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ABSTRACT
This paper examines the problem of how to teach multiple tasks

to a Reinforcement Learning (RL) agent. To this end, we use Linear

Temporal Logic (LTL) as a language for specifying multiple tasks in

a manner that supports the composition of learned skills. We also

propose a novel algorithm that exploits LTL progression and off-

policy RL to speed up learning without compromising convergence

guarantees, and show that our method outperforms the state-of-

the-art approach on randomly generated Minecraft-like grids.
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1 INTRODUCTION
Reinforcement Learning (RL) algorithms are capable of learning

effective behaviours through trial and error interactions with their

environment [40]. The recent combination of these algorithms with

deep learning has enabled RL systems to perform well in complex

environments such as Atari games [32, 37] and robotics [3, 4, 18].

Our concern in this paper is with teaching an RL agent to perform

multiple tasks. For example, imagine that you have just purchased

a robot for your home. Ideally, you would like it to learn how to

perform several chores, such as picking up the dirty laundry, sorting

it, and popping it in the washer. However, if your robot uses RL, it

needs a reward signal to learn from, and therein lies a problem. Your

dirty socks are not going to reward the robot for being picked up.

Further the robot must have an adequate state representation (or

it needs to know what to remember) in order for these temporally

extended tasks – a selection of state properties that must occur over

time in accordance with some temporal pattern – to be learned by

RL algorithms that assume a Markovian reward function.

In this paper, we propose a means of teaching or instructing an

RL agent to perform multiple tasks by specifying those tasks in
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Linear Temporal Logic (LTL) and then defining reward functions

that provide positive reward for their successful completion. LTL

is a propositional, modal temporal logic first developed for the

verification of reactive systems [35]. It augments propositional logic

with modalities such as ^ (eventually), □ (always), and U (until) in
support of expressing statements such as “Always if clothes are on
the floor, put them in the hamper” or “Eventually make dinner.” Such
statements can be combined via logical connectives and nesting of

modal operators to provide task specifications. The syntax is natural

and compelling and, as a formal language, it has a well-defined

semantics and thus is unambiguously interpretable. Moreover, it is

possible to translate natural language into LTL [13].

To define a task, we use a high-level domain specific vocabulary

comprised of a set of propositions that relate to properties of the

environment or the occurrence of events that can be determined

to be true or false in the environment (e.g., clothes_on_floor,
made_dinner). This vocabulary can then be used by a human teacher

to specify any number of tasks that they would like the RL agent to

learn. By teaching the agent using a pre-defined vocabulary, we ob-

viate the need for the teacher to know the state representation used

by the agent. Instead, we require the existence of event- or property-

detectors that determine the truth or falsity of the propositions in

our domain-specific language, much in the way object-detectors are

used in vision applications. Further, the burden of tracking the satis-

faction of the temporally extended (and potentially non-Markovian)

LTL reward function is left to the LTL, removing the need for the

agent to know a priori what it needs to remember of the past in

order to learn to complete any task it may be given in the future.

The use of LTL for task specification can also be beneficial for

learning. For example, while many hierarchical RL techniques also

decompose tasks into subtasks, these methods then solve the sub-

tasks in a locally optimal way such that global optimality can be lost

when they are aggregated back together. In contrast, our LTL spec-

ification enables an interleaving of subtasks that supports global

optimization. In addition, given a collection of tasks specified in

LTL, the agent can learn all of them simultaneously using off-policy

RL, exploiting a technique called LTL progression to extract (pos-

sibly shared) subtasks. We then solve each task, one at the time,

while getting better at all of them using off-policy RL. Our approach

not only preserves global optimality guarantees, it also has good

empirical performance, as we show in the experimental section.

The notion of teaching an RL agent is not new. Past work has

largely been associated with non-technical humans teaching RL

agents by providing positive/negative feedback (e.g. [17, 29, 30, 48]),
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demonstrations (e.g. [1, 4, 43]), or advice (e.g. [19, 20, 31, 49]). In

contrast, we employ a formal language to describe tasks we wish

the agent to learn, with no strong claim of how easy (or hard) it

would be for a lay person to define LTL specifications. The focus of

this research is to demonstrate the appeal of LTL in the context of

multi-task RL and how to take advantage of its structure.

There is also a large body of work on multi-task or multiple goal

RL (e.g. [3, 11, 26, 33, 36, 39, 44, 46, 53]). While recent work has used

variants of LTL in RL [14, 27, 28, 51, 52], this was not in the context

of teaching multiple tasks to an RL agent. Another particularly re-

lated work uses policy sketches to learn multiple modular tasks [2].

However, sketches are less expressive than LTL and might prune

optimal policies from consideration. Further discussion of this and

other related work can be found in Section 6.

There are two main contributions of this work. The first is that

we propose the use of LTL as a language for teaching RL agents

multiple tasks. Our task specifications are compositional and elabo-

ration tolerant, supporting the learning and transfer of interleaved

realizations of multiple tasks. Our second main contribution is a

novel framework for multi-task learning with LTL task specifica-

tions, which exploits properties of LTL to speed up learning while

preserving guarantees of convergence to an optimal policy.

2 PRELIMINARIES
2.1 Markov Decision Processes
A Markov Decision Process (MDP) is a tuple M = ⟨S,A,T ,R,γ ⟩
where S is a finite set of states, A is a finite set of actions, γ ∈ (0, 1]
is the discount factor,T : S×A×S → [0, 1] is the transition probability
distribution, and R : S ×A × S → Pr(R) is the reward function.

By performing actions in an MDP an agent moves between states

according to the transition probability distribution, and accumulates

reward according to the reward function. A policy π for an MDP

is a probability distribution over actions for each state. An agent

following policy π will take action a in state s with probability

π (a |s ). The state-action value or Q-value, denoted Qπ (s,a), is the
expected discounted return of selecting action a in state s and then

selecting actions according to π . A policy is optimal if the expected
discounted reward received by following that policy is maximal

for every state s ∈ S . The Q-value function of the optimal policy is

denoted by Q∗. Given Q∗, the optimal policy is to select the action

a in every state s with the highest value of Q∗ (s,a).
In RL [40], the agent does not know the transition probability

distribution or reward function, and must find an effective policy

through interaction with the environment (i.e., the MDP). At each

time step, the agent selects an action a ∈ A, executes it in the

current state s , and receives reward r and a new state s ′ (which are

sampled from R and T , respectively). The process repeats from s ′.

2.2 The Q-Learning Algorithm
Off-policy RL methods learn a target policy while using some other

behaviour policy for action selection. In an off-policy method, the

policy being learned is called the target policy, while the policy

being used for action selection is the behaviour policy. In this work,

we use the well-known off-policy Q-learning algorithm [50] to

simultaneously learn policies for different tasks during the same

interaction with the environment. Q-learning begins by initializing

the Q-values of all state-action pairs (often to zero). At every step,

the algorithm then uses some behaviour policy to pick an action

a in the current state s , for which a new state s ′ and reward r are
returned from the environment. The current estimation of Q (s,a)
is then updated as follows, where α is the learning rate:

Q (s,a) ← Q (s,a) + α[r + γ max

a′
Q (s ′,a′) −Q (s,a)] (1)

The algorithm is guaranteed to converge to the optimal Q-values as

long as the behaviour policy visits every state-action pair an infinite

number of times. One way to fulfill this condition is to set the

behaviour policy to be ϵ-greedy on the target policy. That is, on each
step, the behaviour policy selects a random action with probability

ϵ and the action with the highest Q-value with probability 1 − ϵ .

2.3 Function Approximation and DQN
In the simplest form of Q-learning, a table is used to store the Q-

value for each state-action pair. For problems with large (or even

infinite) state spaces, this is impractical, and some form of function
approximation is used on the Q-value function. This means that the

Q-value function is defined as a function of state features and Q-

value updates involve updating the function instead of just entries

in a table. We note that doing so generally means that Q-learning

is no longer guaranteed to converge to an optimal policy.

Deep Q-Networks (DQN) [32] use a deep neural network for Q-

value function approximation. To stabilize learning, an experience

replay buffer and a target network are used. The agent’s experi-

ences, of the form (s,a, r , s ′), are stored in the buffer and randomly

sampled to train the network over time. This helps to reduce the

correlation between the experiences used to make consecutive up-

dates to the neural net. The Q-learning updates are also computed

with respect to a target network, which is only updated periodically,
as a way to decrease the chance of the policy diverging.

3 LTL AND MULTI-TASK RL
In this section we review Linear Temporal Logic (LTL), illustrate

how tasks and reward functions are specified using this language,

and define the multi-task reinforcement learning problem.

Illustrative Example:We use a Minecraft-like grid world domain,

proposed by Andreas et al. [2], to illustrate and constrast our work.

Figure 1 shows an example grid. In this world, the agent can interact

with different objects, extract raw material from its environment,

and use this material to make new objects. The domain is com-

prised of the following properties and events that are detectable

by the agent: {got_wood, got_iron, got_grass, used_factory,
used_toolshed, is_night, at_shelter}.

3.1 Specifying Tasks in Linear Temporal Logic
Linear Temporal Logic (LTL) is a propositional modal logic with

temporal modalities [35]. Here we use LTL formulae to specify

tasks in terms of patterns of properties or events that characterize

the successful execution of a task. These properties and events are

drawn from a domain-specific set of propositions.

3.1.1 LTL Syntax. LTL formulae are constructed from a set P

of propositional symbols, the standard Boolean operators, and a

Session 11: Learning and Adaptation 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

453



shelter

tree

tree

iron

iron

grass

grass

factory toolshed

Figure 1: Minecraft-inspired example (adapted from [2]).
The blue path is the optimal policy for task φbridge. The red
path is a globally suboptimal policy that would be computed
when decomposing the subtasks, learning an optimal policy
for each, and then combining them together.

set of temporal operators. The Boolean operators are ∧ (and), ¬
(negation), ∨ (or), and→ (implication). The temporal operators are

the unary operator ⃝ (next), and the binary operator U (until).
From these we can also define □ (always) and ^ (eventually). E.g.,
^φ ≡ trueUφ. The syntax of an LTL formula is defined as follows:

φ F p | ¬φ | φ1 ∧ φ2 | ⃝ φ | φ1 Uφ2 with p ∈ P

We have omitted ∨ and→, since these can be defined according

to the following equivalences: φ1 ∨ φ2 ≡ ¬ (¬φ1 ∧ ¬φ2) and φ1 →
φ2 ≡ ¬φ1 ∨ φ2. We also define the symbols true and false through
the following equivalences: true ≡ p ∨ ¬p and false ≡ ¬true.

Example (cont.): Returning to our Minecraft-like example, the

set of propositions P is the set {got_wood, got_iron, got_grass,
used_factory, used_toolshed, is_night, at_shelter}. Using
these propositions together with the logical and modal constructs

of LTL, we can specify a variety of tasks such as:

• φrope ≜ ^(got_grass ∧ ^used_toolshed)
Make a rope by eventually collecting grass and then eventu-

ally using the toolshed.

• φbridge ≜ ^(got_wood∧^used_factory)∧^(got_iron∧
^used_factory)
Make a bridge by collecting wood and iron, and using the

factory afterwards. Note that the wood and iron can be col-

lected in either order, and that one factory use suffices to

fulfill the task if done after collecting both.

3.1.2 LTL Semantics. The truth value of an LTL formula is

determined relative to an infinite sequence of truth assignments,
σ = ⟨σ0,σ1,σ2, . . .⟩, for the propositions in P, where each σi is
simply an assignment of true or false to each proposition in P. We

say p ∈ σi for a proposition p ∈ P to indicate that p is true in σi .
Intuitively, the temporal operators allow us to describe how the

propositions behave over time. For example, the formula ⃝p will

hold at some time step i in a sequence if the proposition p holds in

the next (i.e. (i + 1)-th) time step. Similarly, the formula p Uq will

hold at some time step i if p is true at that time and going forward

until a time step is reached in which q is true.

Let us now formally define the notion that a sequence σ models
or satisfies φ at time i ≥ 0, denoted by ⟨σ , i⟩ |= φ, as follows:

• ⟨σ , i⟩ |= p iff p ∈ σi , where p ∈ P
• ⟨σ , i⟩ |= ¬φ iff ⟨σ , i⟩ ̸|= φ
• ⟨σ , i⟩ |= (φ1 ∧ φ2) iff ⟨σ , i⟩ |= φ1 and ⟨σ , i⟩ |= φ2
• ⟨σ , i⟩ |= ⃝φ iff ⟨σ , i + 1⟩ |= φ
• ⟨σ , i⟩ |= φ1 Uφ2 iff there exists j such that i ≤ j and

⟨σ , j⟩ |= φ2, and for all k such that i ≤ k < j, ⟨σ ,k⟩ |= φ1

A sequence σ is then said to model or satisfy φ iff ⟨σ , 0⟩ |= φ.
Recall that while the semantics of the LTL formulae is defined

with respect to the sequence of truths assignments of the proposi-

tions in P, the state of the RL agent may be defined in a different

way. As such, as noted in Section 1, the evaluation of each proposi-

tion in P is determined by a set of event- and property-detectors.

These event- and property-detectors are mappings from the state

of the RL agent to the truth or falsity of propositions in P. We refer

to this mapping as a labeling function, L : S → 2
P
, which maps the

agent’s state into a truth evaluation of the propositions in P.

3.1.3 LTL progression. An LTL formula can also be progressed
along a given sequence of truth assignments [6]. In the context

of an RL agent, the formula can be updated during an episode to

reflect those aspects of the formula that have been satisfied by states

seen so far. The progressed formula will only include those parts

of the original formula that remain to be satisfied. For example, the

formula ^(p ∧ ⃝^q) (eventually p and, then, eventually q) can be

progressed to ^q after the agent reaches a state where p is true.

We now formally define the progression of a formula through a

truth assignment (similarly to Bacchus and Kabanza [6, Table 2]):

Definition 3.1. Given an LTL formula φ and a truth assignment

σi over P, prog(σi ,φ) is defined as follows:

• prog(σi ,p) = true if p ∈ σi , where p ∈ P
• prog(σi ,p) = false if p < σi , where p ∈ P
• prog(σi ,¬φ) = ¬ prog(σi ,φ)
• prog(σi ,φ1 ∧ φ2) = prog(σi ,φ1) ∧ prog(σi ,φ2)
• prog(σi ,⃝φ) = φ
• prog(σi ,φ1 Uφ2) = prog(σi ,φ2) ∨ (prog(σi ,φ1) ∧ φ1 Uφ2)

The prog operator can be applied after each step in an episode

to update the task specification formula to reflect which parts of

the original formula have become satisfied or unsatisfied. This is

because a sequence satisfies a given formula at time i if the formula

progressed through σi is satisfied at time i+1. This is stated formally

by the next theorem which follows immediately from an analagous

result for a first-order version of LTL [6, Theorem 4.3].

Theorem 3.2. Given any LTL formula φ and an infinite sequence
of truth assignments σ = ⟨σi ,σi+1,σi+2, . . .⟩ for the variables in P,
⟨σ , i⟩ |= φ iff ⟨σ , i + 1⟩ |= prog(σi ,φ).

3.1.4 Co-Safe LTL. LTL is interpreted over infinite traces. In

this work, we focus on tasks that are completed in a finite episode.

Therefore, we will describe tasks with co-safe LTL formulae. Co-

safe LTL [22] is the subset of LTL for which the truth of formulae

can be ensured after a finite number of steps. For example, ^p
(“eventually, p must be true”) is co-safe, because once p has been

made true, what happens afterwards is irrelevant. Note that ¬^q,
which means that “q must always be false", is not co-safe, because
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it can only be satisfied if q is never true over an infinite number

of steps. However, we can define the co-safe task ¬qUp, which
states that “q must always be false until p becomes true". As such,

a co-safe LTL formula can still define properties that should be

avoided or ensured (i.e., ¬q) at every step while some sub-task (i.e.,

p) is being completed. It is known that the syntactic restrictions of

only using the temporal operators ⃝, U, ^ and applying ¬ only to

atomic propositions ensure that an LTL formula is co-safe [24].

3.2 Learning Tasks Specified in LTL
Our RL agent learns to perform multiple tasks specified as LTL

formulae by garnering reward for their completion. In order to de-

fine this problem formally, we use the concept of a non-Markovian

reward decision process (NMRDP) (e.g., [5, 8, 10, 47].)

Definition 3.3. A non-Markovian reward decision process (NM-

RDP) is a tupleM = ⟨S,A,T ,R,γ ⟩ where S , A, T , and γ are defined

as in an MDP, but where the reward function R is defined over state

histories, R : S∗ → Pr(R).

Given an NMRDPM = ⟨S,A,T ,R,γ ⟩, the Q-value function of a

policy π can be defined over sequences of states:

Qπ (⟨s0, . . . , st ⟩,a) = Eπ



∞∑
k=0

γkR (⟨s0, . . . , st+k+1⟩)
������
At = a


.

We will be defining reward functions for NMRDPs in terms of

completing tasks defined by co-safe LTL formulae.

Definition 3.4. A multi-task co-safe LTL specification (MTCLS)

is a tuple T = ⟨S,A,T ,P,L,Φ,γ ⟩, where S,A,T , and γ are defined

as in an MDP or NMRDP, P is a set of propositional symbols,

L : S → 2
P
is the labelling function, and Φ, the set of tasks, is a finite

non-empty set of co-safe LTL formulae over P.

Intuitively, the labelling function specifies what propositions are

true in which states. A MTCLS T = ⟨S,A,T ,P,L,Φ,γ ⟩ can be used

to specify a set of NMRDPs, {⟨S,A,T ,Rφ ,γ ⟩ : φ ∈ Φ}, where each
reward function Rφ is defined so that the agent receives a reward

of 1 if and only if the formula φ becomes satisfied by the sequence

of (labels of) states visited in the episode. Formally, that means that

Rφ (⟨s0, . . . , sn⟩) =



1 σ0:n−1 ̸ |= φ and σ0:n |= φ

0 otherwise

where σi :j = ⟨σi , . . . ,σj ⟩ = ⟨L(si ), . . . ,L(sj )⟩.
Given a MTCLS T , an RL agent will not know the transition

probability distribution of the domain, but they will have access to

the labelling function and the set of tasks Φ. Such a specification is

natural in the context of describing and teaching tasks to an agent.

Nevertheless, it differs from the standard RL approach in which

the agent only gets a reward signal upon executing actions during

exploration. As we will see in Section 5, this approach will allow

for significant performance improvements.

4 OFF-POLICY LEARNINGWITH LTL
In this section, we describe a framework called LTL Progression
for Off-Policy Learning (LPOPL) for teaching an RL agent how to

accomplish multiple tasks that are specified using co-safe LTL. For

clarity, we describe LPOPL in the tabular case and then describe

how Q-value function approximation can be incorporated.

4.1 LPOPL Overview and Example
The overall idea behind LPOPL is to extract sub-tasks from the

given set of tasks, and then use Q-learning to simultaneously learn

sub-policies for each of them. An overview of LPOPL is given in

Algorithm 1. To help describe this method, we use an example in

which the set of tasks is Φ = {^(b ∧ ^c ),^(d ∧ ^c )}. The first of
these formulae means “eventually reach a state where b is true and

then eventually reach a state where c is true." The second formula

specifies an analogous task with d in the role of b.
In the first step of LPOPL, subtasks are extracted from Φ by

progressing every task in Φ into simpler tasks (Algorithm 2). In our

example, only^c will be extracted, as both^(b∧^c ) and^(d∧^c )
can be progressed to ^c . LPOPL will then learn a separate policy

for each task and extracted sub-task. That is, three different Q-value

functions will be learned — Q^(b∧^c ) , Q^(d∧^c ) , and Q^c — one

for each of ^(b∧^c ) and ^(d∧^c ), and ^c . Each of these Q-value
functions is then initialized. For example, we can set Qφ (s,a) to 0

for every state s , action a, and formula φ in the tabular case.

LPOPL then iteratively performs a series of episodes in the envi-

ronment. On each iteration, some task φ is selected from Φ using

some curriculum learning algorithm (i.e. the call to GetEpisodeTask).
A new episode is then started with φ as its objective.

On each step of any episode, the given task is progressed so that

it takes into account the sequence of states seen thus far. The pro-

gressed formula is then used to identify the Q-value function that

will be used to inform action selection in the next step. For example,

if the given task of φ = ^(b ∧ ^c ) is progressed to ^c , actions will
be selected ϵ-greedy on Q^c . All of the Q-value functions will also
be updated in each step using off-policy Q-learning updates. This

will allow the agent to gain experience regarding how to solve tasks

and sub-tasks that the episode is not currently focusing on.

These off-policy updates continue until the episode terminates.

This will happen if the task is satisfied (i.e. completed), falsified

(i.e. cannot be completed given the states seen), or an environment

dead-end is encountered. The curriculum learning method is then

used to select a new task for the next episode.

4.2 Algorithm Components
4.2.1 Sub-task extraction. The process for using progression

on a set of tasks to extract sub-tasks is shown in Algorithm 2.

The new set of tasks and sub-tasks is denoted as Φ+. The basic

idea is to iteratively generate new formulae by progressing every

formula inΦ+ —which is initialized asΦ—over every possible truth

assignment of the propositions in P. New formulae are then added

to Φ+, and the process continues until a stable point is reached. The
set Φ+ will then necessarily contain any formula that is reachable

by progressing the formulae in Φ over any possible sequence of

states in the environment. When performed on the example in

Section 4.1, Φ+ will contain ^(b ∧ ^c ), ^(d ∧ ^c ), and ^c .

4.2.2 The LPOPL behaviour policy. Let φ be the task to solve

on the current episode, during which states s0, ..., sk have been

encountered, and letφ ′ be the result of progressing φ through states

s0, ..., sk . Then the LPOPL behaviour policy will be ϵ-greedy on

Qφ ′ (sk ,a) (Section 2.2). Notice that this behaviour policy uses the Q-
value function most relevant to the situation at hand. For example,

suppose φ = ^(b ∧ ^c ). At any point during the episode prior to
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Function LPOPL(γ , Φ, L, P, N)
t ← 0, i ← 0;

Φ+ = ExtractSubtasks(Φ, P);
Q ← InitializeQValueFunctions(Φ+);

while t < N do
φ ← GetEpisodeTask(Φ);

t ← t + RunEpisode(Q , φ, L, γ , N − t);
return Q+;

Algorithm 1: The main LPOPL episodic learning loop.

b being encountered, φ ′ will be equal to φ, and so actions will be

selected greedily on Q^(b∧^c ) . However, once b is encountered, φ ′

will be ^c , and actions will be selected greedily on Q^c .

4.2.3 Q-value function updates in LPOPL. Algorithm 3 shows

the process that LPOPL uses on each episode. During the episode,

the task formula φ is progressed and used for action selection as

described above. When an action a is executed in state s with

the result being state s ′, an update is performed for each Q-value

function inQ . To update a particularQψ , this method first computes

the reward that would be received if the agent was currently trying

to solveψ . By definition, the reward is 1 ifψ becomes satisfied by

the transition, and 0 otherwise. This is evaluated by progressing

ψ through s ′ and checking if the resulting formula, denoted ψ ′,
is true. Note that it is possible that ψ = ψ ′. There are now two

possible cases. In the first,ψ ′ is neither true nor false, and s ′ is not
a dead-end in the environment. The update then made in the tabular

case is the following modification of the standard Q-learning rule:

Qψ (s,a) ← Qψ (s,a) + α
(
r + γ max

a′
Qψ ′ (s

′,a′) −Qψ (s,a)
)

Notice that Qψ (s,a) is updated using the maximum over every ac-

tion a′ ofQψ ′ (s
′,a′). In doing so, the algorithm will also propagate

Q-value estimates backwards from its sub-tasks.

If ψ ′ is either true or false, then s ′ is a terminal state in the

context of trying to solveψ . Thus, the future reward will be 0. The

Q-learning update is therefore simplified to take that into account.

The same holds if s ′ is a dead-end in the environment.

To illustrate, consider the example in Section 4.1 and suppose the

current task is ^(b ∧ ^c ). After every state transition, each of the

three Q-value functions is updated as if their corresponding formula

was the current objective. For example, if a state is encountered

where b and d are false and c is true, then Q^c is updated with a

reward of 1, and the other two functions are updated with a reward

of 0. If a state is encountered in which b is true and c is false, then
Q^(b∧^c ) is updated with a reward of 0, butQ^c is used to estimate

how much reward the agent expects for completing the task.

4.2.4 Curriculum learning. On every iteration of LPOPL, a cur-

riculum learning method is used to select a task as the objective of

the next episode. While any curriculum learning approach can be

used, we use the following simple method which assumes the tasks

in Φ are in some order φ0, ...,φk−1 where |Φ| = k . For each i , we
keep track of the percentage pi of episodes for which an episode

was run on task φi and that task was solved in some maximum

Function ExtractSubtasks(Φ, P)
Φ+ ← Φ;

repeat
Φ
last
← Φ+;

for ⟨τ ,φ⟩ ∈ (2P × Φ
last

) do
φ ′ = prog(τ , φ);
if φ ′ < {true, false} then

Φ+ ← Φ+ ∪ {φ ′};

until Φ+ = Φ
last

;

return Φ+;

Algorithm 2: Using progression to extract sub-tasks.

Function RunEpisode(Q , φ, L, γ , N)
t ← 0; s ← GetInitialState();

while t < N do
φ ← prog(L(s ), φ) ;
if φ ∈ {true, false} or EnvDeadEnd(s) then

break;
a ← GetActionEpsilonGreedy(Qφ , s);
s ′ ← EnvExecuteAction(s , a);
for Qψ ∈ Q do

r ← 0;

ψ ′ ← prog(L(s ′),ψ);
if ψ ′ = true then

r ← 1;

if ψ ′ ∈ {true, false} or EnvDeadEnd(s ′) then
Qψ (s,a) ← Qψ (s,a) + α

(
r −Qψ (s,a)

)
;

else
Qψ (s,a) ← Qψ (s,a) +

α
(
r + γ maxa′ Qψ ′ (s

′,a′) −Qψ (s,a)
)
;

s ← s ′; t ← t + 1;

return t ;

Algorithm 3: Performing an episode in the environment.

number of steps nmax. This follows Andreas et al. [2] as a way to

evaluate the effectiveness of the policy on each task.

The selection process is then as follows. If φi is the task selected

in the j-th episode, the j + 1-th task selected is φi′ , where i
′
is equal

to i + 1modulo k if pi is at least as large as some success probability

psucc, and i
′ = i otherwise. For the first episode, φ0 is selected.

4.3 Theoretical Properties of LPOPL
We now identify several theoretical properties of LPOPL. First, in

the tabular case, LPOPL always converges to the optimal policy for

all tasks of the given MCTLS. This statement is formally stated and

proven in Appendix A. Secondly, in the worst case, Algorithm 2

may produce an exponential number of subtasks on the length

of the formula, resulting in an exponential number of updates on

each learning step (Algorithm 3). In our experience, this exponential

behaviour does not occur in practice. In any case, its impact can also
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be alleviated by performing the Q-updates in parallel or by sampling

a tractable subset of sub-policies to update at each iteration.

4.4 Function Approximation in LPOPL
To extend LPOPL to use function approximation merely requires

an appropriate adjustment to the way that each Q-value function

is represented, initialized, and updated. For example, when using a

neural network for function approximation, initialization involves

the construction of |Φ+ | neural networks, and Q-value function

updates will adjust the network parameters instead of table entries.

Using function approximation allows LPOPL to solve harder

problems at the cost of losing convergence guarantees. However,

LPOPL does not prune optimal policies from being consider when

decomposing a task. This is not necessarily true of other approaches

and we show the impact of this in the experimental section.

5 EXPERIMENTAL EVALUATION
In this section, we empirically compare LPOPL against three strong

baselines — one based on DQN and two based on Hierarchical RL —

on Minecraft-like grid maps. The results show that the flexibility

of LTL for expressing tasks can improve solution quality and that

LPOPL can be effective for multi-task learning.

5.1 Experimental Setup
In this section, we describe the baseline algorithms tested, the test

problems, and the hyperparameters used. We note that the source

code is publicly available at https://bitbucket.org/RToroIcarte/lpopl.

5.1.1 Baseline algorithms. The first baseline is Deep Q-Networks
with LTL specifications (DQN-L), which follows the methodology

proposed by Littman et al. [28] to learn LTL-based rewards. The

input to a Q-value function is both the state and the progressed LTL

task (i.e., using standard RL the baseline solves a cross-productMDP,

the one which is described in the appendix in Definition A.1). This

is the state-of-the-art approach for learning with a reward function

specified in LTL. Our implementation uses one DQN network for

the Q-value function of each task in Φ.
The second baseline, Hierarchical RL with Event options (HRL-

E), is based on the options framework [41] and its extension to

use deep learning [21]. This method learns a meta controller over

options, each defined by a triple ⟨Io ,πo ,To⟩, where Io is the set of

states where the option is applicable, πo is the option policy, and To
is the set of states where the option terminates. An option policy

πo is learned by rewarding the agent when it reaches states in To .

Following [21], we created one option per propositionp ∈ P, where
the terminal states are those in which p is true. The meta-controller

also receives as input both the state and the progressed LTL task,

and gets reward according to the task specification. Every option

policy is learned in parallel using off-policy RL.

The third baseline is Hierarchical RL with LTL pruning (HRL-L).
This method augments HRL-E by constraining when each option

can be applied. For instance, if the progressed task is ^a ∧ ^b,
then only achieving either a or b will lead to further progression

of the task. Intuitively, this means the only options that should be

considered are πa and πb . The LTL specification is thus being used

to prune the set of applicable options for the meta-controller.
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Legend: DQN-L HRL-E HRL-L LPOPL (ours)

Figure 2: Experiments on sequence-based subtasks.

Intuitively, HRL-E and HRL-L are both decomposing a given

task like ^(p ∧ ^q) into two parts: ^p and ^q. Ideally, the meta-

controller will then learn to apply option πp followed by option πq .
However, this would not preserve optimality even in the tabular

case since the end goal of reaching q can change the best way to

first achieve p, as shown in Figure 1. We will see this issue will also

impact performance in the experiments below.

5.1.2 Test Problems and Evaluation. Our experiments compare

LPOPL using DQN for Q-value function approximation to DQN-L,

HRL-E, and HRL-L on two sets of five Minecraft-like grid maps.

The first five were generated randomly. The second five, called

adversarial maps, were generated specifically to understand how

suboptimal the hierarchical methods can be. To do so, we randomly

generated a set of 1, 000 maps and chose the five maps with the

highest ratio between the locally and globally optimal solutions.

Each algorithm was run three times independently per map. Af-

ter every 100 learning steps on each map, the target policy was

tested on all of the given tasks. The reported values are the average

normalized discounted reward across all the tasks.

5.1.3 Hyperparameters and Features. All four algorithms use

the same features, network architecture, optimizer, and learning

parameters. The feature vector is given by the distance of every ob-

ject from the agent, as used by Andreas et al. [2] and Andrychowicz

et al. [3]. The DQN implementation was based on the code from

OpenAI Baselines[15]. We use a feedforward network with 2 hidden

layers and 64 ReLu units in each layer. The networks were trained

using the Adam optimizer [16] with a learning rate of 0.0001. The

DQN network learns on every step by randomly sampling 32 tran-

sitions from an experience replay buffer of size 25, 000; the target

network was updated every 100 steps; the discount factor was 0.9.

For curriculum learning, nmax was 100 and psucc was 0.9.

5.2 Experiment 1: Sequences of Sub-Tasks
In the first set of experiments, the task set is given by the 10

Minecraft tasks in Andreas et al. [2], translated directly to LTL.

All 10 tasks consist of a single sequence of properties to achieve.

For instance, one of the tasks — to make a bed — is defined by

the following sequence: got_wood, used_toolshed, got_grass,
and used_workbench. The translation to LTL is ^(got_wood ∧
^(used_toolshed ∧ ^(got_grass ∧ ^used_workbench))).
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Figure 3: Experiments on tasks with unordered subtasks.
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Figure 4: Experiments on tasks with safety constraints.

Figure 2 shows the average normalized discounted reward across

the 10 tasks for each algorithm. The shadowed areas show the 25th

and 75th percentiles. As shown, LPOPL is able to converge to the

optimal solution on all tasks, whereas HRL-L converges to a subop-

timal one. The difference is especially clear in the adversarial maps.

In addition, we note that the initial rate of learning is comparable

between HRL-L and LPOPL despite the fact that LPOPL is learning

27 Q-value functions while HRL-L is learning only 8 option policies.

We also tested the policy sketches method [2] on these task sets,

but it was unable to solve even the simplest task. We believe this

is because it uses an actor-critic method with only one actor. As

such, experiences across consecutive episodes on the same map are

highly correlated. This can be catastrophic for such an agent. The

actor-critic method is better suited for the experimental setup in

the original paper in which a new random map is generated for

each episode. However, even if it could be adapted to our setting, it

would at best converge to a suboptimal policy, as HRL-L and HRL-E

do, since it performs a similar kind of task decomposition.

5.3 Experiment 2: Interleaving Sub-Tasks
The policy sketches method [2] was designed for tasks consisting

of sequences of sub-tasks since sketches impose a total order over

sub-tasks. However, many of the tasks considered in that paper

included subtasks that could have been ordered differently. For

example, to make the bed, the agent needs grass and a plank which

is made fromwood in the toolshed. However, the order in which the

grass is collected and the plank is made can be arbitrary. As such,

we rewrote the sequence-based tasks by removing unnecessary

orderings over parts of the task that are independent. For example,

the bed-making task can be rewritten as follows:

^(got_wood ∧ ^(used_toolshed ∧ ^used_workbench))

∧ ^(got_grass ∧ ^used_workbench)
(2)

Figure 3 shows the results after removing the unnecessary orders

on all 10 tasks. In this case, LPOPL learns 34 policies, while HRL-L

learns 8 option policies and 10 meta-controllers (in the previous

task, meta-controllers were not needed). The results follow a similar

trend to the previous experiment. Even though LPOPL is learning

more policies than before, it still initially improves at a comparable

rate to HRL-L and always converges to the optimal policy.

We note that the optimal reward on these tasks is 8% higher than

on the totally ordered tasks. This demonstrates the potential of

LTL’s ability to allow partial orderings. It also motivates the need

for methods like LPOPL, since approaches based on goal sequences

like DYNA-H [38] and Policy Sketches [2] cannot handle such tasks.

5.4 Experiment 3: Safety Constraints
The last experiment explores another benefit of LTL: the ability

to specify safety constraints. Here, we augment the 10 tasks with

interleaved sub-tasks by requiring the agent to enter the shelter

at night (to avoid zombies). To do so, we added a clock to the

environment such that each step advances the clock by one hour.

Episodes start at noon, sunrise is at 5:00 am and sunset at 9:00 pm.

For example, to incorporate this constraint in the bed-making

task, we would modify Equation 2 by replacing each subformula of

the form ^φ with (is_night→ at_shelter) U (φ∧ (is_night→
at_shelter)). In so doing, the safety constraint of being at the

shelter at night is enforced up to and including the time that φ is

achieved. The result is that if the agent is outside the shelter at

night, the formula becomes falsified and so the agent receives a

reward of 0.

Figure 4 shows the results when adding this safety constraint.

For these tasks, the feature set was augmented with the number

of hours until the next sunset. The resulting set of 10 tasks were

considerably more difficult to solve and so we set psucc to 0.5. Still,

LPOPL outperforms the rest of the approaches.

5.5 Discussion
Our experiments illustrate the merits of LPOPL with respect to al-

ternative decomposition methods based on Hierarchical RL. LPOPL

outperforms our three baselines across different sets of challenging

tasks. However, our experiments do not provide a definitive evalua-

tion of the effectiveness and scalability of this technique. Whether

LPOPL would outperform Hierarchical RL in more complex en-

vironments remains an open question. We expect, though, that

LPOPL would still outperform our baselines as long as off-policy

RL can learn reasonably accurate policies for each subtask.

6 RELATEDWORK
Andreas et al. [2] proposed a method that provides a task speci-

fication, called a sketch, in the form of a sequence of tokens that
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describes a solution to the task. The agent then learns one policy

per token. When acting in the environment, the agent follows the

policy corresponding to the current token and decides whether or

not to move to the next token. This approach might not converge to

an optimal policy because it reuses the same policies across different

tasks. While the reward function is not defined by the sketch, the

extension to that case is trivial. Hence, we consider policy sketches

as the closest alternative to LTL specifications for multi-task RL.

Our approach exploits similar ideas, but uses a more expressive

language and does not prune optimal policies from consideration.

Our approach builds on the Hierarchical Reinforcement Learning
(HRL) literature [7]. HRL algorithms look for ways to decompose

complex tasks into simpler sub-tasks that can be reused over time.

Some well-known HRL approaches are H-DYNA [38], MAXQ [12],

HAMs [34], and Options [41]. All assume the existence of an exter-

nal Markovian reward function. The hierarchy constrains the space

of possible policies, which simplifies learning but may prune opti-

mal policies. Our work exploits a formal specification of the reward

function to automatically generate a decomposition that does not

risk eliminating optimal policies, reuses sub-task policies, and also

optimizes for each sub-task simultaneously using off-policy RL.

At least three previous works have used variants of LTL for task

specification in RL [14, 27, 28]. While [14, 28] transform the speci-

fication into a reward function that maximizes the probability of

satisfying an LTL formula, [27] guides the search for a policy using

a measure of distance to satisfaction of the task. None of these ap-

proaches exploits the formula structure to decompose the problem.

This is the main reason why LPOPL was able to outperform [28]

in our multi-task RL experiments. Similarly, we expect LPOPL to

outperform [14, 27]. Other works have used LTL to prune policies

while maximizing an external reward function in an RL setting

[51, 52]. Outside of RL, there has been work on using temporal

logics – including co-safe LTL [23, 24], LTL
f
[10], and LDL

f
[8] –

to specify non-Markovian rewards for MDP-like formalisms.

Previous work on multi-task RL has focused on creating agents

that solve new tasks by transferring learning from previous tasks

(e.g., [9, 25, 39, 42, 44–46, 53]). Unlike our approach, these methods

do not receive information about the new task to solve (i.e., they

cannot transfer experience or policies without handling the transfer
trade-off [26]) and they cannot handle non-Markovian rewards.

7 CONCLUDING REMARKS
We presented an approach to specifying multiple tasks for an RL

agent using co-safe LTL formulae, and an algorithmic framework,

LPOPL, that exploits the structure of those LTL specifications, out-

performing several baselines for learning tasks. Trivial extensions

include handling the case where new tasks arrive online and han-

dling arbitrary LTL formulae, or finite LTL. Future directions in-

clude running experiments in other environments and incorporat-

ing other off-policy RL algorithms into this framework.

A PROOF OF OPTIMALITY
We first construct a MDPM ′ for a given NMRDPM and show

that an optimal policy forM ′ yields an optimal policy forM.

Definition A.1. Let T = ⟨S,A,T ,P,L,Φ,γ ⟩ be an MCTLS,M =

⟨S,A,T ,Rφ ,γ ⟩ be an NMRDP specified from T where φ ∈ Φ, and Ψ

be the set of formulae that can be progressed fromφ. Thenwe define
the MDPM ′ = ⟨S ′,A′,T ′,R′,γ ′⟩, where S ′ = S × Ψ, A′ = A, γ ′ =
γ , T ′(⟨s,ψ ⟩,a, ⟨s ′,ψ ′⟩) = T (s,a, s ′) iff ψ ′ = prog(L(s ′),ψ ) (zero
otherwise), and R′(⟨s,ψ ⟩,a, ⟨s ′,ψ ′⟩) = 1 iff ψ ′ = prog(L(s ′),ψ ) =
true andψ , ψ ′ (zero otherwise).

Theorem A.2. Let T = ⟨S,A,T ,P,L,Φ,γ ⟩ be an MCTLS,M =
⟨S,A,T ,Rφ ,γ ⟩ be an NMRDP specified from T where φ ∈ Φ, and
M ′ = ⟨S ′,A′,T ′,R′,γ ′⟩ be the MDP constructed fromM as in Defi-
nition A.1. If π ′ is an optimal policy forM ′, then the policy π , defined
as π (⟨s0, . . . , sn⟩) = π ′(⟨sn ,ψ ⟩) whereψ is the progression of φ using
⟨L(s0), . . . ,L(sn )⟩, is an optimal policy forM.

Proof. Consider any policyπo , state sequence s0:t = ⟨s0, . . . , st ⟩,
and action a forM. By definition:

Qπo
M

(s0:t ,a) = Eπo,T

[ ∞∑
k=0

γkRφ (σ
0:t+k+1)

�����
At = a

]

where σi :j = ⟨σi , . . . ,σj ⟩ = ⟨L(si ), . . . ,L(sj )⟩. Using Theorem 3.2,

we can progress φ toψ over the sequence σ0:t :

Qπo
M

(s0:t ,a) = Eπo,T

[ ∞∑
k=0

γkRψ (σt :t+k+1)
�����
At = a

]

By definition, Rψ (σt :t+k+1) is one iff σt :t+k ̸ |= ψ and σt :t+k+1 |= ψ ,
and zero otherwise. As σt :t+k ̸ |= ψ iff ψk = prog(σt :t+k ,ψ ) is not
true and σt :t+k+1 |= ψ iff ψk+1 = prog(σt :t+k+1,ψ ) is true, then
Rψ (σt :t+k+1) is equivalent to R

′ (⟨st+k ,ψk ⟩, ·, ⟨st+k+1,ψk+1⟩):

Qπo
M

(s0:t ,a) = Eπo,T

[ ∞∑
k=0

γkR′ (· · · )
�����
At = a

]

The previous expected value is over πo and T that are defined

in terms ofM. However, we can construct an equivalent policy

π ′o forM ′, where πo (st :t+k+1) = π ′o (⟨st+k+1,ψk+1⟩). Moreover,

T (st+k ,a
′, st+k+1) is equivalent toT

′(⟨st+k ,ψk ⟩,a
′, ⟨st+k+1,ψk+1⟩)

for every a′ ∈ A. Replacing π0 by π
′
0
andT byT ′ in the expectation,

we get the following equivalence: Qπo
M

(s0:t ,a) = Q
π ′o
M′

(⟨st ,ψ ⟩,a)

(whereψ is the progression of φ using σ0:t ) for any policy πo , action
a, and state sequence s0:t . In particular, if π ′ is optimal inM ′, then

Qπ
M

(s0:t ,a) = Qπ
′

M′
(⟨st ,ψ ⟩,a) ≥ Q

π ′o
M′

(⟨st ,ψ ⟩,a) = Qπo
M

(s0:t ,a)

for every policy π ′o and action a. Therefore, π is optimal inM. □

We can now show our desired result:

Theorem A.3. Let T = ⟨S,A,T ,P,L,Φ,γ ⟩ be an MCTLS. Then
LPOPL with Q-learning converges to an optimal policy for every
NMRDP {⟨S,A,T ,Rφ ,γ ⟩ : φ ∈ Φ} specified by T .

Proof. The Q-updates applied to every Qφ ∈ Q in Algorithm 3

are equivalent to solving the cross-product MDP M ′ between

M = ⟨S,A,T ,Rφ ,γ ⟩ and φ (Definition A.1). The use of an ϵ-greedy
behaviour policy means every state-action pair is updated an in-

finite number of times in the limit. Hence, every Qφ (s,a) ∈ Q
converges to Q∗φ (s,φ,a) inM

′
[50]. Since the optimal policy for

M ′ is also optimal inM by Theorem A.2, LPOPL converges to an

optimal policy forM for every φ ∈ Φ, in the limit. □
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