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ABSTRACT
We present a model for predicting what supportive behaviors a
robot should offer to a person during a human-robot collaboration
(HRC) scenario. We train and test our model in simulation, using
noisy data that mimics a real-world HRC interaction. Our results
show that we can achieve accurate predictions, using only a small
set of labeled demonstrations. We also show transfer learning capa-
bility: we train our model on an initial task and test it on a new task
composed of the same building blocks but structured differently.
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1 INTRODUCTION
Our work tackles one of the main challenges in human-robot col-
laboration (HRC), that of developing robots that can learn how
to be of assistance to human workers during physical tasks, such
as furniture assembly. Our goal is for the robot to learn how to
provide such assistance from low-level observations of human be-
haviors and environment features. Within this context, the robot
aims to help the human worker more effectively complete the task
by executing useful behaviors throughout the interaction [13].

The main challenge is that learning directly from high-frequency
and high-dimensional noisy observations requires a large number
of training samples. Moreover, information about the supportive
behaviors to be offered requires labeled data, which is expensive to
acquire in HRC. To address this, we propose a two-step approach.
The robot first learns the structure of the behaviors—and hence of
the task—from raw observations of human workers. The system
then takes into account a few annotated demonstrations from the
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human worker about what supportive behaviors are appropriate to
offer throughout the task.

Our system extends hidden Markov models (HMMs) [19] in the
following way. We model the task by learning from a training
set consisting of observed task trajectories. These trajectories do
not include information about the supportive behaviors the robot
should offer. We then label a small set of these trajectories with
labels for the robot supportive behaviors. We present our results
on a realistic HRC task in simulation, achieving predictions with a
small number of errors by using as few as three labeled trajectories.

If our robots are to adapt to novel situations, another critical
challenge in robot learning is to leverage the knowledge acquired on
an initial task for generalizing to similar yet unseen tasks, users, and
environments. In this work, we explore this question by training
the system on an initial task and testing it on a variation of the task
consisting of a different structure. We hence demonstrate how our
method is flexible enough to transfer to new scenarios.

Our contribution is threefold. First, we explain how to learn
a model of human behaviors from ambiguous observations and
to how use it to provide supportive behaviors to human workers
throughout the execution of a task. Second, we demonstrate that
we can do so with only a small set of provided labels. Third, we
show that we can perform well on new tasks, after having learned
a model on a similar but differently structured task.

2 RELATEDWORK
Ourwork is placed between approaches formodeling and predicting
human behaviors and techniques for modeling robot decisions.

Work on modeling human motions and activities includes mod-
eling manipulation interactions [18], recognizing continuous hu-
man grasping sequences [1], and modeling multiple time series
for motion capture segmentation [4]. Within robotics, we mention
acquiring behavioral models for robots via HMMs [5], learning
robot trajectories from demonstration [20], and robot learning to
reproduce gestures by imitation [3].

Model learning in robotics encompasses work such as learning
real-time inverse dynamics for robot arm control [14], modeling
trajectories and motor command generation for controlling robotic
manipulators [9], and learning representations for mobile robot
navigation tasks that leverage interacting with people for help [15].
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Figure 1: Number of errors as a function of the number of
HMM hidden states for different sizes of trajectory labels.
The number of errors is computed with 500 training trajec-
tories and labels for 3, 5, 10, and 20 demonstrations (dems).

Work within HRC includes improving human-robot fluency [2,
7], modeling human intentions via HMMs for autonomous mobile
robots [10], anticipatory control for HRC [8], predicting human mo-
tion for collaborative manipulation planning [11, 12], and learning
joint action models for HRC tasks [16, 17], among others.

The originality of our method is to learn human activities as
hidden variables from motion capture time series, and leverage this
latent representation for providing supportive behaviors in HRC.

3 METHODS
We explore how our system predicts what supportive behaviors a
robot should offer to a human worker throughout a chair assem-
bly task [21]. We represent the task as a hierarchical task model
(HTM) [6], encoding sub-states and sequencing constraints (e.g.,
parallel, sequential, etc.). We use the HTM only to generate the
training set, and our learner does not have access to the HTM. The
training set consists of trajectories that only include HTM leaves.
Each leaf generates a noisy vector consisting of binary features.

To simulate collecting noisy observations in the real world, we
generate a vector of n = 5 features for a given HTM leaf based
on a signature of probability values. For example, for a leaf called
assemble leg 1, we randomly generate a vector [p1,p2,p3,p4,p5],
where pj ∈ [0; 1] represents the probability of feature y jt having
value 1 at time t . We then generate the actual observations, as binary
vectors, drawing from Bernoulli distributions whose parameters
are given in the vector. Whenever the same leaf appears, it has the
same signature of probabilities, but might have different values for
its features depending on this generation process.

We then take a subset of trajectories and assign each leaf within
each trajectory with a label corresponding to what supportive be-
havior the robot should offer. We estimate the probability for a
given supportive behaviorUt at step t based on the estimated prob-
abilities over the decoded states H :
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Figure 2: Transfer learning results. This graph shows the
number of errors as a function of the number of HMM
hidden states when tested on a transfer learning task. The
model is learned on an initial task with building block A
followed by B, and tested on a different task with building
block B followed by A.

4 RESULTS AND CONCLUSIONS
We show the number of errors as a function of the number of HMM
hidden states, averaged over ten runs for each, with increasing
numbers of labeled trajectories (Figure 1). The graph highlights a
trade-off between the complexity of the model and the number of
trajectories we wish to label. The higher the complexity, the better
the model can represent the task, yet the more labeled trajectories
are necessary. In our scenario, this trade-off results in a minimum
of 1 and an average number of 2 errors for a task with a total of 12
steps. Of course, this trade-off will differ for specific applications.

Another critical aspect in robot learning is that of transfer learn-
ing. When faced with a new task, a robot can speed up learning
via leveraging past knowledge about similar situations. We show
strong results for transfer learning, where we train on a task com-
posed of two main building blocks (block A followed by B), and test
on a different task composed of the blocks arranged differently (B
followed by A). We obtain as low as 4 errors when trained entirely
on the initial task (Figure 2). The baseline we compare against is
training and testing on the same, initial task. For our best results,
we perform worse than training on the task itself by a difference of
only 1 error, which happens when the HMM has 16 hidden states.

This transfer learning result represents a success for HRC sce-
narios like the one we consider herein. What this amounts to in a
real-world environment like a factory is being able to simply collect
observations of particular sub-tasks of larger, ongoing tasks. We
then only require users to label a single combination or way of
arranging these sub-tasks together, and we are able to export this
information in a way that serves many other possible tasks.
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