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ABSTRACT
When testing multi-robot teams, researchers are often forced to
make a choice: test on real robots (where fidelity is high, but the
number of actual robots is low) or test in simulation (where fidelity
is low, but the number of robots can be large). This problem is acute
for robots with sophisticated sensing and planning systems, where
the cost of the robots rises in concert with their need for more real-
istic environments. We propose a mixed-reality testing framework
in which real robots interact with virtual counterparts, allowing a
large number of robots to interact in the environment with high
fidelity. However, this creates a new problem: the simulated robots
must behave like their real teammates. We consider the problem of
calibrating the parameters of virtual robots so that the results of
a mixed-reality experiment are representative of the performance
of a real robotic team. In particular, we use virtual robots to elicit
behaviors from physical robots in order to empirically measure
their kino-dynamic characteristics.
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1 INTRODUCTION
The development of robotic teams that can interact in the world
hinges on the evaluation of the algorithms. However, researchers
face choosing between experimenting with physical robots or sim-
ulated robots, which has important implications on the type and
value of results produced by multi-agent team research [5].

Having a full-scale team of robots yields high-fidelity results.
For results to have high-fidelity we mean that the outcome of the
experiment closely relates to what will happen in the real-world. As
robots leave the lab and go into the world, they need sophisticated
sensors to handle the complexities of the environment, which leads
to higher cost andmaintenance. Realmulti-robot teams are available
when sufficient money and manpower exist [11–13], but it is often
prohibitive to evaluate multi-agent team algorithms in the real-
world.

The alternative to a robotic team is simulation, which can accom-
modate large number of agents while providing a safe mechanism
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for testing algorithms. The physics engines in simulators have im-
proved over the last decade which, define the behavior of objects in
a simulated world [3, 9]. Simulations often produce results that are
low-fidelity when object models do not have the necessary detail.

We use a skid-steer robot and consequently, we will focus on
system identifications for a skid-steer model. In Yu et al. [17] the au-
thors model a skid-steer-wheeled vehicle and perform experimental
verification of their model that uses a large number of parameters,
ie: mass, coefficient of friction, rolling resistance, and many more.
We propose a simplified model, instead of a full model, that allows
us to perform a real-time calibration before a series of experiments
is executed.
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Figure 1: Calibrated Mixed Reality used for experiment-
ing with follow the leader behavior. Top Row: Robot 10 is
the leader in the simulated world. Bottom Row: Simulated
agents are projected into the real world, Robot 10 is the
leader. The red dots in the top and bottom images are way-
points for Robot 10 to follow.

In Honig et al., [6], mixed reality is defined as a world where in
real time physical and virtual objects are able to interact and be
dynamically aware of one another. They go on to describe a variety
of benefits for mixed reality including, the use of larger testing
spaces, increased safety, and scalability. Additionally, Chen et al. [4]
propose mixed reality as a development platform for engineers to
test interactions between robots and objects in the physical world.
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In this work we will focus on the scaliblity of mixed reality by
proposing Calibrated Mixed Reality (CMR) as a way to experiment
with large numbers of robots.

To have confidence in our results from CMR, we need a high
fidelity representation of how a robot drives in the world. Using
real-world data we perform a calibration to determine the values
of key parameters of the virtual robots’ model. This allows us to
capture the kino-dynamic characteristics from the real robot to
have our simulated robot perform similarly to its real counterpart.
Other research areas have considered simulator calibration includ-
ing embedded computer models [10], computer architecture models
[2], airplane models[15], pedestrian tracking [8], and autonomous
vehicles [1, 7] to name a few. Additionally, using data from the real
world and adding it to mixed reality was explored in Quinlan et
al., [14] with autonomous vehicles’ crossing an intersection. Our
calibration process happens in real-time as an initialization step
for running experiments with CMR on any uniform 2D flat terrain.
This allows experiments with CMR to go out of the lab and into
real-world spaces to evaluate multi-robot team performance.

2 METHOD
Our mixed reality experiments are composed of n ∈ N agents, and
must have the following: at least one physical robot, rR , at least one
simulated robot, rS , a simulated world,WS , and a real environment,
WR . We assume thatWS andWR are free of obstacles, consists of
one terrain, and are on a flat 2D plane. All agents, rR and rS , must be
aware of interactions that occur in bothWR andWS . Interactions
between agents consist of moving in accordance with the state of
the world and in the pursuit of an overall goal. Our agents in CMR
make observations about the world using global knowledge of the
world, which is maintained by the simulator.

Each agent is composed of the following state vector:

rR = rS =
[
x y θ ψL ψR ω̇L ω̇R

]
,

whereψL andψR are the left and right wheel velocities and ω̇L and
ω̇R are the angular accelerations of the left and right wheels. This
general representation of a robot’s state in the world is the key to
mixed reality.

To calibrate our model we compute the kino-dynamics of rR ,
such that we can inform our model of rS to behave like rR . We use
a motor model which simplifies down to the following:

ω̇i =
K2
K3
Vi − K1

K2
K3
ψi , (1)

where K2
K3

and K1 are physical constants and other modeled values
from the robot driving, and Vi is the commanded current to the
motor. Calibration starts at the same initial point for rR and rS .
We perform numerical integration to solve for K2

K3
, K1, and b (the

base width of the robot). We perform a grid search over the course
of a calibration path, to find the best parameters to minimize the
Euclidean distance between rR and rS at every time step.

3 RESULTS
Our mixed reality simulator was custom-built for CMR. We did this
to maximize support for mixed reality and to ensure the right level
of fidelity for our robot model. The physical robots that we used
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(a) The path that a real robot (yellow) and simulated robot (blue)
take without calibration.
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(b) The path that a real robot (yellow) and simulated robot (blue)
take with calibration applied to the model.

Figure 2: The calibration pattern performed to find our un-
known parameters is a figure-eight to capture both left and
right driving characteristics.

are four-wheeled robots that follow a skid-steer drive model. They
have a Thinkpad T480, Velodyne VLP-16, and KVH Fiber Optic
Gyroscope on board.

We execute a figure-eight pattern for our calibration. This allows
us to see both the left and right driving characteristics when we do
our calibration calculations. Results for before and after calibration
while driving a figure-eight pattern are seen in Figure 2a and 2b.

4 CONCLUSIONS
Calibrated mixed reality is a solution for testing multi-agent team
algorithms. Calibration found from real-world data and numerical
integration allows simulated agents to perform realistically, relative
to a real robot.
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