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ABSTRACT
Humans communicate extensively through “meta-information" en-

coded in emitted non-verbal signals. This meta-information not

only allows us to analyze an individual’s external emotional state

but also certain internal states. For example, humans are able to

learn from others thanks to their ability to determine their most

knowledgeable peers in a given domain through their interactions

with these individuals. As autonomous agents expand into more

socially oriented tasks, they must capture and reason through these

emitted cues to better understand their human counterparts. In

this work, we conduct two experiments. First, we train a model to

predict the knowledgeability of speakers using non-verbal features.

Next we simulate the process of selecting the most knowledgeable

person in a given domain using a proactive learning approach. The

results indicate our agent is capable of observing human behavior

and using this information to select a specific human for aid on a

given question.

CCS CONCEPTS
• Theory of computation → Active learning; • Applied com-
puting → Psychology; • Information systems → Sentiment
analysis;

KEYWORDS
Social Agents; Affect; Nonverbal Behavior Understanding; Active

Learning

ACM Reference Format:
Abdelwahab Bourai and Jaime Carbonell. 2018. I Know What You Don’t

Know: Proactive Learning through Targeted Human Interaction. In Proc.
of the 17th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS,

8 pages.

1 INTRODUCTION
Humans learn extensively through observing their surroundings,

and learning from other humans specifically is a core aspect of

mental development [29]. For example, children learn at a young

age to avoid information from unreliable or “inaccurate" people [15].

Humans are able to infer how knowledgeable one is in a domain

thanks to their ability to decode emitted non-verbal signals during

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Examples from Swerts and Krahmer’s study on
Feeling of Knowing (FOK) [28]. Here, speakers are indicat-
ing a lack of FOK in response to a question. Certain audio-
visual signals were found to be strong indicators of knowl-
edgeability.

their interactions with others [16]. This can be done in two ways: if

the answer is known to the questioner, then logically they can infer

knowledgeability from the correctness of the reply. However, if the

answer is not shared between two people, then the questioner is

forced to guess based on the non-verbal cues the speaker emits [5].

This process is very noisy, as the speaker may be anxious, stalling

to remember a fact, or the questioner may miss subtle signals. Many

studies define this internal representation of one’s own knowledge

as the “feeling of knowing", or FOK [12].

This level of interaction and cooperation has not yet been real-

ized in human-computer communication and interaction. Machines

have no ability to accurately identify if a data point came from a

“knowledgeable" human or from one lacking expertise in a domain.

Embedding this level of understanding in a machine learning pro-

cess is a complex undertaking. It requires modeling a counterpart’s

“knowledgeability" as a phenomenon that can be identified through

a set of non-verbal features. These knowledgeability scores would

then need to be matched with topics to create a model that can be

used for future tasks where an expert human is needed.

One interesting segment of machine learning that deals with

this issue is active learning. In active learning, an agent will work

in conjunction with an oracle to classify unlabeled data points,

selecting the example it considers most informative for the oracle

to label [25]. An extension of this is proactive learning, which

seeks to relax certain active learning assumptions [10]. In active

learning, there are certain problematic assumptions such as the

fact that the annotators are always reliable, always correct, and

are cost-insensitive. However, in real-world applications, humans

are much more fickle. In Koenig et al’s study, children were able
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Figure 2: The process by which humans answer a question frommemory is detailed in the above diagram adapted fromNelson
et al [20]. In cases where someone is certain they know or do not know a question this process will terminate quickly. However,
if they were to search their memory for longer periods of time they may emit involuntary non-verbal signals during this
search.

to realize which humans to trust answers from and which humans

to ignore, but an active learning agent would have no ability to

discriminate between ignorant and knowledgeable oracles [15].

Proactive learning allows an agent to select the optimal oracle based

on the likelihood they will label the data point correctly. Donmez

and Carbonell were the first to model this by experimenting with

scenarios that simulated unreliable, expensive, or reluctant humans

[10].

As social agents become increasingly ubiquitous, embedding this

ability to analyze complex affective states such as knowledgeability

is imperative for agents to successfully interact with humans. Past

work in robot tutors has shown that even simple personalization

yielded benefits [17]. Having the ability to discern knowledgeability

of students through interactions with these robot tutors allows the

robot to have a way to immediately recognize a student’s under-

standing of a concept and modify its teaching strategies accordingly.

In addition, social agents can learn how to enlist the aid of specific

humans on difficult tasks. For example, recent work investigated

how robots would seek help from humans in navigation-based tasks

[24]. Learning agents such as the Never Ending Language Learn-

ing (NELL) system would be able to utilize human interaction for

knowledge acquisition as well as textual data on the internet [6].

We propose the following contributions:

(1) As there is no public dataset available from past Feeling of

Knowing studies, a novel dataset was recorded to replicate

past feeling of knowing studies as closely as possible using

video interviews

(2) A proactive learning agent that is capable of modeling its

human counterparts’ knowledgeability in certain topics and

reaching out to the correct “experts" for an answer to a given

question

(3) An empirical evaluation of the agent’s performance

2 PAST WORK
We divide the past work section into three parts. First, we discuss

Feeling of Knowing and the psychological experiments we emulate.

We then go over previous work in predicting knowledgeability and

uncertainty. Finally, we go over related work from the proactive

learning domain.

2.1 Feeling of Knowing and Predicting
Knowledgeability

Feeling of knowing can be described as “knowledge of one’s knowl-

edge" [21]. When asked a question, humans will quickly determine

whether or not they should search their memory for an answer [23].

Once they decide they may know the answer, a search is initiated

through their memory [20]. When a human answers a question

they have a somewhat robust understanding of, they will usually

answer quickly and confidently. However, if they misjudged their

initial feeling of knowing, they may emit certain social signals that

indicate uncertainty as they search their memory for a suitable

answer [27] [20]. A diagram showing this process can be found

in Figure 2. Smith and Clark describe these emitted signals as a

way to “save face". They set up a study where participants were

asked 40 factual questions and gave back spoken answers, and then

immediately asked how high their FOK was. Their results showed

that participants indicated their FOK was lower after incorrect an-

swers. They found that uncertainty in answers can be detected from
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signals such as rising intonation and hedge words such as “I guess"

as well as the latency of the response [27]. Brennan and Williams

extended Smith and Clark’s work by instructing participants to

listen to a speaker answer a question and rate their knowledge-

ability [5]. Their results indicate that listeners could accurately

predict the knowledgeability of speakers based on similar social

signals from Smith and Clark’s work such as latencies and risin-

ing intonations. Brennan and Williams defined this as the “Feeling

of Another’s Knowing" (FOAK). We utilize findings that listeners

could accurately predict the internal knowledgeability of speakers

solely through affective signals to train an agent that can similarly

take advantage of these affective signals.

Swerts and Krahmer completed a similar experiment to Brennan

and Williams’ but also presented video of the speakers rather than

speech alone to the participants. They found that including visual

and auditory signals boosted participants’ FOAK over auditory or

visual signals alone [28]. They also corroborated Smith and Clark’s

findings that FOK is closely correlated with the correctness of the

answer (i.e. lower FOK answer is likely incorrect) [28]. They found

certain visual features that are significantly correlated to FOK scores

as well as the auditory signals previously mentioned by Smith and

Clark. Raising the eyebrows, which Bolinger indicated as the visual

counterpart to a rising intonation [3], was indicative of lower FOK

scores. Other visual features they investigated were “funny faces",

smiles, and gaze acts which were also found to be indicative of

lower FOK [28]. An example image from their study is shown in

Figure 1.

2.2 Automated Prediction
Most of the studies above involved manual annotation and detec-

tion of these audiovisual signals. A study done by Bourai et al

investigated automated prediction of knowledgeability using emit-

ted non-verbal signals [4]. They collected clips from a trivia show

and analyzed predictive facial and speech features. In addition they

trained a model to predict the correctness of a speaker above human

performance. Pon-Barry et al trained a model to detect uncertainty

in speech using features such as pitch, intensity, etc. [22]. Another

approach for certainty detection was a multimodal method using

EEG and other physical signals [13]. Prediction of valence, arousal,

and other emotional states has also been investigated [7][14].

In our knowledgeability prediction approach, we design a study

similar to that of Smith and Clark but we also train a model to

predict knowledgeability in a similar fashion to [4]. We use a robust

representation of visual features using Ekman’s Facial Action Cod-

ing System (FACS) rather than subjective features such as “funny

face" [11]. Bourai et al’s study did not focus on linguistic features,

instead relying solely on non-verbal features such as speech pat-

terns and facial activations. We take a similar approach but also

include certain linguistic features. Finally, we train a model to act

as the “listeners" from the above studies to allow an autonomous

agent to determine the knowledgeability of human agents. In this

study we use the correctness of an answer as proxy for FOK as past

studies found a strong correlation between the two [28][27].

2.3 Proactive Learning
An active learning agent works in conjunction with an all-knowing

oracle to select the most informative unlabeled data points and asks

the oracle for a label. This way, it attempts to maximize accuracy of

labeling [25]. Proactive learning is an extension of active learning

that attempts to deal with the underlying assumptions of active

learning, namely that the oracle is considered to be reliable (always

answers), infallible (always right), individual, and insensitive to

cost. In real world scenarios where we have multiple oracles, each

with differing competencies, active learning would suffer. Thus,

proactive learning takes a decision-theoretic approach where we

jointly select the optimal example-oracle pair for a given question

to improve our learning algorithm while keeping costs low. The

utility equation used to select this optimal pairing is defined as

U (x ,k) =
P(ans |x ,k) ∗V (x)

Ck

where U is the utility of a labeler k ∈ K given an unlabeled

datapoint x . The cost of each labeler is represented with Ck as

a penalty on our utility. V (x) is an active selection criterion that

measures the value of an example x . In [10] they select the density

weighted uncertainty scoring metric they developed in [9]. We

propose a differing scoring value function in a later section.

Donmez and Carbonell showcased the superiority of a proactive

learning agent that is capable of jointly optimizing for both the

optimal oracle and labeler under three scenarios. The first scenario

involves a reliable labeler (always answers) and a reluctant labeler

(occasionally does not answer). The second scenario where proac-

tive learning is extremely valuable is when labelers have differing

levels of knowledgeability given a query. The third scenario in-

volves oracles with differing costs. For the purposes of this study,

the second scenario is the most relevant.

In Donmez and Carbonell’s study, they acknowledged that there

is no real-world ground truth for the reliability of a labeler in a

certain domain (P(ans |x ,k)) so they used simulated reliability data

[10]. However, as mentioned in previous sections, humans have

an innate ability to infer reliability and personalities of others in

situations ranging from choosing the right lawyer for a case to

choosing a partner in marriage [3]. Furthermore, using cues such as

audiovisual prosody, humans can determine the “Feeling of Know-

ing" (FOK) of a speaker in response to a question [28][5]. Thus we

seek to focus on the P(ans |x ,k) aspect of the proactive learning
problem and allow a learning agent to infer human knowledgeabil-

ity. To do this, we use the outputs of our trained knowledgeabilty

model to determine P(ans |x ,k) for a given human k as they answer

a question.

3 DATASET
We describe the two datasets used for this project. A dataset derived

from the BBC’s University Challenge trivia show was obtained from

Bourai et al’s previous study on knowledgeability detection [4].

The other dataset was a series of video interviews we conducted

with participants answering a standardized set of questions.
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Figure 3: The top row contains answers from the video interview dataset and the bottom row contains answers from the trivia
dataset. The first two images in each row contain correct answers while the latter two contain incorrect answers. Note how in
the trivia dataset the speakers eye gaze is always fixated on the moderator.

3.1 Collection Methodology
3.1.1 Trivia Setting. The dataset consists of 198 clips from the

BBC’s University Challenge series ranging from 1 to 3 seconds. Each

data point contains a contestant answering a question from the

moderator. Each answer clip was annotated with either “correct"

or “incorrect" labels, based on the moderator’s feedback, and then

cropped into individual video clips using the ffmpeg command line

utility tool. An answer is defined as as from the end of the question

being posed until the participant completes their answer. Example

annotations can be seen in Figure 3. Audio was extracted from the

videos using ffmpeg. All clips were derived and annotated using

the ELAN annotation software [26].

137 clips (69.1%) contain a male participant. The majority of

participants in the dataset are college-aged Europeans ranging

from 17 to 22 years old there are clips with older individuals. The

clips are all in high-definition with many direct camera angles on

participants faces as they answer the question.

3.1.2 Interview Setting. Nine subjects were recruited, with eight

of them being male and all college-aged students. 40 questions were

drafted from four categories: US Presidents, Literature, Sports, and

Geography. We attempted to choose as general topics and questions

as possible to avoid having any one participant be particularly

excellent at that domain (e.g. a section on rock band history would

skew heavily towards a very small population). Participants were

instructed to answer to the best of their abilities but were not forced

to make a guess. Thus, some answer clips contain the participant

directly stating their lack of knowledgeability with “I do not know".

In addition, no time limit was set for answering a question.

Annotations were also created using the ELAN annotation soft-

ware. After marking answer boundaries in the interview, each an-

swer clip was tagged with either a “correct" or “incorrect" label.

The answer boundaries are identical to those in the trivia dataset.

360 clips were derived from these interviews. From each clip, we

can extract useful prosodic features such as speech rate, pitch, and

Figure 4: The images on the left contain a speaker indi-
cating they do not know an answer, while the images on
the right are a correct answer. Some people indicated they
did not know an answer confidently (top left) while others
were more expressive (bottom left). Smile events can also be
found in both incorrect (bottom left) and correct answers
(top right).

phonation time using Praat [2]. In addition, we extract visual fea-

tures such as eye gaze, head pose, and facial action unit activations

using OpenFace [1].

3.2 Dataset Comparison
Past work on knowledgeability recognition used clips from the

trivia dataset [4]. However, we found some limitations with this

dataset. The high-stakes nature of a trivia show may make par-

ticipants more expressive or anxious and their eyes are usually

fixed on the moderator rather than the camera. In addition, certain
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Table 1: Significant Audiovisual Features: Trivia vs Inter-
view

Trivia Dataset Interview Dataset

AU 10 (Upper Lip Raiser) AU 6 (Cheek Raiser)
AU 15 (Lip Corner Depressor) AU 12 (Lip Corner Puller)

AU 17 (Chin Raiser) AU 23 (Lip Tightener)

AU 6 (Cheek Raiser) Answer Duration (latency)

AU 7 (Lid Tightener) Pitch Range

Pitch Slope Pitch Slope
Speech Rate -

Number of Pauses -

features that were found to be strongly correlated to FOK such as

latency could not be used due to the artificial time-limit imposed

on answers by the game show. Thus, we attempted to replicate

the past psychological studies on FOK by recording our own video

interviews with participants. A side by side comparison of clips

from the two datasets can be seen in Figure 3.

As the datasets from the Swerts and Krahmer and Smith and

Clark studies are not publicly available, we cannot directly compare

themwith ours. However, as we mentioned in the past work section

we attempted to replicate their collection procedure as closely as

possible by asking all participants the same questions. In the trivia

dataset, each answer clip contained a unique question, thus it would

not be suitable for our proactive learning experiments.

4 AUTOMATICALLY DETERMINING
KNOWLEDGEABILITY

We begin by analyzing which audiovisual cues are most relevant to

predicting the correctness of a speaker. We compare the features

found in the interview dataset with those found to be relevant

under the trivia scenario. Finally we train a model to predict the

correctness of a speaker based on these audiovisual features. In

our feature analysis section we focus exclusively on the interview

dataset.

4.1 Feature Analysis
In past work done by Bourai et al [4] and Swerts et al [28], a com-

bination of audio and visual features were found to be significantly

discriminatory for determining correctness. We derived these fea-

tures using a paired t-test and chose all features with p < 0.05.

Similar to these past studies, we compare means of features.

Unlike Swerts and Kramer’s findings that “funny faces" were

indicative of lower FOK, we instead find more granular features to

be predictive such as a raising of the cheeks (AU 6) or tightening

of the lips (AU 23). The use of more explicit markers such as facial

action units allows for better generalization of features as we do

not have to rely on a subjective interpretation of what a “funny

face" is.

Smile events are particularly interesting as they were singled

out by Swerts and Krahmer as a particularly ambiguous event.

They found that while smiles were correlated with lower FOK in

participants, they were not a statistically significant feature. Their

reasoning was some speakers would smile when given an easy

answer while others would smile for extremely difficult questions

[28]. We did observe smile events in both cases in our dataset, but

with the majority of smile events occurring when a participant

took a seemingly random guess or simply said “I do not know". Our

sample size is smaller than the Swerts study (9 participants vs 20)

thus we cannot definitively conclude that smiles are a significant

indicator of incorrectness.

Smith and Clark considered answer latency to be highly corre-

lated with FOK, with larger latencies indicative of lower FOK and

usually associated with hedge words such as “uh", “um", etc [27]. We

assumed the total duration of an answer clip as a measure of answer

latency, as all of these questions have short answers. Our analysis

indicates latency is also a strong indicator of knowledgeability. The

rising intonation, indicated through the pitch slope feature in Table

1, was also found to be a strong indicator of FOK in both Smith and

Clark as well as Swerts and Krahmer’s studies [27] [28]. However,

in our analyses the pitch range was a more indicative feature.

All of the above features are non-verbal cues automatically ex-

tracted from our clips. One verbal feature we extracted is a verbal

indication of uncertainty, or “I do not know". This feature was

added for our proactive learning experiments; if a participant says

they do not know an answer then their knowledgeability should be

considered lower. However, participants can seem confident when

they are saying they do not know an answer.

4.2 Trivia vs Interview Setting Features
A comparison of the significant features found in the trivia and

interview datasets can be observed in Table 1. The trivia setting

may have made the speakers more anxious and expressive, as vi-

sual features were not as prevalent in the interview setting. The

speech rate feature was the most significant indicator in the trivia

setting, yet was not found useful in the interview setting. However

this feature and the number of pauses are similar to the answer

duration feature as proxies for latency. Smile events are very strong

indicators of incorrectness in the interview dataset but they can be

found in correct answers, as shown in Figure 4.

An important factor to consider when observing the differences

in feature sets is the trivia and interview datasets contain partici-

pants from different cultures. The former contains British partici-

pants while the latter is mostly American participants. Past research

in cultural effects on emotion has found that there may be non-

verbal “accents" specific to certain cultures’ emotional expressions

[18]. Further work is needed to determine the effect, if any, this

may have on our analyses.

4.3 Knowledgeability Model
We use audio and visual features extracted using Praat and Open-

Face to predict whether or not a given person is correct. As the

features may all be in different scales (i.e. eye gaze and head pose

are in 3-D space while Action Units are rated on a continuous scale

between 0 and 5 for intensity of observation) we first normalize

each feature dimension by subtracting the mean and dividing by

twice the standard deviation. We then save these mean and stan-

dard deviations from the training set and apply them to the testing

set.
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We then train a Support Vector Machine (SVM) on visual, audio,

and an audiovisual features. [8]. A stratified 5-fold cross-validation

is used for hyperparameter tuning due to a slight class imbalance.

We validate C in the range of 10
−5

and 10
5
.

We also train a two layer neural network on the combined audio

and visual feature sets. Both layers’ hidden sizes are set to 20 and

learning rate is set to 0.001.

In order to ensure the models were not learning person-specific

features, the dataset is grouped into person-independent batches,

giving us nine total batches with 40 answer clips in each batch

from the individuals. We then use a 9-fold testing approach, where

one batch is held out for testing and the remaining eight used for

training and validation. This allows us to make stronger conclu-

sions about how well the model generalizes across unique samples.

Feature selection is completed for each fold by computing ANOVA

F-values and selecting the K (hyperparameter) most significant fea-

tures. We ensure that feature selection was run only on the training

set to avoid overfitting. We did not directly use the features we

found most predictive in Section 4.1.

4.3.1 Baselines. Amajority-class classifier was used to establish

a chance baseline. We also compare to a K-Nearest Neighbors model

with k = 2 to establish a simple baseline.

5 PROACTIVE LEARNING MODEL
We make a few changes to the proactive learning model defined

in [10]. Rather than using simulated oracle reliability data, we

instead derive P(ans |x ,k) from our knowledgeability model. Given

a question x and oracle k , the SVMmodel will return the probability

of the answer being correct.

We also modifyV (x). In Donmez’s proactive learning study, they

first group the data into C clusters such that each cluster c ∈ C has

a centroid xc [10]. In a later study, Moon and Carbonell derived

a function to measure multi-class information density [19] that

also relies on clustered data with clear centroids. However, we

cannot easily cluster our data in this manner as each data point

is a question belonging to one of four categories (Geography, US

Presidents, Literature, Sports) and there is no easy way to measure

similarity between questions in a category. Thus, it is difficult to

use a density-based measure.

Since we cannot judge a certain question within a cluster to be

more or less informative than another, we instead try to choose the

optimal cluster. Once we know the proper cluster, we randomly

sample an unlabeled question from within that cluster. We define

V (x) =
|cU L |

|c |
+Meanaccuracy +

σaccuracy
√
N

where c is the cluster x belongs to and
|cU L |
|c | measures the per-

centage of unlabeled examples within that cluster. The mean and

standard deviation of accuracies are determined from the labeled

set so far. Recall that our goal in active learning is maximizing

classification accuracy while minimizing labeling effort. Thus we

wish to select an example x from a cluster that will most improve

our model’s classification accuracy. We choose the cluster with the

highest mean accuracy so far but also one with the highest standard

deviation. This indicates that we may have not yet converged to

the correct human labelers as there is some variance in our results.

Table 2: Mean Accuracy Across Folds

Model Accuracy

Majority Class 0.541

K-Nearest Neighbors 0.627

Neural Network (Audiovisual) 0.703

SVM (Visual Features) 0.540

SVM (Audio Features) 0.686

SVM (Audiovisual Features) 0.705
SVM (Audiovisual Features + “I Don’t Know") 0.801

However, we also want to add a diversity element to our sampling

so the model does not drift towards only labeling clusters that are

highly accurate already. We thus add the
|cU L |
|c | component which

rewards clusters that have not been explored as much by our model.

We assume uniform costs across all models, making this method

Algorithm 1 Proactive Learning with Multiple Fallible Oracles

Input: classifier f , labeled data L, unlabeled data UL, k oracles

Output: f
procedure Train(L,UL)
while|UL| , 0

(1) ∀k ∈ K , x ∈ UL calculateU (x ,k)
(2) Choose k∗ = argmaxk ∈Kmaxx ∈U L{U (x ,k)}
(3) Choose x∗ = argmaxx ∈U L{U (x ,k∗)}
(4) Update L = L ∪ (x∗,y∗),UL = UL/(x∗,y∗)

cost-insensitive. A depiction of the algorithm can be found under

Algorithm 1.

5.1 Empirical Evaluation
The goal of our experiment is to see if the proactive learning agent

can pinpoint which human oracles are most likely to respond with

a correct answer given a question. We begin each run by randomly

selecting three questions from each category and then randomly

selecting participants to answer these questions. This will be our

initial labeled set L, with the remaining questions considered to be

the unlabeled set UL.
At each iteration, the agent selects the question-person pair

most likely to increase our accuracy based on U (x ,k). It uses the
outputs from the knowledgeability prediction model to measure the

correctness of a participant answering the question. Once we have

x∗ and k∗, we add the label (x∗,y∗) to our labeled set, where y∗ is
the answer provided by person k∗. The agent continues sampling

optimal question-oracle pairs until the unlabeled set is empty. At

each iteration, we measure the classification error of the labeled

set we are creating. As we began by randomly selecting oracles

to answer questions, our initial error will be about the same as

random choice.

6 RESULTS
In this section we go over the results of our knowledgeability pre-

diction model and the empirical evaluation results of our proactive

learning model.
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Figure 5: Performance comparison for our proactive learning agent against the most accurate oracle as well as a model that
randomly selects oracles. The category is indicated above each plot.

Table 3: Top Oracles per Category

Category Model’s Top Oracle Best Oracle

Geography P8 P8

Literature P1 P1

Presidents P3 P3

Sports P6 P8

6.1 Automated Knowledgeability Prediction
Results

The results of our experiment in predicting knowledgeability can be

found in Table 2. We achieve similar results to work done by Bourai

et al as we are able to predict the knowledgeability of speakers above

chance level [4]. In addition, audio features outperformed visual

features for classification but a combination of the two feature sets

yielded better results. This multimodal approach allows the model

to capture dependencies between audio and visual features. Swerts

and Kramer found that giving human annotators both speech and

video of a person answering a question allowed for higher accuracy

when predicting knowledgeability [28].

We see that including the “I do not know" feature increases our

accuracy. While it is a verbal cue, the increased accuracy of our

model is necessary to ensure better results when we are evaluating

our proactive learning model. This also indicates that our model is

incorrectly classifying non-answers as correct answers. Participants

sometimes seem confident indicating their lack of knowledgeability,

however as mentioned in the feature analysis section smile events

were also prevalent in non-answers. Bourai et al’s work did not

include this feature of “I do not know" as participants in the trivia

setting were required to always give an answer [4].

6.2 Empirical Evaluation of Proactive Learning
Agent

We evaluated our proactive learning agent’s ability to select the

right human oracle for aid on a particular question. Figure 5 con-

tains plots of classification error per category across each iteration.

The results presented are averaged across 10 runs. We see that

sports and geography immediately experience a drop in error while

the presidents and literature categories are smoother at first. This is

due to our active sampling function V (x). It favors categories that
have mean high mean accuracy and standard deviation but also un-

labeled answers. As can be seen in Table 4, literature and presidents

were both difficult categories for our labelers, thus the initial labeled

set will have lower average accuracy than sports or geography and

will not be sampled early. However, as the number of iterations

increase and the more accurate categories converge, we can see a

significant drop in error for the presidents and literature categories.

This is influenced by the
|cU L |
|c | term in our active sampling function

as the agent will begin to sample from categories that are not fully

labeled yet. The plots in Figure 5 also compare with a model that

only samples the “best" oracle. This was determined by selecting the

participant who had the highest average question accuracy across
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Table 4: Comparison of Error

Category Random Best Oracle Proactive Learning

Geography 0.500 0.365 0.248

Literature 0.625 0.413 0.281

Presidents 0.635 0.343 0.372

Sports 0.288 0.082 0.091

all categories. We can see that our agent, with no knowledge about

which oracle is an “expert", can still converge to a similar or better

average classification error compared to the domain experts by the

end of each run. The proactive learning agent relies solely on its

interactions with the human oracles to determine which oracle’s

answer will most likely be correct. The agent is able to capture the

non-verbal signals emitted by the humans and use them to make a

decision about which oracle to select. In Table 3 we see the oracles

the agent selected most often for each category.

In Table 4, we see that the model is able to eventually converge to

an error below chance for all categories. It is able to select oracles

which are likely to correctly answer the given question. This is

true regardless of the initial error of the category. For example,

the presidents category had the highest initial error at 0.635 but

the model was able to select answers from the correct labelers

such that our final error is comparable to if we had only asked

the highest performing oracle. In the literature and geography

categories, our model actually outperforms even the best oracles.

Literature especially was a difficult category for the human oracles,

but the proactive learning agent is still able to pinpoint which

oracle will most likely be correct. This indicates the strength of

combining this decision theoretic approach of proactive learning

with our knowledgeability model. We can successfully select the

best oracle not just based on their past answers, but also on their

direct likelihood to answer this specific question correctly thanks

to our knowledgeability model’s predictions.

7 CONCLUSIONS
We presented an intelligent agent that is capable of interacting with

human oracles and sampling the ones most likely to answer a given

question correctly. This interaction was modeled through analyzing

speech patterns and facial expressivity to determine the likelihood a

speaker will be correct. We also collected a new dataset with video

interviews and trained a knowledgeability model that performs

above chance and other baselines. Due to variance between the

trivia and interview setting, it is clear that a larger study with more

participants will be necessary to make definitive conclusions about

the types of features we can focus on for a general knowledgeability

detector.

Our empirical results indicate that our agent is capable of de-

termining which oracles to ignore or accept answers from. It per-

forms better than chance and is comparable to or better than the

best human oracles. The experiment also showcases how proactive

learning agents can be used in a real world scenario with human

participants and moving away from simulated data. It allows us to

model a much more realistic interactive approach to active learning

and human-computer cooperation.
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