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ABSTRACT
Efficient emergency response is a major concern in urban areas

across the globe. The problem of predicting incidents and subse-

quently allocating responders spatially has been studied extensively.

The problem of dynamically deploying responders, however, has

received considerably less attention and has been noted as a difficult

problem in prior literature due to inherent complexities in the envi-

ronment in which such problems evolve. We formulate a decision-

theoretic framework for the emergency responder problem, which

effectively leverages state-of-the-art methods for continuous-time

spatio-temporal incident forecasting. We formulate the responder

dispatch problem as a Semi-Markov Decision Process (SMDP) that

evolves in continuous time, and efficiently engineer its representa-

tion leveraging structural insights of the problem space. We then

propose a novel approach to solve the problem based on policy

iteration. First, we transform the SMDP into a discrete-time MDP

(DTMDP). Then, we simulate our system to estimate value of states

as well as learn the state transition probabilities of the transformed

DTMDP. We also design heuristic policies with which our algo-

rithm can be seeded. We validate the efficacy of our approach on

real traffic and assault data fromNashville, USA, as well as synthetic

data, and highlight that our approach outperforms the state of the

art emergency responder dispatch system.
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1 INTRODUCTION
Managing and responding to urban incidents such as traffic acci-

dents, fire and crime are fundamental challenges faced by cities

across the world. An increase in housing density, population, and

traffic has further complicated this problem. From the perspec-

tive of emergency responders, there are three major challenges:
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(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

1) predicting or learning where incidents might happen based on

past data, 2) optimizing locations for emergency responders based

on such predictions, and 3) deploying responders as and when

incidents happen. While the first two problems have been stud-

ied extensively [9, 10, 14, 17]), the last problem has not received

much attention. Without an approach for dynamic deployment

of emergency responders, principled algorithmic techniques are

often eschewed in practice as delays resulting from ad-hoc dispatch

strategies can result in the loss of life [2], and erode the trust in the

system.

We develop a principled decision theoretic framework for con-

tinuous -time resource dispatch. We assume that locations and

counts of responders and stations are exogenously given, and focus

on the dynamic dispatch strategy. We formulate the problem as a

Semi-Markov Decision Process (SMDP) which evolves in contin-

uous time. and derive an equivalent DTMDP for the formulation.

In order to obtain an optimal policy for the SMDP, we propose an

algorithm based on policy iteration. We access a simulator to simul-

taneously simulate our system to estimate values of states, as well

as estimate transition probabilities for the DTMDP. We also design

efficient heuristic policies leveraging problem structure and domain

expertise that can be used to seed the policy iteration algorithm.

We validate our findings by comparing our approach to existing

state-of-the-art approaches [9] using real traffic data fromNashville,

a major metropolitan city in the US, as well as simulated data.

Our results demonstrate that our principled approach to dynamic

dispatch significantly outperforms the state-of-the-art alternative.

2 RELATEDWORK
The problem of optimally locating and dispatching responders in-

cludes several subproblems that have been studied largely indepen-

dently. The first is the incident prediction problem which looks at

predicting when and where incident happen and is a well-studied

problem [1, 10, 13, 15, 17]. Given such a model, the next problem

is to allocate resources to meet a specific performance criterion.

We refer readers to recent work done by Mukhopadhyay et al. [9],

which provides a comprehensive summary of prior work in this

domain.

We focus on the final subproblem in this paper: given an incident

prediction algorithm and a fixed spatial distribution of responders,

how do we optimally dispatch responders as incidents happen, par-

ticularly when multiple responder types are involved. Emergency

response has been noted to face inherent uncertainty, with the

additional challenge that while responders do not know when and
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where incidents will happen, the expectation is that response is very

timely [3]. This problem has typicaly been studied as part of the re-

sponder location problem [7] as well as a joint optimization problem

of fairly distributing resources and optimizing response times [16].

Most of the approaches above to either the responder location, or

dispatch, are static, given a particular distribution over incidents in

space and time. The environment, however, is dynamic, and allow-

ing dispatch to adjust to current information and environment is a

crucial consideration in practice which is generally ignored in prior

art. A recent approach has taken a decision-theoretic approach to

dispatching responders and is quite principled and well-structured

[6]. It however, suffers from a major flaw - it assumes that the total

response times for emergency responders (sum of travel time and

service time) are exponentially distributed. This strong distribu-

tional assumption results in two simplifications - first, it lets the

usage of well-known distributions to model and estimate the state

transition probabilities in closed-form and secondly, enables the

usage of Continuous-Time Markov Decision Processes. However,

travel times are not exponentially distributed in practice, and this

limits the practical applicability of the work. Our work is a princi-

pled approach for dynamic responder optimization which addresses

these limitations.

3 BACKGROUND
3.1 Optimal Static Dispatch
We describe here an approach from prior art that dispatches emer-

gency responders on the basis of an allocation mechanism which

has guarantees on wait-times [9]. We call this policy WTG (Wait-

Time Guarantee). The resource allocation algorithm on whichWTG

is based is a two-fold approach. First, the total area to be serviced is

discretized into a set of grids and a probabilistic model of temporal

incident arrival is learned for each grid. Then, based on such a

model, depots and responders are allocated in space to maximize

the total coverage area of responders with bounds on wait times.

The algorithm attempts to assign as many grids as possible to spe-

cific depots. Based on this allocation, when an incident happens in

a grid, WTG first checks if the depot that the grid is assigned to has

any free responders or not and dispatches one if available. If not, it

looks for other responders returning from service to depots that

have no pending incidents. If it fails to locate such responders, the

incident enters a waiting queue in the depot that it is assigned to.

The algorithm has been shown to outperform existing emergency

response systems in Nashville, USA. We treat this approach as our

baseline.

3.2 Semi-Markov Decision Processes
We formally model the problem of dynamic incident response as a

semi-Markov decision process (SMDP) [4]. An SMDP is described

by a tuple {S,A,pi j (a), t(i, j,a), ρ(i,a),α } where S is a finite state

space, A is the set of actions, pi j (a) is the probability with which

the process transitions from state i to state j when action a is taken,

t(i, j,a) is a distribution over the time spent during the transition

from state i to state j under action a, ρ(i,a) is the reward received

when action a is taken in state i , and α is the discount factor for

future rewards. In our case, while the state space is finite, it is

comprised of a collection of variables, and fully enumerating the

state space is not tractable. We consequently leverage a factored

state representation described below.

3.3 Dynamic Bayes Networks
Consider a stationary Markov chain representing a dynamical sys-

tem, with state transition probabilities Pss ′ , and consider a fac-

tored representation of states s using a collection of n variables

{X1, . . . ,Xn }. Let X and X ′
then be factored state representations

for successive states s and s ′. A Dynamic Bayes Network (DBN)

is a graphical representation of Pss ′ in factored space, that is, a

combination of an acyclic directed graph G0 on X of intra-state

edges, with (i, j) an edge from Xi to X j , and G1 a directed graph of

inter-state edges onX ,X ′
, where direction is from variables (nodes)

in X to variables in X ′
, where i, j is an edge from Xi to X ′

j . Let

the graph G be the union of G0 and G1, and for each variable X ′
i

for a successor state, let Pa(X ′
i ) be all variables in X ∪ X ′

which

have directed edges to X ′
i . Then, for each variable X ′

i in the suc-

cessor state we denote it’s conditional probability distribution as

P(X ′
i |Pa(X

′
i )). The probability distribution for the successor state

X ′
conditional on current state X is then PXX ′ =

∏
i P(X

′
i |Pa(X

′
i )).

In a DBN representation, both the directed acyclic graphG , and the
corresponding conditional probabilities P(X ′

i |Pa(X
′
i )) are given.

4 A CONTINUOUS-TIME SPATIO-TEMPORAL
MODEL OF DYNAMIC EMERGENCY
RESPONSE

Our goal is to develop an approach for making optimal decisions

about emergency responder placement and incident response in

a dynamic, continuous-time, stochastic environment. We begin

with several assumptions on the problem structure and information

provided a priori. First, we assume that we are given a spatial map

broken up into a finite collection of grids G, and assume that we

are given an exogenous spatio-temporal model of incident arrival

in continuous time over this collection of grids (we describe one

such model in Section 4.3). Second, we assume that for each spatial

grid cell, the temporal distribution of incidents is homogeneous.

This assumption is merely a reflection of the granularity of the

spatial discretization: we can in principle always discretize space

finely enough so that this assumption approximately holds. Our

third assumption is that emergency responders are housed in a

fixed and exogenously specified collection of depots, each with a

pre-defined set of emergency responders. This reflects the relatively

long time scale of decisions about the spatial location of the depots

themselves.

We assume that when an incident happens, a free responder (if

available) is dispatched to the site of the incident. Once dispatched,

the time to service consists of two parts: 1) time taken to travel to

the scene of the incident, and 2) time taken to attend to the incident.

If no free responders are available, then the incident enters a waiting

queue; once a responder becomes available, it is then assigned to

incidents waiting for service in the order in which they appear in

the queue. We can naturally accommodate incidents with different

priorities in this framework by using a priority queue. Finally, we

assume that the distribution of vehicles in depots is given; it can

be calculated using a number of methods in the literature (e.g., [9]).
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We assume that each responder is assigned to a specific depot, and

must return to that depot when it is not responding to any incident.

We refer to the entire spatio-temporal process of incident arrival

as well as the status of all responders and depots as our world. We

consider the evolution of this world in continuous time. The dynam-

ics of the world are primarily governed by two events that provide

the scope of decision-making : occurrence of traffic incidents and

completion of servicing. These are events when responders need to

be either sent back to their depots or re-directed to other incidents.

Observe that the effect of these actions is not instantaneous. For

example, when an incident happens and the action of dispatching a

responder is taken, the occurrence of the next state is dependent on

the time taken by the concerned responder to travel to the site and

attend to the incident. Therefore, given a snapshot of our world

(which we refer to as a state in our decision making process), the

next state depends not only on the given state and the action taken,

but also on how time evolves between the states.

We model the continuous-time spatio-temporal dynamic deci-

sion problem faced by emergency responders using the machinery

of Semi-Markov Decision Problems described above. We next de-

scribe each of the elements of the SMDP as it captures the emer-

gency responder problem, while also explaining the special struc-

ture of this problem which is used for both representing and solving

it.

4.1 States
A state at time t is represented by st which consists of a tuple

{I t ,Rt }, where I t is a collection of grid indices that are waiting

to be serviced, ordered according to the relative times of incident

occurrence. Thus, for any indices j,k and corresponding itj , i
t
k ∈ I t ,

j > k implies that incident at grid itj occurred after the incident at

grid itk . R
t
corresponds to information about the set of responders

at time t with |Rt | = b ∀t , where b the total number of responders.

Each entry r tj ∈ Rt is a set {htj ,p
t
j ,d

t
j , c

t
j }, where h

t
j corresponds

to the depot that responder j is assigned to, ptj is the position of

responder j ,dtj is the destination that it is traveling to (whered
t
j = 0

indicates that responder j has no destination assigned), and ctj is its

current condition, all observed at the state of our world at time t .
Observe that htj ,p

t
j ,d

t
j ∈ G ∀t , j . Additionally, ctj ∈ {0, 1} ∀j, t , with

ctj = 0 meaning that the responder is currently engaged in service

and ctj = 1 meaning that it is free and available to be dispatched. We

acknowledge that while it is not necessary to include ht∗ as a part of
the state since responders assignments to depots do not change over

time and are exogenously provided, we include this information

nonetheless as it makes the states self-containing. Finally, the set

of all states is denoted by S .

4.2 Actions
Actions in our world correspond to directing responders either to

incidents or back to their depots. We denote the set of all actions by

A, with an action by aik j ∈ A corresponding to a decision to send a

responder which is from depot k and is currently in grid j, to an

incident at grid i . Additionally, we use A(si ) to denote the set of

actions that are available in state si ∈ S . In addition, we impose a

constraint that whenever responders are available and an incident

occurs, we always immediately dispatch some responder. We now

make several important observations. First, due to the continuous-

time nature of our model where a single incident arrives at any

point in time, in our model of the world, at most a single action inA
is ever taken. This is a result of two model features: 1) since routing

a responder to an incident necessarily effects a state transition, and

2) since we always respond to incidents if responders are available,

whenever we have multiple available responders, it must be the

case that there is at most one new incident to respond to.

4.3 Transitions
We first look at how our world evolves before describing transitions.

In our model, states evolve between events that provide the scope

of decision-making . We refer to these times as decision epochs

and such states as decision making states. For convenience, we

segregate the two types of events (occurrence of incidents and

completion of servicing) and refer to states in which responders

become free as completion-states Sc and states in which incidents

occur as incident-states Sa . We also observe that states can evolve

between decision epochs, and every such change in state does not

present a chance to make decisions (i.e., the corresponding A(s)
is empty). As an example, responders going back to their depot

move through different grids, which updates the state variable R,
but presents no scope for decision making in our process, unless an

incident happens. We also make the assumption that no two events

(incident or completion of servicing) can occur simultaneously in

our world. In case such a scenario arises, since the world evolves in

continuous time, we can add an infinitesimally small time interval

to segregate the two events and create two separate states.

In order to segregate decisionmaking states from other states, we

divide the model of our world into two processes as in prior work

[12]: an embedded MDP that is observed only at decision epochs,

and a natural process that evolves as if it is observed continuously

through time, but presents no relevant information to the decision

maker, unless the world is at a decision epoch. Since the decision

making process is essentially the natural process observed at special

(decision making) instances, the two processes are always the same

at decision epochs. This segregation helps us in two ways: first, it

truncates the state space by only looking at states that are relevant

from the perspective of decision-making, and more importantly,

it lets us remain agnostic about how the natural process evolves,

thereby letting us exploit well-established models for transitions

between our decision epochs.

Having described the evolution of our world, we now look at

both the transition time between events, as well as the probability

of observing a state, given the last state and action taken. We define

the former first, denoting the time between two states si and s j by
the random variable ti j .

Since decision epochs are governed by the occurrence of inci-

dents and service completions, we first describe ourmodels between

these events. We denote the time between incidents by the random

variable ta and time to service an incident by ts . We model inter-

arrival times between incidents by using survival-analysis, that

has been widely used to model time to events, and has recently

been used to forecast urban incidents [9, 10], making it a natural
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candidate for our purposes. Survival analysis is a broad class of

methods that are used to model the distribution of time and risk for

events. We use the accelerated time effect (AFT) model in which co-

variates increase or decrease the expected time to next incident [8],

letting us directly model time, rather than risk. Formally, we model

the time t between successive incidents as f (t |w), where t follows
an exponential distribution, and w is a set of arbitrary features

that affect t . As in standard AFT models, we model the arrival rate

for the exponential distribution as a log-linear model in terms of

the features w . Thus, the probability distribution of time to next

incident ta in a given spatial grid is

f (ta |w) = λae−λt
a

(1)

where log λa =
∑
w j ∈W θ jw j and θ are the regression coefficients

learned from data. This form of the model is particularly useful

to us in simulating our world, the purpose of which we explain

in Section 5. As in prior work [9], we model service time ts by an

exponential distribution

f (ts ) = λse−λt
s
.

In combination, our models of ta and ts are crucial as they induce

memoryless arrival and service times which allow us to model the

entire dynamic dispatch process as an SMDP with special structure.

To understand the temporal transitions, we first explain how time

evolves between two states by considering the following scenarios.

First, consider a series of two events as shown in Fig. 1, where at

time t1, an incident happens at grid i (state st1
) and a vehicle is

dispatched from grid j , and at time t2, the vehicle finishes servicing
the incident (state st2

). The time between these two states is dt1t2
v+

ts , where dt1t2
is the distance between the concerned grids at states

st1
and st2

andv is the (known) velocity of the responders. Now, let

us consider the scenario that an incident or completion of service

happens at time t3, resulting in a new state st3
, such that t1 < t3 < t2.

The time between states st3
and st2

now depends on whether the

responder traveling to grid j had reached its destination or not. If it

had not, we can calculate the distance left for it to travel and hence

the time tt3t2
based on information available in st3

. In case it had

reached and started servicing, we can leverage memorylessness of

the service time distribution and reset the remaining service time,

thereby estimating tt3t2
. Next, suppose that an incident happens

at time t1 (state s
t1
), and the next incident occurs at time t2 (state

st2
). The transition between incidents can be modeled directly by

the survival model in Eq. 1. Now, imagine that a new event (service

completion, state st3
) happens at time t3 such that t1 < t3 < t2,

as shown in Fig. 2. Observe that since incident arrivals are also

memoryless, the time to state st2
, as seen from state st3

can again

be reset.

t1 t2 t3

Incident Service Completion

𝑡"#"$

𝑡𝑡%𝑡2 = 𝑑𝑡1𝑡2 v  +  ts

Figure 1: Transition Times when s j ∈ Sc

t1 t2 t3

Incident Incident

𝑡"#"$

𝑡𝑡%𝑡2 = ta

Figure 2: Transition Times when s j ∈ Sa

To summarize, for any two states si and s j

ti j =


∑b
k=1
I{(c

j
k − cik ) > 0}di jv + ts if s j ∈ Sc

tai j if s j ∈ Sa .

(2)

Having considered the temporal evolution between states, we

now consider the probability of observing a state at a decision epoch,

given a particular state at the last decision epoch and the associated

action. We denote the probability that the process moves from state

si (at a decision epoch) to state s j (in the next decision epoch) under

action a by pi j (a), where states belong to the embedded MDP. Note

that the probability of transition between these states cannot solely

be modeled using the incident and service time distributions f (ta )
and f (ts ), as the natural process evolves between decision epochs.

pi j (a) thus captures the transition probabilities for states between

decision epochs while taking into account the implicit evolution of

the natural process.

For a compact representation of the state transition distribution

p, we use a Dynamic Bayes Network (DBN) to leverage conditional

independence relationships among the state variables. The structure

of the DBN is visualized in Fig. 3. Specifically,

Ii

pi

di

ci

Ij

pj

dj

cj

ai

Figure 3: Dynamic Bayes Network tomodel Inter-State Tran-
sition

pi j (a) = P(I j |I i ,ai )P(p j |pi , I i ,ai )P(d j |di ,pi ,ai )P(c j |ci ,ai )
(3)

where ai is the action taken at state si . While the structure of the

DBN is self-explanatory, we point out some of the key insights

that leverage the structure of the responder dispatch problem. For

predicting incidents, we use the standalone survival model which

captures all relevant information for predicting future incidents.

Consequently, future incidents are conditionally independent of

the other state variables, given current incidents. However, pending

incidents are removed from states as they are serviced; hence, the

transition function for I is dependent on the action taken.
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4.4 Rewards
Rewards in SMDP usually have two components: a lump sum instan-

taneous reward for taking actions, and a continuous time reward

as the process evolves. Our system only involves the former, which

we denote by ρ(s,a), for taking action a in state s . Observe that the
best (myopic) scenario in emergency response is when a respon-

der is already present at the scene of the incident, while the worst

scenario occurs when the only available responder has to travel a

distance equal to the largest possible distance in the given area to

attend to an incident. We design our reward structure in accordance

with these observations. When a responder is dispatched in state

si to attend to an incident that results in a state completion state

s j , we denote the reward as dmax − di j , where dmax is the largest

possible distance in the given area under consideration and di j is
the distance between the concerned grids. Also, we assume that

the action of sending a responder back to its depot has 0 reward,

since this is the default action that must be taken if an incident is

not waiting to be serviced.

4.5 Dispatch Process and Decision Problem
In summary, the evolution of the responder dispatch world happens

as follows:

(1) Once the system is in state si , an action a ∈ A(si ) is taken.
(2) The system receives an instantaneous reward ρ(si ,a).
(3) The system transitions to state s j according to the probability

distribution pi j (a)
(4) The system takes time t to make the transition, where t ∼ ti j

Having described the structure of the SMDP representing dy-

namic continuous-time spatio-temporal problem of emergency re-

sponse, we proceed to outline the general goal in solving it. Any

solution to this problem is to obtain a policy π , which for any given

state si prescribes an action π (si ) to be taken in that state. Ideally,

the policy should produce an optimal, i.e., utility-maximizing, action

a, with the notion and form of utility defined beforehand. Formally,

for any arbitrary state si , we define the expected discounted total

reward over an infinite horizon as

V π (i) =
∞∑
n=0

E{e−αTn ρ(sn ,π (sn ))}

where sn is the state at nth decision epoch, and Tn its duration.

Our goal is to find the optimal policy π∗
which, starting from for

an arbitrary state i , maximizes the sum of expected discounted

rewards, with a minor caveat. Emergency responders, in practice,

are often governed by instructions to send the responders that

are close to the scene of an incident. Although this is myopic, it

provides the best chances of dealing with the current incident at

hand, and failing to do so might result in immediate damage and/or

loss of life. We take this into effect by adding a constraint to our

optimization problem as follows

supπV
π (i)

s .t

ρ(s,π (s)) ≥ γ ρ(s,a)∀a ∈ A(s)∀s ∈ S .

(4)

The constraint enforces that the immediate reward taken at a

step is at least γ times the best reward, where γ is a user-defined

parameter based on the nature of the specific emergency response

system.

5 SOLUTION APPROACH
We now present an approach for computing an optimal policy of

the formulated SMDP model of dynamic emergency response. Our

approach is based on policy iteration [12], which is a two-step

process for computing an optimal policy for an MDP by iteratively

improving upon a starting seed policy until convergence. In the

first step, the values of states are estimated under a fixed policy

from the last iteration. The second policy improvement step then

incrementally improves upon the previous policy by finding a better

action in each step.

Unlike conventional MDPs with a small state space, we face two

challenges that make direct policy iteration impractical. First, we

have a combinatorially large state space. Second, the state transition

probabilitiespi j (a) are unknown; rather, we can simulate transitions

and use such simulations to estimate transition probabilities. Our

approach below addresses these problems.

5.1 Discretization
We first present an approach that assumes that the state transition

probabilities are known. We subsequently relax this assumption.

A general approach of solving an SMDP is to derive an equivalent

discrete-time MDP (DTMDP) [4], and then solve the DTMDP by

standard techniques like policy iteration. Before presenting the

conversion, we introduce some additional notation. We denote by

F the cumulative distribution function for the random variable t ,
that is used to model the transition time between states. To begin

with, for each pair of states si and s j , and action a, we define

βα (i, j,a) =

∫ ∞

0

e−α t Fai j (dt). (5)

Using Eq. 5, we then define the expected discount factor as

βα (i,a) =
∑
j
pi j (a)βα (i, j,a)

Intuitively, βα (i,a) measures the significance of one unit of reward

obtained at the current decision epoch, valued at the next decision

epoch, when the continuous time discount factor is α . Finally, we
define βα = supi,aβα (i,a).

As mentioned earlier, transition times between two states si and
s j depend on whether s j ∈ Sa or s j ∈ Sc . We look at these two

cases separately.

Case I: When j ∈ Sc , from equation 2

t = c(i, j) + ts ⇒ ts = t − c(i, j) (6)

where c(i, j) =
∑b
k=1
I{(c

j
k − cik ) > 0}di jv , which given two states,

is a constant. Let д(t) represent the density function of the ran-

dom variable t , and f (ts ) represent the density of the service time

distribution, as mentioned earlier. Now,

д(t) = f (ts ) = f (t − c(i, j)) = λse
−λs (t−c(i, j))

(7)

and

F (t) =

∫ t

c(i, j)
λse

−λs (t−c(i, j))dt .
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Then,

βα (i,a, j) =

∫ ∞

c(i, j)
e−α tλse

−λs (t−c(i, j))dt

=
λs

λs + α
e−αc(i, j).

(8)

Case II:When j ∈ Sa , let the time from the last incident to si be
τ . Since ta is distributed exponentially,

д(t > x) = f (ta > τ + x |ta > τ )

Hence, similar to Case I,

βα (i,a, j) =
λai j

α + λai j
.

Having described the necessary transformations, we define the

corresponding Discrete-time Markov Decision Process (DTMDP)

as {S,A, p̄i j , ρ,Vβ , βα }, where p̄i j (a) = β−1

α βα (i,a, j)pi j (a) is the
scaled probability state transition function and βα is the updated

discount factor. The value of a state si in the transformed MDP can

then be represented as

Vβ (s
i ) = supa {ρ(i,a) +

∑
j
βα (i,a, j)pi j (a)Vα (j)

This DTMDP is equivalent to the original SMDP according to the

total reward criterion (for the proof of this equivalence, see Hu and

Yue [4]).

5.2 SimTrans : Simulate and Transform
The transformed DTMDP still suffers from the two technical diffi-

culties discussed above. We now proceed to address these through

a novel algorithm. We call this algorithm SimTrans, as it combines

simulating a generative model and transforming it into an equiva-

lent DTMDP, in order to solve a SMDP formulation.

The basic idea is to approach policy iteration by simulating the

world to estimate values of states with one important addition.

Choosing an optimal action in a state when given access to a simu-

lator has been previously explored by Kearns et al. [5], Péret and

Garcia [11]. SimTrans accesses the simulator to estimate a state’s

value but at the same time, iteratively builds confident estimates

of the state transition probabilities, which can then be used for

the transformed DTMDP. Once such estimates are available for

any state-action pair, the algorithm chooses to accept such an es-

timate and avoids simulating, thus reducing computational costs.

We present SimTrans in Algorithm 1.

The algorithm presents standard policy iteration with one modi-

fication, a procedure ESTVAL, that is added to estimate values of

states. We start with a subset of states and, given an arbitrary state

si and a policy π , SimTrans decides whether to simulate the world

to estimate V π (si ) or access pre-computed transition probabili-

ties and directly calculate Vβ (s
i ). To do this, ESTVAL first accesses

a procedure conf (si ,π (si ) (refer operation 28 in Algorithm 1) to

check if it has access to confident estimates of pi j (π (s
i ) ∀j ∈ R(i),

where R(i) represents the set of possible next states from si (we
formally define the notion of confidence later). If such estimates are

available (refer to operation 29), the algorithm moves on to find

the expected discounted rewards from future states, the expecta-

tion being taken with respect to p̂i j (π (s
i )) (the estimated value of

pi j (π (s
i ))). In case such estimates are not available, the algorithm

estimates V π (si ) by a direct Monte-Carlo estimation approach. It

simulates the worldm times under policy π , starting from si , where
m is the user-defined Monte-Carlo budget (refer operation 32). At

any iteration l of the simulation, we obtain an estimate V̂ π
l (si ).

The final estimate is simply calculated as the sample mean of the

estimates. Thus, V π (si ) =
∑m
l=i V̂

π
l (s i )

m . Also, every time the world

is simulated, the algorithm tracks the state transitions generated

(referred by ϕ in SimTrans) and updates estimates of state tran-

sition probabilities (refer operation 34). Throughout the process,

SimTrans only looks at actions that are at least γ times the best

myopic action available.

We now look at how the procedure checks confidence in esti-

mates generated by the algorithm. We point out that while any no-

tion of statistical confidence can be used in the algorithm, we choose

the standard two-sided confidence bound, with two user-defined

parameters. The algorithm takes as input a tolerance bandwidth ω
and a confidence parameter r . For any arbitrary p(.), given a series

of its estimates, the algorithm calculates with confidence r , the

interval p̃ within which the true parameter lies as p̃ = 2Zr s√
n−1

, where

s is the sample deviation, n is the number of available samples and

Zr is the critical value of the standard normal for confidence r . If
p̃ ≤ ω, the algorithm accepts the estimates; otherwise, it simulates

the world to get an estimation.

Having looked at the approach that combines simulation and

discretization, we now address the problem of an extremely large

state space. To address this issue, we take two measures. First, we

start with an initial subset of states and gradually add states as we

simulate the world. Second, we seed our policy iteration algorithm

with heuristic policies, that are designed based on prior work [9]

and domain expertise. Thus, for any state, we always have access

to a default policy.

We consider two seed policies. The first is WTG, which is based

on a static assignment of depots to spatial service grids, described

in Section 3. The second is a novel heuristic policy, Multiple Depot

Heuristic (MDH) that addresses the two shortcomings ofWTG. First,

although the placement algorithm of WTG is built on guarantees

on upper bounds on wait times, the dispatch algorithm, in practice,

does not guarantee bounds on wait times for all incidents. This

happens since some grids (say grid i) are not assigned to any depots
and the nearest depot (say depot j) is contacted in case incidents

occur in such grids. This causes wait time bounds to marginally fail

for depot j (as responding to grid i was not a part of the resource
placement algorithm and is enforced on the depot during dispatch).

Second, domain expertise dictates that while cross-depot dispatch

should be reduced (for vehicle wear and tear as well as other main-

tenance issues), it should not be completely ignored. We present

this dispatch policy formally in Algorithm 2. When an incident

happens in grid i in state st , MDH first looks at the depot that

grid i is assigned to (refer operation 3) according to a responder

placement algorithm, such as Mukhopadhyay et al. [9], Silva and

Serra [14] (Mukhopadhyay et al. [9] also looks at vehicles returning

after serving incidents). In case no free responders are available, it

sorts all free responders available on the basis of proximity to the

scene of the incident (refer operation 8). It then iteratively checks

each responder, and sends one from a depot that has no pending

calls. While this approach honors the fixed assignment of depots
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Algorithm 1 SimTrans

1: INPUT: Initial Policy π0, Initial states S0, Maximum Iterations

MAX_ITER, Confidence Parameters ω, r
2: OUTPUT: Final Policy π∗

3: for l = 1..MAX_ITER do
Policy Evaluation:

4: for i ∈ Sl−1
do

5: V
πl−1

l (i) = EstVal(π , i,b,m, l)

6: end for
Policy Improvement:

7: for i ∈ Sl−1
do

8: if conf(i,π (i)) ≤ ω then
9: πl (i) = arg maxa∈A(i) ρ(i,a) +∑

j ∈R(i)) p̂i j (πl−1
(i))βα (i,a, j)EstVal(πl−1

, j,b,m, l)
10: else
11: for a ∈ A(i) do
12: π ′ = πl−1

13: π ′(i) = a
14: V a (i) = EstVal(π ′, i,b,m, l)
15: end for
16: πl (i) = arg maxa V

a (i)
17: end if
18: end for
19: Sl = UpdateStates(Sl−1

)

20: end for

21: procedure EstVal(π , i,b,m, l )
22: if Available(V π

l (i)) then
23: return V π

l (i)

24: end if
25: if b=0 then
26: return ρ(i,π (i))
27: end if
28: if conf(i,π (i)) ≤ ω then
29: V π (i) = rα (i,π (i)) +∑

j ∈R(i)) pi j (π (i))βα (i,a, j) EstVal(π , j,b − 1,m, l)
30: else
31: for k = 1..m do
32: V̂ π

k (i),ϕk = Simulate(π , i,b)

33: end for
34: UpdateP(ϕ1, ...,ϕm )

35: V π (i) =
∑k=m
k=1

V̂ π
k (i)

m
36: end if
37: return V π (i)
38: end procedure

to grids, it accesses cross-depot dispatch in some cases, when the

assigned depot is unable to service.

6 EXPERIMENTAL EVALUATION
6.1 Data
Our evaluation uses traffic accident data and assault data obtained

from the fire and police departments in a medium-size city in the US,

Algorithm 2 Multi Depot Heuristic

1: INPUT: Grid i , State st , Allocation Alloc
2: OUTPUT: π (st ) : Policy for the current state

3: Let j = Alloc(i)
4: count = Free(j)
5: if count > 0 then
6: return aij j
7: end if
8: RespSort = Sort(Rt , i)
9: for r ∈ RespSort do:
10: if Pending(htr ) = 0 then
11: return ai

htrptr
12: end if
13: end for

with a population of approximately 700,000. For this fire department,

traffic accidents and crimes requiring ambulance services comprise

a large majority of incidents it responds to (fires, in contrast, are

relatively rare). We looked at traffic accident data for 26 months,

from 2014 - 2016, comprising of a total of 19,373 traffic accidents,

and assault data for the year 2014, consisting of a total of 7,100

incidents. Each accident is accompanied by its time of occurrence,

the time at which the first responding vehicle reached the scene and

the time at which the last responding vehicle was back at service,

which refers to completion of servicing an incident.We use the same

incident prediction model as in prior work [9]. We also produce two

synthetic datasets using our incident prediction model, by scaling

the incident arrival rate in the exponential distribution by 0.5 and 2.

This provides us with a test bed to evaluate the model on potential

urban areas that are different than the one in our dataset.

6.2 Results
We evaluate the proposed solution by a direct comparison of wait

times for incidents. We setω = 0.1 and r = 0.95 for our experiments.

As a constraint on the action space, we set γ = 0.95, since quick

emergency response by ambulances is critical to saving lives. This

means that, for any state, SimTrans only looks at actions that pro-

vide at least 0.95 times the immediate reward of the best available

action. For the complete set of incidents, we dispatch responders

based on standalone WTG and SimTrans. We test the performance

of SimTrans by first using WTG (SimWTG) as a seeding policy,

and then MDH (SimMDH). We present the results in Fig. 4a. The

results are shown after 3 iterations of SimTrans. We see that Sim-

MDH reduces wait times by almost 50% for both traffic accidents

and assaults. SimWTG, on the other hand, outperforms standalone

WTG only marginally on both types of incidents.

The results on synthetic dataset are shown in Fig. 4b. In this case,

SimWTG edges out WTG marginally, while SimMDH again shows

a remarkable reduction in wait times. The overall wait times for

synthetic data are slightly higher than real data as the generative

model assigns non-zero probability to grids that are unlikely to see

traffic accidents. These grids are rarely sampled, but the presence

of incidents in such grids drives wait times higher. In order to

analyze the reduction in wait times, we check for each algorithm

the percentage of incidents that are served from assigned depots
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(Fig. 4c). We see that SimMDH increases cross depot dispatch by

over 4%, thereby increasing the availability of responders to travel

shorter distances when they need to.

7 IMPLEMENTATION
We have created an open-source web-based platform that acts as

a one-stop complete solution for incident response. The tool facil-

itates low-latency bi-directional communication between clients

(emergency response stations) and a central server. A high-level

software architecture for the tool is shown in Fig. 5a. The tool is

currently in the process of being deployed at the Nashville Fire

Department. We briefly describe the features of the tool here.

The tool provides the ability to each client to visualize historical

data in the form of both markers and heat maps, as well as analyt-

ics based on such incidents (Fig. 5b), thus helping in providing an

immediate visual summary of incidents. Users can also instantly

shift to a future mode, and predict incidents based on Eq. 1 for

specific dates or date ranges, which serves as an important mecha-

nism for resource planning and budget allocations. Finally, when

an incident happens, the server pushes a notification to each client

about the location of the incident as a marker on the map. It also

highlights which emergency responder should be sent to the site

of the incident (Fig. 5c). This feature provides crucial assistance to

the emergency responders thus aiding real-time decision making.

The tool also provides an exploratory mode for making long-term

decisions. It provides the ability to users to add a new depot at

a specific location, allocate responders to it and understand how

much the expected wait time changes upon the addition of such a

depot. This helps organizations strategically during expansions or

relocating depots and/or responders.

8 CONCLUSION
We proposed a principled decision-theoretic framework to address

the problem of emergency responder dispatch in a continuous-time,

dynamic and stochastic environment. We framed the problem as a

Semi-Markov Decision Process leveraging insights from the prob-

lem structure. We used a well established incident prediction model

and a Dynamic Bayes Net to create a factored and compact represen-

tation of the state transitions. Then, we proposed a novel algorithm

to solve it, that simulates the environment and simultaneously

learns transition probabilities. Also, we designed efficient heuristics

to seed our proposed algorithm. We evaluated our algorithm on

both real data from Nashville, a major metropolitan area in USA

as well as synthetic data and showed that our model outperforms

previous state-of-the-art. Finally, we created an open-source tool

for all emergency response organizations that is in the process of

getting deployed in a major city in USA.
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