
Second-Order Know-How Strategies
Pavel Naumov

Vassar College

Poughkeepsie, NY

pnaumov@vassar.edu

Jia Tao

Lafayette College

Easton, PA

taoj@lafayette.edu

ABSTRACT
The fact that a coalition has a strategy does not mean that the

coalition knows what the strategy is. If the coalition knows the

strategy, then such a strategy is called a know-how strategy of

the coalition. The paper proposes the notion of a second-order

know-how strategy for the case when one coalition knows what

the strategy of another coalition is. The main technical result is a

sound and complete logical system describing the interplay between

the distributed knowledge modality and the second-order coalition

know-how modality.
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1 INTRODUCTION
In this paper we study the interplay between coalition strategies

and the distributed knowledge in multiagent systems.

1.1 Coalition Strategies
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Figure 1: State of Trafficw1.

Consider the traffic situation depicted in Figure 1, where a regular

vehicle d and three self-driving vehicles a, b, and c approach an

intersection. There are stop signs at the intersection facing cars

c and d . According to the traffic rules, these two cars must slow

down, stop, and yield to truck b.
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Suppose that the driver of car d does not notice the sign and, as

a result, this car is approaching the intersection with a constant

speed. If neither of the vehicles changes its behavior, car d will hit

the side of the rear half of truck b, at the location marked with a

red zigzag shape on the figure. Truck b can potentially slow down,

but then car d will hit the side of truck b in the front half instead of

the rear half. Thus, to avoid being struck by car d , truck b has to

accelerate and pass the intersection before car d does. We assume

that in this case if car a maintains the same speed, then there will be

a rear-end collision between truck b and car a. Hence, to avoid any

collision, not only must truck b accelerate, but car a must accelerate

as well. In other words, to prevent a collision, vehicles a and b must

engage in a strategic cooperation. We say that coalition {a,b} has
a strategy to prevent a collision.

The traffic situation is further complicated by two buildings,

shown in Figure 1 as grey rectangles. The buildings prevent car

a and truck b from seeing car d . Although coalition {a,b} has a
strategy to avoid collision, it does not know what this strategy is,

nor does it know that such a strategy exists. However, self-driving

car c can observe that car d is not slowing down, and it can make

coalition {a,b} aware of the presence of car d as well as its speed

and location. With the information shared by car c , not only will

coalition {a,b} have a strategy to avoid a collision, but it also will

know what this strategy is.

In general, the following cases might take place: (i) a coalition

does not have a strategy; (ii) a coalition has a strategy, but it does

not know that it has a strategy; (iii) a coalition knows that it has a

strategy, but it does not know what the strategy is; (iv) a coalition

knows that it has a strategy and it knows what this strategy is. In

the last case, we say that the coalition has a know-how strategy.

Know-how strategies were studied before under different names.

While Jamroga and Ågotnes talked about “knowledge to identify

and execute a strategy” [5], Jamroga and van der Hoek discussed

“difference between an agent knowing that he has a suitable strat-

egy and knowing the strategy itself” [6]. Van Benthem called such

strategies “uniform” [16]. Broersen talked about “knowingly do-

ing” [2], while Broersen, Herzig, and Troquard discussed modality

“know they can do” [3].

In our example, coalition {a,b} has a know-how strategy to avoid

a collision after car c shares the traffic informationwith the coalition.

In other words, it is not coalition {a,b} but the single-element

coalition {c} that knows what is the strategy of coalition {a,b}.
We refer to such strategies as second-order know-how strategies by

analogy with the commonly used term second-order knowledge [7].
Second-order know-how manifests itself in many settings. For

example, a teacher might know how a student can succeed or a

group of campaign advisers might know how a political party can

win the elections.
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1.2 Epistemic Transition Systems
We use the notion of an epistemic transition system to formalize the

concept of a second-order know-how strategy. A fragment of an

epistemic transition system corresponding to the traffic situation

described above is depicted on the diagram in Figure 2. In particular,

the traffic situation depicted in Figure 1 is represented by statew1

on this diagram. The arrows on the diagram correspond to possible

transitions of the system.

For the sake of simplicity, we assume that transitions of this

system only depend on the actions of agents a and b. Moreover,

each of agents a and b is assumed to have just three strategies: to

slow down (−), to maintain current speed (0), and to accelerate (+).

In Figure 2, transitions are labeled by the strategies of agents a and

b that accomplish the transition.

If a transition is labeled with strategy profile (x ,y), then x repre-

sents the strategy of car a and y represents the strategy of truck b.
Although there are nine possible transitions from statew1, corre-

sponding to nine possible strategy profiles (x ,y), the fragment of

this system (depicted in Figure 2) shows only four such transitions

leading to statesw4,w5,w6, andw7.

Aswe discussed earlier, vehiclesa andb can use coalition strategy
(+,+) to avoid a collision. However, they do not know that this

coalition strategy would prevent a collision because they do not

even know the presence of vehicled , let alone its location and speed.
To show this formally, consider a hypothetical statew2 in Figure 2.

In this state, vehicle d is currently at the spot marked by symbol

X on Figure 1. In this state, car d is closer to the intersection than

it is in state w1. A simultaneous acceleration of vehicles a and b
(coalition strategy (+,+)) would not prevent a collision because

car d would hit the side of truck b in the rear half. Instead, in state

w2, coalition {a,b} can use, for example, strategy (0,−) to avoid

a collision. Under this strategy, car a maintains the current speed

and truck b slows down. Since vehicles a and b cannot see vehicle

d , they cannot distinguish statesw1 andw2. We define a coalition

know-how strategy at statew1 as a strategy that would succeed in

all states indistinguishable from statew1 by the coalition. Thus, the

transition system whose fragment is depicted on Figure 2 does not

have a know-how strategy for coalition {a,b} to avoid a collision in

statew1. Statesw1 andw2 are not the only indistinguishable states

in this system. For example, statew3 in the same figure, where car

d is not present at the scene, is also indistinguishable from states

w1 andw2 to coalition {a,b}.

1.3 Second-Order Know-How Modality
Recall that self-driving car c can observe that car d is not slowing

down. Thus, car c can distinguish statesw1 from statesw2 andw3 of

this system. The system might have other states indistinguishable

to car c from state w1. These states, for example, could differ by

traffic situations on nearby streets. However, in all these states,

coalition {a,b} can use strategy (+,+) to avoid a collision. Hence,

we say that agent c knows how coalition {a,b} can avoid a collision.

We denote this fact byw1 ⊩ H
{a,b }
{c } (“avoid a collision”). In general,

we writew ⊩ HD
C φ if coalitionC has distributed knowledge of how

coalition D can achieve outcome φ from statew . We call modality

H the second-order know-how modality. Although in our example

coalitions D = {a,b} and C = {c} are disjoint, we do allow these

w1

w4: b-d 
rear-side 
collision

w2

w3

w5: a-b 
rear-end 
collision

(0,0)
(0,+)

w6: no 
collision

(+,+)

w8: b-d 
front-side 
collision

(0, )

w10: no 
collision

(0, )

(0,0)

w9: b-d 
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collision

(+,+)

w11: a-b 
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collision
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collision

a,b

a,b
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Figure 2: A fragment of an epistemic transition system.

coalitions to have common elements. Modality HC
C expresses the

existence of a know-how strategy of coalition C known to the

coalition itself. Thus, it expresses an existence of a first-order know-
how strategy of coalition C .

Properties of first-order know-how modalities and their inter-

play with different forms of the knowledge modality have been

studied before. Ågotnes and Alechina [1] proposed a complete

axiomatization of an interplay between single-agent knowledge

and first-order coalition know-how modalities to achieve a goal

in one step. A modal logic that combines the distributed knowl-

edge modality with the first-order coalition know-how modality

to maintain a goal was axiomatized by Naumov and Tao [8]. A

sound and complete logical system in a single-agent setting for

know-how strategies to achieve a goal in multiple steps rather than

to maintain a goal is developed by Fervari, Herzig, Li, and Wang [4].

A trimodal logical system that describes an interplay between the

(not know-how) coalition strategic modality, the first-order coali-

tion know-how modality, and the distributed knowledge modality

was developed by Naumov and Tao [10]. They also proposed a

logical system that combines the first-order coalition know-how

modality with the distributed knowledge modality in the perfect

recall setting [9, 12]. Wang proposed a complete axiomatization of

“knowing how” as a binary modality [17, 18], but his logical system

does not include the knowledge modality.

The main goal of this paper is to describe the interplay between

the second-order know-how modality H and the distributed knowl-

edge modality K. In other words, we axiomatize all properties in

the bimodal language that are true in all states of all epistemic tran-

sition systems. In addition to the distributed version of S5 axioms

for modality K, our logical system contains the Cooperation axiom,

introduced by Marc Pauly [13, 14] for strategies in general,

HD1

C1

(φ → ψ ) → (HD2

C2

φ → HD1∪D2

C1∪C2

ψ ), (1)

where D1 ∩D2 = �. Informally, this axiom states that second-order

know-how strategies of two disjoint coalitions can be combined to
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form a single second-order know-how strategy to achieve a com-

mon goal. The system also has the Strategic Introspection axiom:

HD
C φ → KCH

D
C φ, (2)

which states that if coalition C knows how coalition D can achieve

the goal, then coalitionC knows that it knows how coalition D can

achieve this. A version of this axiom for the first-order know-how

appeared in [1]. In addition, our logical system contains the Empty

coalition axiom which appeared first in [10]:

K�φ → H�
�φ. (3)

This axiom says that if a statement is known to the empty coalition,

then the empty coalition has a first-order know-how strategy to

achieve it. The axiom is true because the empty coalition can know

only statements that are true in each state of the given epistemic

transition system. The final and perhaps the most interesting axiom

of our logical system is the Knowledge of Unavoidability axiom:

KAH
�
Bφ → H�

Aφ. (4)

Formula H�
Bφ means that coalition B knows that φ will be achieved

no matter how agents act. Thus, coalition B knows that φ is un-

avoidable. The axiom states that if coalition A knows that coalition

B knows that φ is unavoidable, then coalition A also knows that φ
is unavoidable. To the best of our knowledge, this axiom does not

appear in the existing literature. The main technical results of this

paper are the soundness and the completeness of the logical system

describing the interplay between modalities K and H. The system
extends epistemic logic S5 with distributed knowledge by axioms

(1), (2), (3), and (4).

1.4 Harmony
Proving the completeness theorem for the interplay between knowl-

edge and second-order know-how modalites is significantly more

difficult than proving corresponding completeness theorems for bi-

modal logical systems describing the interplay between knowledge

and first-order know-how modalities [1, 4, 8, 9, 12]. In the proof we

use notions of harmony and complete harmony (see Definition 6.2

and Definition 6.6). The proof technique based on harmony has

been originally developed by Naumov and Tao [10] for the trimodal
logical system that describes the interplay between a distributed

knowledge modality, a (not know-how) strategic modality, and a

first-order know-how modality. We have modified the definitions

of harmony and complete harmony for this technique to work in

the current setting. See Section 6.1 and Section 6.2 for details.

1.5 Paper Outline
This paper is organized as follows. In Section 2 we introduce formal

syntax and semantics of the logical system. In Section 3 we list

its axioms and inference rules. Section 4 provides examples of

formal proofs. The proofs of the soundness and the completeness

are presented in Sections 5 and 6. Section 7 concludes the paper.

2 SYNTAX AND SEMANTICS
Throughout the paper we fix a countable set of propositional vari-

ables and a countable set of agents A. A coalition is an arbitrary

subset of A. A strategy profile of a coalition C is an arbitrary func-

tion that assigns a value from some domain ∆ to each agent in

coalitionC . We denote the set of all such strategy profiles byC∆
. A

complete strategy profile is a strategy profile of the coalition A.

Following the convention in game theory, we consider a strategy

profile as a (possibly infinite) tuple of values from ∆ indexed by set

C . If s ∈ C∆
and a ∈ C , then by (s)a we denote the component of

this tuple corresponding to the index value a, which technically is

the value of function s on the argument a.

Definition 2.1. A tuple (W , {∼a }a∈A ,∆,M,π ) is an (epistemic)

transition system, if

(1) W is a set (of epistemic states),

(2) ∼a is an indistinguishability equivalence relation on setW
for each a ∈ A,

(3) ∆ is a nonempty set, called the domain of actions,

(4) M ⊆W × ∆A ×W is an aggregation mechanism,

(5) π is a function from propositional variables to subsets ofW .

A fragment of a transition system is depicted in Figure 2. In this

example, setW consists of states such asw1,w2, andw3. Relation∼a
is denoted by dashed lines. The domain of actions ∆ is set {−, 0,+}.
For each state, mechanismM specifies the next state based on the

actions of individual agents. The mechanism is captured by the

directed edges between the states, labeled with strategy profiles.

There are two important things to note about the aggregation

mechanism. First, the mechanism might be non-deterministic and

thus we formally define it as a ternary relation between the current

state, the strategy profile, and the next state. Second, the next state

might not exist. If the next state does not exist for the selected

strategy profile, then the transition system terminates.

Definition 2.2. For any states w1,w2 ∈ W and any coalition C ,
letw1 ∼C w2 ifw1 ∼a w2 for each agent a ∈ C .

Lemma 2.3. For each coalition C , relation ∼C is an equivalence
relation on the set of epistemic statesW . □

Definition 2.4. For any strategy profiles s1 and s2 of coalitions
C1 and C2 respectively and any coalition C ⊆ C1 ∩C2, let s1 =C s2
if (s1)a = (s2)a for each a ∈ C .

Lemma 2.5. For any coalition C , relation =C is an equivalence
relation on the set of all strategy profiles of coalitions containing
coalition C . □

Definition 2.6. Let Φ be the minimal set of formulae such that

(1) p ∈ Φ for each propositional variable p,
(2) ¬φ,φ → ψ ∈ Φ for all formulae φ,ψ ∈ Φ,
(3) KCφ,HD

C φ ∈ Φ for each coalition C , each finite coalition D,
and each formula φ ∈ Φ.

It is crucial in the proof of completeness that superscript D of

modality HD
C is finite. For the sake of generality, we allow subscript

C to be infinite. We assume that the constant ⊤ and the conjunction

∧ are defined through connectives ¬ and → in the standard way.

Furthermore, for any finite set of formulae X , by ∧X we mean the

conjunction of all formulae in set X . In particular, ∧� is formula ⊤.
The next definition is the key definition of this paper. Its part (5)

specifies the semantics of the second-order know-howmodalityHD
C .

Informally,w ⊩ HD
C φ means that there is a strategy of the coalition

D that can be used to achieve φ from every state indistinguishable

from statew by the coalition C .
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Definition 2.7. For any epistemic state w ∈ W of a transition

system (W , {∼a }a∈A ,V ,M,π ) and any formula φ ∈ Φ, let relation
w ⊩ φ be defined as follows:

(1) w ⊩ p ifw ∈ π (p), where p is a propositional variable,

(2) w ⊩ ¬φ ifw ⊮ φ,
(3) w ⊩ φ → ψ ifw ⊮ φ orw ⊩ ψ ,
(4) w ⊩ KCφ ifw ′ ⊩ φ for eachw ′ ∈W such thatw ∼C w ′

,

(5) w ⊩ HD
C φ if there is a strategy profile s ∈ VD

such that for

any two statesw ′,u ∈W and any complete strategy profile

s′, ifw ∼C w ′
, s =D s′, and (w ′, s′,u) ∈ M , then u ⊩ φ.

3 AXIOMS
In additional to the propositional tautologies in language Φ, our
logical system consists of the following axioms:

(1) Truth: KCφ → φ,
(2) Negative Introspection: ¬KCφ → KC¬KCφ,
(3) Distributivity: KC (φ → ψ ) → (KCφ → KCψ ),
(4) Monotonicity: KCφ → KDφ, if C ⊆ D,

(5) Cooperation: HD1

C1

(φ → ψ ) → (HD2

C2

φ → HD1∪D2

C1∪C2

ψ ), where
D1 ∩ D2 = �.

(6) Strategic Introspection: HD
C φ → KCHD

C φ,

(7) Empty Coalition: K�φ → H�
�φ.

(8) Knowledge of Unavoidability: KAH�
Bφ → H�

Aφ.

We write ⊢ φ if formula φ is provable from the axioms of our logical

system using Necessitation, Strategic Necessitation, and Modus

Ponens inference rules:

φ

KCφ
φ

HD
C φ

φ, φ → ψ

ψ
.

We write X ⊢ φ if formula φ is provable from the theorems of the

logical system and a set of additional axioms X using only Modus

Ponens inference rule.

4 EXAMPLES OF DERIVATIONS
We show the soundness of the above logical system in Section 5.

Below, we provide some examples of formal proofs in this system.

These results are used later in the proof of the completeness.

Lemma 4.1. ⊢ HD1

C1

φ → HD2

C2

φ where C1 ⊆ C2 and D1 ⊆ D2.

Proof. Statement φ → φ is a tautology. Thus, by the Strate-

gic Necessitation inference rule, ⊢ HD2\D1

C2\C1

(φ → φ). Next, by the

Cooperation axiom and due to C1 ⊆ C2 and D1 ⊆ D2,

⊢ HD2\D1

C2\C1

(φ → φ) → (HD1

C1

φ → HD2

C2

φ).

Hence, ⊢ HD1

C1

φ → HD2

C2

φ by the Modus Ponens inference rule. □

Lemma 4.2. If φ1, . . . ,φn ⊢ ψ , then
(1) KCφ1, . . . ,KCφn ⊢ KCψ ,
(2) HD1

C1

φ1, . . . ,H
Dn
Cn

φn ⊢ H
⋃n
i=1 Di⋃n
i=1Ci

ψ , where sets D1,. . . ,Dn are

pairwise disjoint.

Proof. To prove statement (2), apply the deduction lemma for

propositional logic n time. Then, ⊢ φ1 → (· · · → (φn → ψ )). Thus,
⊢ H�

�(φ1 → (· · · → (φn → ψ ))), by the Strategic Necessitation

inference rule. Hence, ⊢ HD1

C1

φ1 → HD1

C1

(φ2 · · · → (φn → ψ )) by

the Cooperation axiom and the Modus Ponens inference rule. Then,

HD1

C1

φ1 ⊢ HD1

C1

(φ2 · · · → (φn → ψ )) by the Modus Ponens inference

rule. Thus, again by the Cooperation axiom and Modus Ponens,

HD1

C1

φ1 ⊢ HD2

C2

φ2 → HD1∪D2

C1∪C2

(φ3 · · · → (φn → ψ )). Therefore,

HD1

C1

φ1, . . . ,H
Dn
Cn

φn ⊢ H
⋃n
i=1 Di⋃n
i=1Ci

ψ , by repeating the last two steps

n − 2 times. The proof of the first statement is similar, but it uses

the Distributivity axiom instead of the Cooperation axiom. □

5 SOUNDNESS
The proof of the soundness of S5 axioms for distributed knowledge

(Truth, Negative Introspection, Distributivity, and Monotonicity)

is standard. In this section we prove the soundness of each of the

remaining axioms as a separate lemma. At the end of this section,

Theorem 5.5 states the soundness of the whole system.

Lemma 5.1. If w ⊩ HD1

C1

(φ → ψ ), w ⊩ HD2

C2

φ, and D1 ∩ D2 = �,
thenw ⊩ HD1∪D2

C1∪C2

ψ .

Proof. Suppose thatw ⊩ HD1

C1

(φ → ψ ). Then, by Definition 2.7,

there is a strategy profile s1 ∈ ∆D1
such that for any two epistemic

states w ′,w ′′
and any complete strategy profile s′

1
, if w ∼C1

w ′
,

s1 =D1
s′
1
, and (w ′, s′

1
,w ′′) ∈ M , then w ′′ ⊩ φ → ψ . Similarly,

assumptionw ⊩ HD2

C2

φ implies that there is a strategy profile s2 ∈
∆D2

such that for any two epistemic statesw ′,w ′′
and any complete

strategy profile s′
2
, if w ∼C2

w ′
, s2 =D2

s′
2
, and (w ′, s′

2
,w ′′) ∈ M ,

thenw ′′ ⊩ φ.
Define a strategy profile s of coalition D1 ∪ D2 as follows:

(s)a =
{
(s1)a , if a ∈ D1,

(s2)a , if a ∈ D2.

The strategy profile s is well-defined because D1 ∩ D2 = �.
Consider any states w ′,w ′′ ∈ W and any complete strategy

profile s′ such thatw ∼C1∪C2
w ′

, s =D1∪D2
s′ and (w ′, s′,w ′′) ∈ M .

By Definition 2.7, it suffices to show that w ′′ ⊩ ψ . Indeed, by
Definition 2.2, assumption w ∼C1∪C2

w ′
implies that w ∼C1

w ′

and w ∼C2
w ′

. At the same time, by Definition 2.4, s =D1∪D2
s′

implies that s =D1
s′ and s =D2

s′. Thus, w ′′ ⊩ φ → ψ and

w ′′ ⊩ φ by the choice of strategies s1 and s2. Therefore,w ′′ ⊩ ψ by

Definition 2.7. □

Lemma 5.2. Ifw ⊩ HD
C φ, thenw ⊩ KCH

D
C φ.

Proof. Suppose that w ⊩ HD
C φ. Then, by Definition 2.7, there

is a strategy profile s ∈ ∆D such that for any two epistemic states

w ′,w ′′
and any complete strategy profile s′, if w ∼C w ′

, s =D s′,
and (w ′, s′,w ′′) ∈ M , thenw ′′ ⊩ φ.

Consider any u ∈ W such that w ∼C u. By Definition 2.7, it

suffices to show that u ⊩ HD
C φ. Next, consider any epistemic states

u ′,u ′′ and any complete strategy profile s′ such that u ∼C u ′,
s =D s′, and (u ′, s′,u ′′) ∈ M . Again by Definition 2.7, it suffices to

show that u ′′ ⊩ φ. Indeed, note that w ∼C u and u ∼C u ′ imply

that w ∼C u ′ by Lemma 2.3. Hence, u ′′ ⊩ φ by the choice of the

strategy profile s. □

Lemma 5.3. Ifw ⊩ K�φ, thenw ⊩ H�
�φ.
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Proof. Suppose w ⊩ K�φ. Let s be the unique element of the

set ∆�
. Since ∆�

is the set of all functions from � to ∆, assuming

functions are defined as sets of pairs, formally s is the empty set.

Consider any two epistemic states w ′,w ′′
and any complete

strategy profile s′ such thatw ∼� w ′
, s =� s′, and (w ′, s′,w ′′) ∈ M .

By Definition 2.7, it suffices to show that w ′′ ⊩ φ. Indeed, note
thatw ∼� w ′′

by Definition 2.2. It then follows from assumption

w ⊩ K�φ and Definition 2.7 thatw ′′ ⊩ φ. □

Lemma 5.4. Ifw ⊩ KAH�
Bφ, thenw ⊩ H

�
Aφ.

Proof. Let s be the unique element of the set ∆�
. Consider any

two epistemic states w ′,w ′′
and any complete strategy profile s′

such thatw ∼A w ′
, s =� s′, and (w ′, s′,w ′′) ∈ M . By Definition 2.7,

it suffices to show thatw ′′ ⊩ φ.
Assumptionw ⊩ KAH�

Bφ implies thatw ′ ⊩ H�
Bφ due tow ∼A w ′

and Definition 2.7. Thus, there is a strategy profile ŝ such that for

any two epistemic states u ′,u ′′ and any complete strategy profile

ŝ′, ifw ′ ∼B u ′, ŝ =� ŝ′, and (u ′, ŝ′,u ′′) ∈ M , then u ′′ ⊩ φ.
Let u ′ = w ′

, u ′′ = w ′′
, and ŝ′ = s′. Note thatw ′ ∼B w ′ = u ′ by

Definition 2.2 and that ŝ =� s′ by Definition 2.4. Thus,w ′′ ⊩ φ. □

Theorem 5.5. If ⊢ φ, then w ⊩ φ for each epistemic state w of
each epistemic transition system. □

6 COMPLETENESS
This section contains a proof of the completeness of the logical

system. We start with a well-known observation that Positive In-

trospection principle is provable in S5.

Lemma 6.1. ⊢ KCφ → KCKCφ.

Proof. Formula ¬KCφ → KC¬KCφ is an instance of the Neg-

ative Introspection axiom. Thus, ⊢ ¬KC¬KCφ → KCφ by the law

of contrapositive in the propositional logic. Hence, by the Neces-

sitation inference rule, ⊢ KC (¬KC¬KCφ → KCφ). Thus, by the

Distributivity axiom and the Modus Ponens inference rule,

⊢ KC¬KC¬KCφ → KCKCφ. (5)

At the same time, KC¬KCφ → ¬KCφ is an instance of the Truth

axiom. Thus, ⊢ KCφ → ¬KC¬KCφ by contraposition. Hence, tak-

ing into account the following instance of the Negative Introspec-

tion axiom: ¬KC¬KCφ → KC¬KC¬KCφ, one can conclude that

⊢ KCφ → KC¬KC¬KCφ. The latter, together with statement (5),

implies the statement of the lemma by propositional reasoning. □

6.1 Harmony
The proof of the completeness is based on the harmony technique

proposed by Naumov and Tao [10, 11]. Here, we modify definitions

of harmony and complete harmony from [10, 11] to account for the

fact that parametersC and D of the modality HD
C might be different.

Definition 6.2. A pair (Y ,Z ) is in harmony if Y ⊬ H�
C¬ ∧ Z ′

for

each coalition C and each finite set Z ′ ⊆ Z .

Lemma 6.3. If pair (Y ,Z ) is in harmony, then sets Y and Z are
consistent.

Proof. First, suppose that set Y is not consistent. Thus, Y ⊢
H�
�¬∧�. Therefore, by Definition 6.2, pair (Y ,Z ) is not in harmony.

Next, suppose that set Z is inconsistent. Then, there is a finite

set Z ′ ⊆ Z such that ⊢ ¬ ∧ Z ′
. Hence, ⊢ H�

�¬ ∧ Z ′
by the Strategic

Necessitation inference rule. Thus, Y ⊢ H�
�¬ ∧ Z ′

. Therefore, by

Definition 6.2, pair (Y ,Z ) is not in harmony. □

Lemma 6.4. If X ⊬ HD
C φ and f is an arbitrary function from

coalition D to set Φ, then pair (Y ,Z ) is in harmony, where

Y = {ψ | KCψ ∈ X },
Z = {¬φ} ∪ {χ | K�χ ∈ X } ∪

{τ | HF
Eτ ∈ X , F ⊆ D,E ⊆ C,∀a ∈ F (f (a) = τ )}.

Proof. Let pair (Y ,Z ) not be in harmony. Then, Y ⊢ H�
B¬ ∧ Z ′

for some set B ⊆ A and some finite set Z ′ ⊆ Z by Definition 6.2.

Thus, by the definition of set Y , there are formulae

KCψ1, . . . ,KCψn ∈ X (6)

such thatψ1, . . . ,ψn ⊢ H�
B¬ ∧ Z ′. By Lemma 4.2,

KCψ1, . . . ,KCψn ⊢ KCH�
B¬ ∧ Z ′.

Then, by the Knowledge of Unavoidability axiom

KCψ1, . . . ,KCψn ⊢ H�
C¬ ∧ Z ′. (7)

Since Z ′ ⊆ Z , by the definition of set Z , there are

formulae K�χ1, . . . ,K�χm ∈ X , (8)

and formulae HF1
E1
τ1, . . . ,H

Ft
Et
τt ∈ X , (9)

such that F1, . . . , Ft ⊆ D,E1, . . . ,Et ⊆ C, (10)

∀i ≤ t ∀a ∈ Fi (f (a) = τi ), (11)

and χ1, . . . , χm ,τ1, . . . ,τt ,¬φ ⊢ ∧Z ′.

By the deduction theorem for propositional logic, the last statement

implies that χ1, . . . , χm ,τ1, . . . ,τt ⊢ ¬φ → ∧Z ′
. Hence, by the law

of contrapositive, χ1, . . . , χm ,τ1, . . . ,τt ⊢ ¬∧Z ′ → φ. Then by the

Modus Ponens inference rule,

¬ ∧ Z ′, χ1, . . . , χm ,τ1, . . . ,τt ⊢ φ. (12)

Without loss of generality, we assume that formulae τ1, . . . ,τt are
pairwise different. Hence, sets F1, . . . , Ft are pairwise disjoint, by
statement (11). Thus, by Lemma 4.2, statement (12) implies that

H�
C¬ ∧ Z ′,H�

�χ1, . . . ,H
�
�χm ,H

F1
E1
τ1, . . . ,H

Ft
Et
τt

⊢ HF1∪···∪Ft
C∪E1∪···∪Etφ.

Hence, by Lemma 4.1 and due to statement (10),

H�
C¬ ∧ Z ′,H�

�χ1, . . . ,H
�
�χm ,H

F1
E1
τ1, . . . ,H

Ft
Et
τt ⊢ HD

C φ.

Then, by the Empty Coalition axiom,

H�
C¬ ∧ Z ′,K�χ1, . . . ,K�χm ,H

F1
E1
τ1, . . . ,H

Ft
Et
τt ⊢ HD

C φ.

Therefore, by statement (7),

KCψ1, . . . ,KCψn ,K�χ1, . . . ,K�χm ,H
F1
E1
τ1, . . . ,H

Ft
Et
τt ⊢HD

C φ.

It then follows from statements (6), (8), and (9) that X ⊢ HD
C φ. □

Lemma 6.5. For any pair (Y ,Z ) in harmony, any formula φ ∈ Φ,
and any setC ⊆ A, either pair (Y ∪ {¬H�

Cφ},Z ) or pair (Y ,Z ∪ {φ})
is in harmony.
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Proof. Suppose that neither pair (Y ∪ {¬H�
Cφ},Z ) nor pair

(Y ,Z ∪ {φ}) is in harmony. Then, by Definition 6.2, there are sets

E1,E2 ⊆ A and finite sets Z1 ⊆ Z and Z2 ⊆ Z ∪ {φ} such that

Y ,¬H�
Cφ ⊢ H�

E1
¬ ∧ Z1 and Y ⊢ H�

E2
¬ ∧ Z2. Let D = C ∪ E1 ∪ E2.

Then, by Lemma 4.1 applied three times, we have

Y ,¬H�
Dφ ⊢ H�

D¬ ∧ Z1 (13)

and

Y ⊢ H�
D¬ ∧ Z2. (14)

Let Z0 = Z1 ∪ (Z2 \ {φ}). Then, formulae ∧Z0 → ∧Z1 and φ ∧
(∧Z0) → ∧Z2 are propositional tautologies because Z1 ⊆ Z0 and
Z2 ⊆ Z0∪{φ}. Thus, by the law of contrapositive, ⊢ ¬∧Z1 → ¬∧Z0
and ⊢ ¬ ∧ Z2 → ¬(φ ∧ (∧Z0)). Hence, ⊢ ¬ ∧ Z1 → ¬ ∧ Z0 and

⊢ ¬ ∧ Z2 → (φ → ¬ ∧ Z0). Therefore, ¬ ∧ Z1 ⊢ ¬ ∧ Z0 and

¬ ∧ Z2 ⊢ φ → ¬ ∧ Z0 by the Modus Ponens inference rule. Thus,

by Lemma 4.2,

H�
D¬ ∧ Z1 ⊢ H�

D¬ ∧ Z0,

H�
D¬ ∧ Z2 ⊢ H�

D (φ → ¬∧ Z0).

Then, due to statements (13) and (14),

Y ,¬H�
Dφ ⊢ H�

D¬ ∧ Z0, (15)

Y ⊢ H�
D (φ → ¬∧ Z0). (16)

By the Cooperation axiom and the Modus Ponens inference rule,

formula (16) implies thatY ,H�
Dφ ⊢ H�

D¬∧Z0.Hence,Y ⊢ H�
D¬∧Z0

by the laws of propositional reasoning from statement (15). The

last statement, by Definition 6.2, contradicts the assumption that

pair (Y ,Z ) is in harmony because Z0 ⊆ Z . □

6.2 Complete Harmony
Definition 6.6. A pair in harmony (Y ,Z ) is in complete harmony

if for each φ ∈ Φ and each coalition C , either ¬H�
Cφ ∈ Y or φ ∈ Z .

Lemma 6.7. If pair (Y ,Z ) is in harmony, then there is a pair in
complete harmony (Y ′,Z ′), where Y ⊆ Y ′ and Z ⊆ Z ′.

Proof. Recall that the set of agent A and the set of proposi-

tional variables are countable. Thus, the set of all formulae Φ is

also countable. Let sequence H�
C1

φ1,H�
C2

φ2, . . . be an enumeration

of the set {H�
Cφ | φ ∈ Φ,C ⊆ A}. We define two chains of sets

Y1 ⊆ Y2 ⊆ . . . and Z1 ⊆ Z2 ⊆ . . . such that pair (Yn ,Zn ) is in
harmony for each n ≥ 1. These two chains are defined recursively

as follows:

(1) Y1 = Y and Z1 = Z ,
(2) if pair (Yn ,Zn ) is in harmony, then, by Lemma 6.5, either pair

(Yn ∪ {¬H�
Cn
φn },Zn ) or pair (Yn ,Zn ∪ {φn }) is in harmony.

Let (Yn+1,Zn+1) be (Yn ∪ {¬H�
Cn
φn },Zn ) in the former case

and (Yn ,Zn ∪ {φn }) in the latter case.

Let Y ′ =
⋃
n Yn and Z ′ =

⋃
n Zn . Note that Y = Y1 ⊆ Y ′

and

Z = Z1 ⊆ Z ′
.

We next show that pair (Y ′,Z ′) is in harmony. Suppose the

opposite. Then, by Definition 6.2, there is a coalition C and a finite

set Z ′′ ⊆ Z ′
such that Y ′ ⊢ H�

C¬∧Z ′′
. Since a deduction uses only

finitely many assumptions, there exists an integer n1 ≥ 1 such that

Yn1
⊢ H�

C¬ ∧ Z ′′. (17)

At the same time, since set Z ′′
is finite, there must exist an integer

n2 ≥ 1 such thatZ ′′ ⊆ Zn2
. Letn = max{n1,n2}. Note that¬∧Z ′′ ⊢

¬ ∧ Zn because Z ′′ ⊆ Zn2
⊆ Zn . Thus, H�

C¬ ∧ Z ′′ ⊢ H�
C¬ ∧ Zn by

Lemma 4.2. Hence, Yn1
⊢ H�

C¬ ∧ Zn due to statement (17). Thus,

Yn ⊢ H�
C¬ ∧ Zn because Yn1

⊆ Yn . Then, pair (Yn ,Zn ) is not in
harmony, which contradicts the choice of pair (Yn ,Zn ). Therefore,
pair (Y ′,Z ′) is in harmony.

We finally show that pair (Y ′,Z ′) is in complete harmony. Indeed,

consider any formula H�
Cφ ∈ Φ. Since sequence H�

C1

φ1,H�
C2

φ2, . . .

is an enumeration of all formulae in the set {H�
Cφ | φ ∈ Φ,C ⊆ A},

there must exist an integer k ≥ 1 such that H�
Cφ = H�

Ck
φk . Then,

by the choice of pair (Yk+1,Zk+1), either ¬H�
Cφ = ¬H�

Ck
φk ∈

Yk+1 ⊆ Y ′
or φ = φk ∈ Zk+1 ⊆ Z ′

. Therefore, the pair (Y ′,Z ′) is
in complete harmony. □

6.3 Canonical Epistemic Transition System
In this section, we use the “unravelling” technique [15] to define a

canonical transition system ETS(X0) = (W , {∼a }a∈A ,∆,M,π ) for
an arbitrary maximal consistent set of formulae X0 ⊆ Φ.

Definition 6.8. The set of epistemic statesW consists of all finite

sequences X0,C1,X1,C2, . . . ,Cn ,Xn , such that

(1) n ≥ 0,

(2) Xi is a maximal consistent subset of Φ for each i ≥ 1,

(3) Ci is a coalition for each i ≥ 1,

(4) {φ | KCiφ ∈ Xi−1} ⊆ Xi for each i ≥ 1.

SetW can be viewed as a tree whose nodes are labeled with

maximal consistent sets andwhose edges are labeled with coalitions.

For any sequence x = x1, . . . ,xn and an element y, by sequence

x :: y we mean x1, . . . ,xn ,y. If sequence x is nonempty, then by

hd(x) we mean element xn . The abbreviation hd stands for “head”.

Definition 6.9. For any state w = X0,C1, . . . ,Cn ,Xn and any

statew ′ = X0,C
′
1
, . . . ,C ′

m ,X
′
m , letw ∼a w ′

if there is k such that

(1) 0 ≤ k ≤ min{n,m},
(2) Xi = X ′

i for each i such that 1 ≤ i ≤ k ,
(3) Ci = C

′
i for each i such that 1 ≤ i ≤ k ,

(4) a ∈ Ci for each i such that k < i ≤ n,
(5) a ∈ C ′

i for each i such that k < i ≤ m.

Definition 6.10. ∆ = {(φ,C, [w]C ) | φ ∈ Φ,C ⊆ A,w ∈W }.

Informally, each action (φ,C, [w]C ) ∈ ∆ of an agent c ∈ C con-

sists of a formula φ that coalition C is trying to achieve and an

indistinguishability class [w]C . Class [w]C acts as a “signature”

with which coalition C “signs” its action. As per definition of the

mechanism M below, an action might have an effect only if it is

signed with the right signature.

Definition 6.11. For any states w,w ′ ∈ W and any complete

strategy profile s ∈ ΦA
, let (w, s,w ′) ∈ M if set hd(w ′) contains all

elements of the set

{φ | (HD
C φ ∈ hd(w)) ∧ ∀a ∈ D((s)a = (φ,C, [w]C ))}.

Definition 6.12. π (p) = {w ∈W | p ∈ hd(w)}.

This concludes the definition of the canonical epistemic transi-

tion system ETS(X0).
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6.4 Properties of the Canonical System
Lemma 6.13. For any state X0,C1,X1, . . . ,Cn ,Xn ∈W and any

integer k ≤ n, if KCφ ∈ Xn and C ⊆ Ci for each integer i such that
k < i ≤ n, then KCφ ∈ Xk .

Proof. Suppose that there is k ≤ n such that KCφ < Xk . Let
m be the maximal such k . Note thatm < n due to the assumption

KCφ ∈ Xn of the lemma. Thus,m + 1 ≤ n.
Assumption KCφ < Xm implies ¬KCφ ∈ Xm due to the max-

imality of the set Xm . Hence, Xm ⊢ KC¬KCφ by the Negative

Introspection axiom. Thus, Xm ⊢ KCm+1¬KCφ by the Monotonicity

axiom and the assumption C ⊆ Cm+1 of the lemma (recall that

m + 1 ≤ n). Then, KCm+1¬KCφ ∈ Xm due to the maximality of the

setXm . Hence,¬KCφ ∈ Xm+1 by Definition 6.8. Thus, KCφ < Xm+1
due to the consistency of the set Xm+1, which is a contradiction

with the choice of integerm. □

Lemma 6.14. For any state X0,C1,X1, . . . ,Cn ,Xn ∈W and any
integer k ≤ n, if KCφ ∈ Xk and C ⊆ Ci for each integer i such that
k < i ≤ n, then φ ∈ Xn .

Proof. We prove the lemma by induction on the distance be-

tween n and k . In the base case n = k , the assumption KCφ ∈ Xn
implies Xn ⊢ φ by the Truth axiom. Therefore, φ ∈ Xn due to the

maximality of set Xn .
Suppose thatk < n. AssumptionKCφ ∈ Xk impliesXk ⊢ KCKCφ

by Lemma 6.1. Thus, Xk ⊢ KCk+1KCφ by the Monotonicity axiom,

the condition k < n of the inductive step, and the assumption

C ⊆ Ck+1 of the lemma. Then, KCk+1KCφ ∈ Xk by the maximality

of set Xk . Hence, KCφ ∈ Xk+1 by Definition 6.8. Therefore, φ ∈ Xn
by the induction hypothesis. □

The next lemma follows from Lemma 6.13, Lemma 6.14, and

Definition 6.9 because there is a unique path between any two

nodes in a tree.

Lemma 6.15. For any epistemic statesw,w ′ ∈W such thatw ∼C
w ′, if KCφ ∈ hd(w), then φ ∈ hd(w ′). □

For any triplev = (x ,y, z), by pr1(v), pr2(v), and pr3(v)we mean

x , y, and z, respectively.

Lemma 6.16. If w1,w2 ∈ pr3(v), then w1 ∼pr2(v) w2, for each
w1,w2 ∈W and each v ∈ ∆.

Proof. Let v = (φ,C, [w]C ), where φ ∈ Φ, C ⊆ A, and w ∈W .

Assumption w1,w2 ∈ pr3(v) implies that w1,w2 ∈ [w]C . Thus,
w1 ∼C w ∼C w2. Hence,w1 ∼C w2. Therefore,w1 ∼pr2(v) w2. □

Lemma 6.17. For any statew ∈W if ¬KCφ ∈ hd(w), then there is
a statew ′ ∈W such thatw ∼C w ′ and ¬φ ∈ hd(w ′).

Proof. Consider the set of formulae

X = {¬φ} ∪ {ψ | KCψ ∈ hd(w)}.

First, we show that set X is consistent. Assume the opposite. Then,

there are KCψ1, . . . ,KCψn ∈ hd(w) such thatψ1, . . . ,ψn ⊢ φ. Thus,
KCψ1, . . . ,KCψn ⊢ KCφ by Lemma 4.2. Therefore, hd(w) ⊢ KCφ
by the choice of formulae KCψ1, . . . ,KCψn , which contradicts the

consistency of set hd(w) due to the assumption ¬KCφ ∈ hd(w).

Let X̂ be a maximal consistent extension of set X and letw ′
be

sequence w :: C :: X . Note that w ′ ∈W by Definition 6.8 and the

choice of set X . Furthermore,w ∼C w ′
by Definition 6.9. To finish

the proof, note that ¬φ ∈ X ⊆ X̂ = hd(w ′) by the choice of X . □

Lemma 6.18. Letw,w ′,u ∈W be epistemic states, HD
C φ ∈ hd(w)

be a formula, and s be a complete strategy profile such that (s)a =
(φ,C, [w]C ) for each a ∈ D. If w ∼C w ′ and (w ′, s,u) ∈ M , then
φ ∈ hd(u).

Proof. Let HD
C φ ∈ hd(w). Then, hd(w) ⊢ KCHD

C φ by the Strate-

gic Introspection axiom. Thus, KCHD
C φ ∈ hd(w) by the maximality

of the set hd(w). Hence, HD
C φ ∈ hd(w ′) by Lemma 6.15 and the

assumptionw ∼C w ′
. Then, φ ∈ hd(u) by Definition 6.11 because

of assumption (w ′, s,u) ∈ M and assumption (s)a = (φ,C, [w]C )
for each a ∈ D. □

Lemma 6.19. For any statew ∈W , any formula ¬HD
C φ ∈ hd(w),

and any strategy profile s ∈ ∆D , there are epistemic statesw ′,u ∈W
and a complete strategy profile s′ such that w ∼C w ′, s =D s′,
(w ′, s′,u) ∈ M , and φ < hd(u).

Proof. Set D0 = {a ∈ D | pr2((s)a ) ⊈ C} is finite because set D
is finite by Definition 2.6. Let D0 = {a1, . . . ,an }.

Next, consider sets

Y = {ψ | KCψ ∈ hd(w)}
Z = {¬φ} ∪ {χ | K�χ ∈ hd(w)} ∪

{τ | HF
Eτ ∈ hd(w), F ⊆ D,E ⊆ C,∀a ∈ F (pr1((s)a ) = τ )}.

By Lemma 6.4, pair (Y ,Z ) is in harmony. Thus, by Lemma 6.7, there

is a pair (Y ′,Z ′) in complete harmony such thatY ⊆ Y ′
andZ ⊆ Z ′

.

By Lemma 6.3, sets Y ′
and Z ′

are consistent. Let Y ′′
and Z ′′

be any

maximal consistent extensions of sets Y ′
and Z ′

respectively.

Recall that n is the number of elements in set D0. Define se-

quencesw1, . . . ,wn+1 as follows:

w1 = w :: C :: Y ′′

w2 = w :: C :: Y ′′
:: C :: Y ′′

w3 = w :: C :: Y ′′
:: C :: Y ′′

:: C :: Y ′′

. . . . . .

wn+1 = w :: C :: Y ′′
:: C :: Y ′′ · · · :: C :: Y ′′︸                                    ︷︷                                    ︸

::C ::Y ′′
repeated n + 1 times

.

Claim 1. wk ∈W where 1 ≤ k ≤ n + 1.

Proof of Claim. We prove the claim by induction on integer k . If
k = 1, then, by Definition 6.8, it suffices to show that {φ | KCφ ∈
hd(w)} ⊆ Y ′′

. Indeed, by the choice ofY ,Y ′,Y ′′
, we have {φ | KCφ ∈

hd(w)} = Y ⊆ Y ′ ⊆ Y ′′
.

For the induction step, by Definition 6.8 and the definition of

w1, . . . ,wn+1, it suffices to show that {φ | KCφ ∈ Y ′′} ⊆ Y ′′
. This

follows from the Truth axiom and the maximality of set Y ′′
. □

Claim 2. w ∼C wi for each i ≤ n + 1.

Proof of Claim. The claims follows from Definition 2.2, Defini-

tion 6.9, and the definition ofw1, . . . ,wn+1. □

Claim 3. Ifwi ∼E w j and i , j, then E ⊆ C .
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Proof of Claim. Consider any agent a ∈ E. Assumptionwi ∼E w j
implies that wi ∼a w j by Definition 2.2. Thus, a ∈ C by Defini-

tion 6.9, the definition ofwi andw j , and the assumption i , j. □

Claim 4. There is an integer k ≤ n + 1 such that for each i ≤ n,
we havewk < pr3((s)ai ).

Proof of Claim. Suppose that for each k ≤ n+1 there is i ≤ n such

that wk ∈ pr3((s)ai ). Then, by the pigeonhole principle, there is

j ≤ n and k1,k2 ≤ n+1 such that k1 , k2 andwk1 ,wk2 ∈ pr3((s)aj ).
Hence, wk1 ∼pr2((s)aj ) wk2 by Lemma 6.16. Hence, pr2((s)aj ) ⊆ C

by Claim 3, which contradicts the choice of set D0. □
We now continue with the proof of the lemma. Choose w ′ ∈

{w1, . . . ,wn+1} such that

∀a ∈ D0 (w ′ < pr3((s)a )). (18)

Suchwk exists by Claim 4 and the choice of agents a1, . . . ,an . Let
u be sequencew :: � :: Z ′′

. Note that u ∈W by Definition 6.8.

Let s′ be the complete strategy profile such that

(s′)a =
{
(s)a , a ∈ D,

(⊤,C, [w]C ), otherwise.
(19)

Note that s =D s′ by Definition 2.4.

Claim 5. (w ′, s′,u) ∈ M .

Proof of Claim. Consider any formula HF
Eτ ∈ hd(w ′) such that

(s′)a = (τ ,E, [w ′]E ), for each a ∈ F . (20)

By Definition 6.11, it suffices to show that τ ∈ hd(u). We consider

the following four cases separately.

Case 1: F = �. Thus, either ¬HF
Eτ ∈ Y ′ ⊆ Y ′′ = hd(w ′) or τ ∈ Z ′ ⊆

Z ′′ = hd(u) by Definition 6.6, because pair (Y ′,Z ′) is in complete

harmony. Hence, τ ∈ hd(u) because set hd(w ′) is consistent and
HF
Eτ ∈ hd(w ′).

Case 2: F ⊈ D. Then, there is an agent f0 ∈ F such that f0 < D.
Hence, (s′)f0 = (τ ,E, [w ′]E ) by equation (20). At the same time,

(s′)f0 = (⊤,C, [w]C ) by equation (19). Thus, τ = ⊤. Therefore,
τ ∈ hd(u) because hd(u) is a maximal consistent set.

Case 3: F , � and F ⊆ D0. Consider any f0 ∈ F . Note that w ′ <
pr3((s)f0 ) by equation (18) because f0 ∈ F ⊆ D0. Therefore, w

′ <
[w ′]E by equation (20), which contradicts Lemma 2.3.

Case 4: F ⊆ D and F ⊈ D0. Then, there is an agent f0 ∈ F such that

f0 ∈ D \D0. Hence, pr2((s)f0 ) ⊆ C by the definition of set D0. Thus,

E ⊆ C due to equation (20).

Recall that HF
Eτ ∈ hd(w ′) by the choice of formula HF

Eτ . Hence,

hd(w ′) ⊢ KEHF
Eτ by the Strategic Introspection axiom. Hence,

hd(w ′) ⊢ KCHF
Eτ by the Monotonicity axiom because E ⊆ C .

Thus, KCHF
Eτ ∈ hd(w ′) because set hd(w ′) is a maximal consis-

tent set. Then, HF
Eτ ∈ hd(w) by Lemma 6.15 and Claim 2. Therefore,

τ ∈ Z ⊆ Z ′ ⊆ Z ′′ = hd(u) by the choice of set Z , equation (20),

and because F ⊆ D and E ⊆ C . □
To finish the proof of the lemma, notice that ¬φ ∈ Z ⊆ Z ′ ⊆

Z ′′ = hd(u) by the choice of set Z . Therefore, φ < hd(u) because
set hd(u) is consistent. □

Lemma 6.20. w ⊩ φ iff φ ∈ hd(w) for each epistemic statew ∈W
and each formula φ ∈ Φ.

Proof. We prove the lemma by induction on the structural com-

plexity of formula φ. If formula φ is a propositional variable, then

the required follows from Definition 2.7 and Definition 6.12. The

cases of formula φ being a negation or an implication follow from

Definition 2.7, and the maximality and the consistency of the set

hd(w) in the standard way.

Let formula φ have the form KCψ .
(⇒) Suppose that KCψ < hd(w). Then, ¬KCψ ∈ hd(w) by the

maximality of set hd(w). Thus, by Lemma 6.17, there is w ′ ∈ W
such thatw ∼C w ′

and ¬ψ ∈ hd(w ′). By the consistency of hd(w ′),
we have ψ < hd(w ′). Hence, w ′ ⊮ ψ by the induction hypothesis.

Therefore,w ⊮ KCψ by Definition 2.7.

(⇐) Assume that KCψ ∈ hd(w). Consider any w ′ ∈ W such that

w ∼C w ′
. By Definition 2.7, it suffices to show thatw ′ ⊩ ψ . Indeed,

ψ ∈ hd(w ′) by Lemma 6.15. Therefore, by the induction hypothesis,

w ′ ⊩ ψ .
Let formula φ have the form HD

Cψ .

(⇒) Suppose that HD
Cψ < hd(w). Then, ¬HD

Cψ ∈ hd(w) due to

the maximality of the set hd(w). Hence, by Lemma 6.19, for any

strategy profile s ∈ ∆D , there are epistemic states w ′,w ′′ ∈ W
and a complete strategy profile s′ such that w ∼C w ′

, s =D s′,
(w ′, s′,w ′′) ∈ M , andψ < hd(w ′′). Thus,w ′′ ⊮ ψ by the induction

hypothesis. Therefore,w ⊮ HD
Cψ by Definition 2.7.

(⇐) Assume that HD
Cψ ∈ hd(w). Let s be a strategy profile of

coalition D such that (s)a = (ψ ,C, [w]C ) for each agent a ∈ D.
Consider any epistemic statesw ′,w ′′ ∈W and a complete strategy

profile s′ such that w ∼C w ′
, s′ =D s, and (w ′, s,w ′′) ∈ M . By

Definition 2.7, it suffices to show thatw ′′ ⊩ ψ .
Indeed, (s′)a = (s)a = (ψ ,C, [w]C ) for each agent a ∈ D by the

choice of s and because s′ =D s. Thus, φ ∈ hd(w ′′) by Lemma 6.18

and due to the assumptions w ∼C w ′
and (w ′, s,w ′′) ∈ M . There-

fore,w ′′ ⊩ ψ by the induction hypothesis. □

6.5 Completeness: the Final Step
Theorem 6.21. If w ⊩ φ for each epistemic state w of each epis-

temic transition system, then ⊢ φ.

Proof. Suppose that ⊬ φ. Then let X0 be a maximal consistent

set such that ¬φ ∈ X0. Consider the canonical transition system

ETS(X0) defined in Section 6.3. Let w be the single-element se-

quence X0. Then, w ∈ W by Definition 6.8. Thus, w ⊩ ¬φ by

Lemma 6.20. Therefore,w ⊮ φ by Definition 2.7. □

7 CONCLUSION
In this paper, building on the existing body of literature on know-

how strategies, we introduced a notion of a second-order know-how

strategy and presented a sound and complete axiomatization of

the interplay between the distributed knowledge modality and

the second-order know-how modality. The logical system includes

a new principle, the Knowledge of Unavoidability, that was not

present in any of the existing axiomatizations of different forms

of the first-order know-how modality. The completeness proof is

based on a harmony technique [10] which was not necessary to

prove the completeness of bimodal logics of first-order know-how.
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