-action problem and the
general Dec-POMDP problem is known to be intractable [3, 16].

We introduce a novel learned additive value-decomposition
approach over individual agents. Implicitly, the value-decomposition
network aims to learn an optimal linear value-decomposition from
the team reward signal, by back-propagating the total Q gradient
through deep neural networks representing the individual compo-
nent value functions. The implicit value function learned by each
agent depends only on local observations, and so is more easily
learned. Our solution also ameliorates the coordination problem of
independent learning highlighted in Claus and Boutilier [5] because
it effectively learns in a centralised fashion at training time, while
agents can be deployed individually.

Further, in the context of the introduced agent, we evaluate
weight sharing, role information and communication channels as
additional enhancements that have recently been reported to im-
prove sample complexity and memory requirements [8, 11, 22].
However, our main comparison is between three kinds of architec-
tures: value-decomposition across individual agents, independent
learners and centralized approaches. We investigate and bench-
mark these techniques applied to a range of new interesting two-
player coordination domains. We find that value-decomposition
is a much better performing approach than centralization or fully
independent learners, and that when combined with the additional
enhancements, results in an agent that consistently outperforms
centralized and independent learners by a big margin. In addition,
both value-decomposition by itself as well as any of the other eval-
uated agents using a value-decomposition layer, performed better
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Figure 1: Independent agents (left) and value-decomposition
architecture (right); In both architectures, observations en-
ter the networks of two agents, pass through the low-level
linear layer to the recurrent layer, and then a dueling layer
produces individual Q-values. In the value-decomposition
architecture these "values" are summed to a jointQ-function
for training, while actions are produced independently.

than individual learners and centralization. Please see Sunehag et al.
[23] for more detailed descriptions than can be provided here.

1.1 Other Related Work
Schneider et al. [21] and Russell and Zimdars [20] optimize the
sum of individual rewards by learning value functions from those
individual rewards. Our approach works with only a team reward,
and learns the value-decomposition autonomously from experience.
[10] and the max-plus algorithm [13, 26] also rely on specified indi-
vidual rewards. Difference rewards [24] measures the impact of an
agent’s action on the team reward, but comes with practical difficul-
ties [1, 6, 18]. A recent Deep-RL approach to difference rewards [9]
learns a centralized value function (critic), which we here show is
hard without a simplifying architecture like value-decomposition or
its new further generalization Rashid et al. [19]. Other approaches
are Babes et al. [2], Devlin et al. [7], HolmesParker et al. [12].

2 ARCHITECTURES FOR DEEP COOP-MARL
Building on purely independent DQN-style agents (see left in Fig-
ure 1), we add enhancements to overcome the identified issues with
the MARL problem. Our main contribution of value-decomposition
is illustrated by the network on the right in Figure 1.

Themain assumptionwemake and exploit is that the joint action-
value function for the system can be additively decomposed into
value functions across agents,

Q ((h1,h2, ...,hd ), (a1,a2, ...,ad )) ≈
d∑
i=1

Q̃i (h
i ,ai )

where the Q̃i depends only on each agent’s local observations. We
learn Q̃i by backpropagating gradients from the Q-learning rule
using the joint reward through the summation, i.e. Q̃i is learned

implicitly rather than from any reward specific to agent i , and we
do not impose constraints that the Q̃i are action-value functions for
any specific reward. Although learning requires some centralization,
the learned agents can be deployed independently, since each agent
acting greedily with respect to its local value Q̃i is equivalent to
a central arbiter choosing joint actions by maximizing the sum∑d
i=1 Q̃i .

Figure 2: Heat map showing each agent’s final perfor-
mance, averaged over the last 5,000 episodes of 50,000 and
across ten runs, normalized by the best architecture per
task. The agents are ordered according to average over the
domains, which can be seen in the right most column.
Value-decomposition (IL+V+ ...) strongly outperform Indi-
vidual Learners (IL) and Centralization (C Comb(inatorial)).
C Lin(ear), centralized with a value-decomposition layer, is
much better than C Comb and IL but clearly worse than
more individual value-decomposition (IL+V+...).

3 EXPERIMENTS
We introduce a range of two-player domains, and experimentally
evaluate the introduced value-decomposition agents with different
levels of enhancements, evaluating each addition in a logical se-
quence. We use two centralized agents as baselines, one of which
is introduced here again relying on learned value-decomposition,
as well as an individual agent learning directly from the joint re-
ward signal. We perform this set of experiments on the same form
of two dimensional maze environments used by Leibo et al. [15],
but with different tasks featuring more challenging coordination
needs. Agents have a small 3 × 5 × 5 observation window, the first
dimension being an RGB channel, the second and third are the maze
dimensions, and each agent sees a box with 2 squares either side
and 4 squares forwards, see Figure 1.

3.1 Results and Conclusions
We compare nine approaches on seven tasks (see Sunehag et al.
[23]). The very clear conclusion is that architectures based on value-
decomposition, with any combination of other techniques or none,
outperforms the centralized approaches and individual learners.
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