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ABSTRACT
Baumeister et al. [2] introduced scoring allocation correspondences

and rules, parameterized by an aggregation function ⋆ (such as

+ and min) and a scoring vector s . Among the properties they

studied is separability, a.k.a. consistency [15], a central property

important in many social decision contexts. Baumeister et al. [2]

show that some common scoring allocation rules fail to be separable

and conjecture that “(perhaps under mild conditions on s and ⋆),
no positional scoring allocation rule is separable.” We refute this

conjecture by showing that (1) the family of sequential allocation

rules—an elicitation-free protocol for allocating indivisible goods

based on picking sequences [9]—is separable for each coherent

collection of picking sequences, and (2) every sequential allocation

rule can be expressed as a scoring allocation rule for a suitable

choice of scoring vector and social welfare ordering.
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1 INTRODUCTION
In many applications of artificial intelligence, an important task

is to allocate indivisible goods to a number of agents. This prob-

lem has been studied both from an economic and a computational

perspective, and we refer to the book by Moulin [11] and to recent

book chapters and surveys [3, 10, 13] for an overview.

Any allocation procedure takes as its input the preferences of

the agents over the goods. There are many conceivable ways of

expressing such preferences, ranging from attractively simple (but

imprecise) approval schemes, where agents merely declare whether

or not they like each good, to very precise (but complex) cardinal

preferences, where agents assign an exact numerical value to each

good. Ordinal preferences, where agents rank the items in a linear

order, represent a reasonable and frequently employed compromise

between the two extremes.

When it comes to concrete allocation procedures based on or-

dinal preferences, two approaches stand out in the literature: The

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
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first is based on the simple idea that agents take turns picking their

favorite items among those currently still available, which was first

formalized as the family of sequential allocation rules by Kohler

and Chandrasekaran [9] and studied later on by many authors, e.g.,

[1, 2, 4, 7]; the second, inspired by scoring rules from voting theory,

was first employed by Brams et al. [5, 6], and then defined and stud-

ied in more generality by Baumeister et al. [2] and Nguyen et al. [12]

as the family of scoring allocation correspondences, parameterized

by a scoring vector s (such as Borda, k-approval, or lexicographic
scoring) and a social welfare aggregation function ⋆ (such as, typi-

cally, utilitarian and egalitarian social welfare, expressed by + and

(lexi)min).

In both of these families, the most common examples are nat-

urally defined for any number of agents and goods, raising the

question of whether these procedures yield consistent results when

passing to subsets of agents. This is a central property, which can

be studied in the context of many social decision problems (see

Thomson [15] for an extensive survey). Baumeister et al. [2] call

this property separability in the context of allocation rules. Perhaps

a bit surprisingly, they show that many common scoring allocation

rules (using, e.g., Borda or lexicographic scoring with utilitarian

or egalitarian social welfare) defy separability, and they conjecture

that “(perhaps under mild conditions on s and ⋆), no positional

scoring allocation rule is separable.” In fact, adding to their exam-

ples [2], we show that separability fails also for k-approval scoring
with utilitarian or egalitarian social welfare (Proposition 3.6).

Ourmain results, however, refute the above conjecture of Baumeis-

ter et al. [2]. Namely, we show:

(1) Sequential allocation rules commonly do satisfy separability.

More precisely, we identify a natural condition on picking

sequences (satisfied by the most commonly employed se-

quences), which ensures separability of the corresponding

sequential allocation rule (Theorem 3.14).

(2) While this might at first seem to set up a stark dichotomy

between the two large classes of allocation rules, quite the

opposite is the case: Sequential allocation rules form a cen-

tral, well-studied subclass of the scoring allocation rules

(Theorem 3.10).

2 PRELIMINARIES
In this section wewill properly define the concepts that we sketched

in the Introduction.

First we define the basic notions of ordinal preference profiles

and the allocation rules based on them:

Definition 2.1. Let n ≥ 2 be a natural number and set N =
{1, . . . ,n} (called the set of agents). Furthermore, let G be a finite
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set (called the set of goods or items). An allocation of G to N is a

tuple π = (π1, . . . ,πn ), with πi ⊆ G for i ∈ {1, . . . ,n}, such that

the πi form a partition ofG , i.e., π1 ∪ · · · ∪ πn = G and πi ∩ πj = ∅
for i , j . The set of such allocations will be denoted by Π(G,n). By
a (singleton-based) preference on G we mean a strict total order, i.e.,

a relation > that is transitive (if a > b and b > c then a > c) and
trichotomous (exactly one of a > b, a = b, and b > a holds) on G.
The set of preferences on G will be denoted by P(G).

An n-tuple (>1, . . . , >n ) ∈ P(G)n of such preferences will be

called a (singleton-based) preference profile of N over G.
A map P(G)n → Π(G,N ) assigning to each preference profile

of N over G an allocation of G to N is called a (singleton-based)
allocation rule.

More generally, a map P(G)n → 2
Π(G,n) \ {∅}, assigning to

each preference profile a nonempty subset of allocations, is called

a (singleton-based) allocation correspondence.

The scoring allocation correspondences that we will study pro-

ceed in three steps:

(1) Employing a scoring vector, derive from the preferences a

utility vector for each possible allocation π , that specifies
each agent’s individual utility for the allocation π .

(2) Aggregate the individual utilities using an aggregation func-
tion, yielding a single collective utility (or social welfare) of

the outcome π .
(3) Pick the outcome(s) that maximize(s) collective utility.

As an additional step, we can specify a way to break ties in order

to make sure that there is always a single winning allocation, if

needed, which yields a scoring allocation rule.

Let us describe the first step of constructing a vector of individual

utilities for each possible allocation:

Definition 2.2. A scoring vector is any vector s = (s1, . . . , sm ) ∈
Qm≥0 of rational numbers with s1 ≥ s2 ≥ · · · ≥ sm ≥ 0 and s1 > 0.

Given a preference > over G and a good д ∈ G, define the rank of
д with respect to > as rank(д, >) = |{д′ ∈ G | д′ > д}| + 1. Given

a scoring vector s = (s1, . . . , sm ) and a total order > over G, we
define the utility of a bundle X ⊆ G according to > and s as

u>,s (X ) =
∑
д∈X

s
rank(д,>).

We can now define the utility vector of any given allocation π =
(π1, . . . ,πn ) with respect to a preference profile P = (>1, . . . , >n )
over G and a scoring vector s as follows:

uP,s (π ) = (u>1,s (π1), . . . ,u>n,s (πn )) ∈ Qn≥0.

It is best to think of the u>i ,s (πi ) as approximations to the “real

utilities” of the agents. We can imagine that each agent has some

private way of rating sets of items, but (for reasons of economy

of data or because we might consider it an undue burden on the

agents to come up with a rating for all sets) we only ask for a

ranking of individual items. Then we use the scoring vector to

“reconstruct” some plausible rating on all sets. From this point of

view theu>i ,s (πi ) are a stand-in or a proxy for the unknown actual

utilities.

Before we go through a detailed example, let us define some

commonly used scoring vectors:

Definition 2.3. For anym ≥ 1, the vectors

borda = (m,m − 1, . . . , 2, 1) and lex = (2m−1, . . . , 21, 20)
are called the Borda scoring vector and the lexicographic scoring
vector, respectively. For any given scoring vector s ∈ Qm≥0 and

M >
∑m
i=1 si , we set

(s,M)-qi =
(
1 +

s1
M
, 1 +

s2
M
, . . . , 1 +

sm
M

)
,

and call this the (s,M)-quasi-indifference scoring vector. Often, the

particular choice of M is immaterial and (s,M)-qi is then simply

denoted by s-qi.
Form ≥ k ≥ 1, the vector k-app = (1, . . . , 1, 0, . . . , 0) with ones

in the first k ofm entries is called the k-approval scoring vector.

Example 2.4. Consider three preferences over a set of nine goods,
G = {a,b, c,d, e, f ,д,h, i}, given by:

a >1 b >1 c >1 d >1 e >1 f >1 д >1 h >1 i,

b >2 a >2 f >2 i >2 д >2 d >2 c >2 h >2 e,

d >3 a >3 b >3 f >3 e >3 i >3 h >3 c >3 д.

Then P = (>1, >2, >3) ∈ P(G)3 is a preference profile of three

agents over G. For conciseness and legibility, we will from here on

write concrete examples in the following short form:

P = (abcdefghi, bafigdche, dabfeihcg).
Now consider the bundle X = {b,h, i}. The ranks of these three
items with respect to the first agent’s preference are

rank(b, >1) = 2, rank(h, >1) = 8, and rank(i, >1) = 9.

For a scoring vector s , we can then compute the utility of X with

respect to >1 as

u>1,s (X ) = s2 + s8 + s9.
Consider these four scoring vectors:

borda = (9, 8, 7, 6, 5, 4, 3, 2, 1),
lex = (256, 128, 64, 32, 16, 8, 4, 2, 1),

borda-qi = (1.09, 1.08, 1.07, 1.06, 1.05, 1.04, 1.03, 1.02, 1.01),
3-app = (1, 1, 1, 0, 0, 0, 0, 0, 0).

We then have u>1,borda(X ) = 8 + 2 + 1 = 11, u>1, lex(X ) = 128 +

2 + 1 = 131, u>1,borda-qi(X ) = 1.08 + 1.02 + 1.01 = 3.11, and

u>1,3-app(X ) = 1 + 0 + 0 = 1.

Consider allocation π = ({b,h, i}, {a, c, f , }, {d, e,д}) (or π =
(bhi, acf , deg), for short) of G to N . Just like the utility of π1 = X
for >1, we can calculate that of π2 = {a, c, f } for >2 and of π3 =
{d, e,д} for >3, obtaining the utility vector of π with respect to P
and our four scoring vectors:

uP,borda(π ) = (11, 18, 15), uP, lex(π ) = (131, 196, 273),
uP,borda-qi(π ) = (3.11, 3.18, 3.15), uP,3-app(π ) = (1, 2, 1).
A good allocation rule should choose a “best” allocation in some

sense. Looking at π ′ = (ce, dfgi, abh), we have
uP,borda(π ′) = (12, 22, 18), uP, lex(π ′) = (80, 120, 196),

uP,borda-qi(π ′) = (2.12, 4.22, 3.18), uP,3-app(π ′) = (1, 1, 2).
Comparing the utility vectors for π and π ′

, note that different

choices of scoring vectors can give completely opposite assessments:

Session 16: Economic Paradigms AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

651



Judging by the utilities derived from Borda scoring, all agents would

seem to prefer π ′
to π , whereas lexicographic scoring suggests that

all agents should prefer π to π ′
.

To know what a “best” allocation is, we need a way of comparing

utility vectors.

Definition 2.5. Let N = {1, . . . ,n} be a set of agents, G a set

of m goods, and s ∈ Qm≥0 a scoring vector. A weak order (i.e., a

transitive, reflexive, and complete relation) ≿ on Qn≥0 is called a

social welfare ordering. Given such an ordering, we define a function
Fs,≿ : P(G)n → 2

Π(G,n) \ {∅} by prescribing that π ∈ Fs,≿(P) if
and only if the utility vector associated to π (with respect to the

given preference profile P and scoring vector s) is maximal under

the order ≿, i.e.,

π ∈ Fs,≿(P) ⇐⇒ ∀π ′ ∈ Π(G,n) : uP,s (π ) ≿ uP,s (π ′).

We sometimes call such a π a winning allocation. For short, we may

also write

Fs,≿(P) = argmax

π ∈Π(G,n)
≿uP,s (π ).

Such an Fs,≿ is called a scoring allocation correspondence.

Since the set Π(G,n) of allocations is finite and ≿ is complete

in the above definition, there must be at least one allocation π ∈
Fs,≿(P), though there might be more than one. The ordering≿will

typically be induced by some functionW : Qn≥0 → R (called an

aggregation, collective utility, or social welfare function), by letting

u ≿W v ⇐⇒ W (u) ≥W (v).
In this case, we write Fs,W instead of Fs,≿W

. Hence,

Fs,W (P) = argmax

π ∈Π(G,n)
W (uP,s (π )).

Example 2.6. Two of the most common choices of social welfare

functionsW : Qn≥0 → R are the utilitarian social welfare function
that returns the sum of the agents’ individual utilities and the

egalitarian or Rawlsian social welfare function,1 that returns their
minimum:

Fs,+(P) = argmax

π ∈Π(G,n)
u>1,s (π1) + · · · + u>n,s (πn ),

Fs,min(P) = argmax

π ∈Π(G,n)
min{u>1,s (π1), . . . ,u>n,s (πn )}.

The min function seems like a natural choice for a social wel-

fare function, but it does have certain drawbacks: For example,

when using the ordering induced by min on Qn≥0, the utility vector

(2, 5, 4, 6) would not be considered preferable to (2, 3, 2, 4), even
though the latter strictly increases the utilities of all agents but

one (who happens to be worst-off in both vectors). In more techni-

cal terms, min fails to be monotonic, a property closely related to

Pareto-optimality. This can be fixed by refining min to the leximin
social welfare ordering, first introduced by Sen [14]:

Definition 2.7. For u,v ∈ Qn , define

u ≿lm v ⇐⇒ u∗ ≥lex v∗,

1
These terms are also sometimes used for the leximin social welfare ordering, defined

below.

where u∗ denotes the vector arising from u by sorting the com-

ponents in ascending order, and ≥lex
denotes the lexicographic

ordering on Qn .

We shall denote the scoring allocation correpondences based on

this ordering ≿lm
simply by Fs, leximin

.

Note that v ≿lm u implies min(v) ≥ min(u), so we have

Fs, leximin
(P) ⊆ Fs,min(P)

for all scoring vectors s ∈ Qn≥0 and all P ∈ P(G)n .

Example 2.8. The utilitarian social welfare function and leximin

social welfare ordering can be considered as the extreme cases of

an entire spectrum of social welfare functions. Define the maps

Wp : Q
n
>0 → Q for p ≤ 1 by

Wp (u) =


u
p
1
+ · · · + upn if p > 0,

log(u1) + · · · + log(un ) if p = 0,

−up
1
− · · · − u

p
n if p < 0.

This family plays a very prominent role in the study of social

welfare functions. Its members can be axiomatically characterized

as those increasing, continuous functions on Rn>0 satisfying inde-
pendence of common scale and the Pigou–Dalton principle; see

Section 3.2 in the book by Moulin [11] for details. They are also

closely related to the family of power means, which have long been

studied in mathematics; see, e.g., Hardy et al. [8].

Note thatW1 is simply the sum function. If we postcompose

W0 with the exponential function, we obtain the more common

representation exp(W0(u)) = u1 · . . . · un , which is called the Nash
social welfare function. The leximin ordering can be understood as

the limit of the orders ≿Wp as p → −∞ in the following sense:

u ≿lm v ⇐⇒ ∃M < 0 : ∀p < M : Wp (u) ≥Wp (v).
While theWp for p > 0 can be extended from Qn>0 to Q

n
≥0 (the

term u
p
1
+ · · · + upn still makes sense when one or more of the ui

is 0), the given definition ofWp (u) for p ≤ 0 does not make sense

when u contains a zero component. This can pose a problem in

the context of scoring allocation rules, as our utility vectors can

contain zero entries. To fix this, one may define, in the case p ≤ 0,

that Wp (u) = −∞ for all u ∈ Qn≥0 such that ui = 0 for some

i ∈ {1, . . . ,n}. As a result, all the orderings ≿Wp
are defined on

Qn≥0. For p ≤ 0, they rate any vector with a zero component worse

than all vectors without zero components.

Example 2.9. Recall from Example 2.4 the preference profile

P = (abcdefghi, bafigdche, dabfeihcg)
and the two allocations

π = (bhi, acf , deg) and π ′ = (ce, dfgi, abh).
All social welfare orderings we encountered rateuP,borda(π ′) better
than uP,borda(π ) and uP, lex(π ) better than uP, lex(π ′). For borda-qi-
scoring and utilitarian social welfare, we have

3∑
i=1

uP,borda-qi(π )i = 9.44 < 9.52 =

3∑
i=1

uP,borda-qi(π ′)i ,

but

min(uP,borda-qi(π )) = 3.11 > 2.12 = min(uP,borda-qi(π ′)),
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and thus also

uP,borda-qi(π ) ≻lm uP,borda-qi(π ′),

using egalitarian social welfare. So, in this case, the two notions

disagree about which allocation is preferable. Note that neither π
nor π ′

is optimal with respect to any of our scoring vectors and

social welfare functions. In fact,

F
borda,+(P) = F

lex,+(P) = F
borda-qi,+(P)

= {(ace, bfgi, dh), (ac, bfgi, deh)}.

Note also that F3-app,+(P) consists of 729 distinct allocations, which
is typical of scoring vectors with few distinct entries. Finally,

F
borda, leximin

(P) = F
borda-qi, leximin

(P) = {(ace, bgi, dfh)},

while

F
lex, leximin

(P) = {(ac, bgi, defh)}
and

F
lex,min

(P) = {(ac, bgi, defh), (ac, bghi, def ), (ach, bgi, def )}.

3 SEPARABILITY
In this section, we provide our main results that refute a conjecture

of Baumeister et al. [2] on separability of scoring allocation rules.

We start by reviewing their example that many common scoring

allocation correspondences fail to be separable, then discuss the

notion of weak separability, and briefly discuss two examples where

separability fails for trivial reasons. Finally, we refute the conjec-

ture of Baumeister et al. [2] by showing, first, that all sequential

allocation rules are scoring allocation rules for a suitable choice

of scoring vector and social welfare ordering (Theorem 3.10) and,

second, that sequential allocation rules indeed are separable under

mild conditions on the picking sequence (Theorem 3.14).

3.1 Reviewing an Example of Baumeister et al.
We have introduced allocation correspondences as being defined

for some fixed number of agents and goods. As we saw in our

examples, however, many correspondences can be defined in a

uniform way for any number of agents and goods. We introduce

these formally as correspondence schemes or rule schemes, though we
will often de-emphasize the distinction between a correspondence

and a correspondence scheme when it is not particularly relevant.

Definition 3.1. A family of allocation rules F (n,G)
: P(G)n →

Π(G,n) for all n ≥ 1 and all nonempty finite setsG is called an allo-
cation rule scheme. Similarly, a family of allocation correspondences

F (n,G)
: P(G)n → 2

Π(G,n) \ {∅} for all n ≥ 1 and all nonempty

finite sets G is called an allocation correspondence scheme.

In order to define a scoring allocation correspondence scheme, we
need a family of scoring vectors s(m) ∈ Qm≥0 for eachm ≥ 1 and a

family of social welfare orderings/aggregation functions on Qn≥0
for each n.

Definition 3.2. An extended scoring vector is a family

s = (s(m))m≥1

of scoring vectors s(m) ∈ Qm≥0 for eachm ≥ 1.

The scoring vectors in Definition 2.3 can indeed be viewed as

extended scoring vectors, which we will often continue to denote

simply by borda, lex, k-app, and s-qi. Similarly, our main examples

of social welfare functions/orderings (+, min, leximin, and the so-

cial welfare functionsWp defined in Example 2.8) all actually form

families, as they can all be defined on Qn≥0 for all n ≥ 1. Given

an extended scoring vector s = (s(m)) and a family of social wel-

fare orderings ≿ = (≿(n)) (or aggregation functionsW = (W (n))),
F
(n,G)
s,≿

= Fs |G |,≿(n) defines an allocation correspondence scheme.

Based on the notion of consistency that can be studied in many

social decision problems (see, e.g., [15]), Baumeister et al. [2] define

separability as follows.

Definition 3.3. Let N = {1, . . . ,n} be a set of agents and G a

finite set of goods. For subsets N ′ ⊆ N and G ′ ⊆ G and a pref-

erence profile P = (>1, . . . , >n ) ∈ P(G)n , we denote by P |N ′,G′

the restriction of P to N ′
and G ′

, i.e., the tuple with components

>i ∩ (G ′ ×G ′) for i ∈ N ′
. Similarly, for an allocation π ∈ Π(G,n),

π |N ′ denotes the restriction of π to N ′
, i.e., the tuple containing

only the components πi for i ∈ N ′
.

(1) An allocation rule scheme F satisfies separability if for any

preference profile P with F (P) = π and each partition N =
N 1 Û∪N 2

(the symbol Û∪ denoting disjoint union), we have

F (P |N 1,G1 ) = π |N 1 and F (P |N 2,G2 ) = π |N 2 , where G j =⋃
i ∈N j πi for j ∈ {1, 2}.

(2) An allocation correspondence scheme F satisfies separability
if for every preference profile P , every π ∈ F (P), and each

partition N = N 1 Û∪N 2
, we have π |N 1 ∈ F (P |N 1,G1 ) and

π |N 2 ∈ F (P |N 2,G2 ) with G j
as before.

Separability answers the following question: Imagine we use an

allocation rule F to distribute a set of goods among agents. Now we

split the agents into two groups. Each group holds a subset of the

items, allocated in some way among them. Would we have gotten

the same allocations on the subsets if we had asked F to distribute

each subset of items to each subset of agents in the first place?

Crucially, separability is a property that concerns the coherence

between the allocation rules for different numbers of agents and

items in an allocation rule scheme. Maybe somewhat surprisingly,

Baumeister et al. [2] find that none of the scoring allocation corre-

spondences for the standard choices of scoring vectors and social

welfare orderings satisfy separability. For completeness, we review

their appealing argument.

Example 3.4. For completeness, we reviewExample 3 by Baumeis-

ter et al. [2]. Consider the preference profile

P = (adcfhgbei, beahgcdfi, cfabidegh).

For any choice of strictly decreasing scoring vector s , Fs,+ sim-

ply assigns each good to an agent who ranks it highest (possibly

yielding more than one winning allocation, if a good is ranked

equally by several agents). Hence, Fs,+(P) consists of only the allo-

cation π = (ad, begh, cfi). Restricting P to the subset N 1 = {1, 2} of
agents and the goods G1 = {a,b,d, e,д,h} they received under π ,
we obtain the preference profile P ′ = P |N 1,G1 = (adhgbe, beahgd).
But Fs ′,+(P ′) = (adgh, be) , π |N 1,G1 , for any strictly decreasing

scoring vector s ′.
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For ⋆ ∈ {min, leximin} and any strictly decreasing scoring

vector s , we have that Fs,⋆(P) consists of the unique allocation

π ′ = (adh, beg, cfi), because any allocation ρ in order to satisfy

min(uP,s (ρ)) ≥ s1 + s2 + s5 = min(uP,s (π ′)) must give each agent

three goods, two of which must be her favorite and second-favorite

and the third at least her fifth-favorite, or better. It is now easy

to check that the only way to satisfy this is by having ρ = π ′
.

Restricting to the subset N 1 = {1, 2} of agents and their goods

G1 = {a,b,d, e,д,h} once again yields the preference profile P ′

from above. Now, Fs ′, leximin
(P ′), for any strictly decreasing scoring

vector s ′, consists of only the allocation (adg, beh) , π ′ |N 1,G1 .

3.2 Weak Separability
In fact, Baumeister et al. [2] prove something slightly stronger

than just the failure of separability for allocation correspondences

as defined above. In the definition, it was demanded that every
π ∈ F (P) have the relevant coherence property for restrictions.

Even if separability in this sense fails, it is still possible, that for some
π ∈ F (P) it holds that π |N 1 ∈ F (P |N 1,G1 ) and π |N 2 ∈ F (P |N 2,G2 ).
In this case, there would still be some hope that there exists a

clever tie-breaking procedure, somehow always picking one of the

“good” π ∈ F (P), and so yielding a separable allocation rule. But in

Example 3.4, the sets of winning allocations in all cases consist of

only a single element, so none of the π ∈ F (P) have the required
property (and so there is no hope that separability can be salvaged

by clever tie-breaking). That is, the example shows that the treated

scoring allocation correspondences fail even the following weaker

condition:

Definition 3.5. Let N = {1, . . . ,n} be a set of players and G a

finite set of goods. An allocation correspondence scheme F satisfies

weak separability if for every preference profile P , there is some

π ∈ F (P) such that for every partition N = N 1 Û∪N 2
we have

π |N 1 ∈ F (P |N 1,G1 ) and π |N 2 ∈ F (P |N 2,G2 )

with G j =
⋃
i ∈N j πi for j ∈ {1, 2}.

While Example 3.4 demonstrates that, for a strictly decreasing

scoring vector s , Fs,+, Fs,min, and Fs, leximin
fail even weak sepa-

rability, another example given by Baumeister et al. [2] is not of

this kind. In their Example 4, they consider the (extended) scor-

ing vector plurality = 1-app = (1, 0, . . . , 0) ∈ Qm≥0 and the pref-

erence profile P = (abc, abc, cba). Then they observe that π =
(a, ∅, bc) ∈ F

plurality,⋆(P) for ⋆ ∈ {+,min, leximin}, but restricting
toN 1 = {2, 3} and their goodsG1 = {b, c} yields the preference pro-
file P ′ = (bc, cb), with π |N 1 = (∅, bc) < {(b, c)} = F

plurality,⋆(P ′).
This example is somewhat unsatisfying as it relies on a “bad”

choice of winning allocation π . The set of winning allocations

F
plurality,⋆(P) in this case also contains the allocation π ′ = (a, b, c).

As can be easily checked, π ′ does satisfy the separability condition:

For any partition N = N 1 Û∪N 2
and G1

, G2
as before, we have

π ′ |N 1 ∈ F
plurality,⋆(P ′ |N 1,G1 ) and π ′ |N 2 ∈ F

plurality,⋆(P ′ |N 2,G2 ).
However, by suitably modifying this example, we show that, for

⋆ ∈ {+, leximin}, F
plurality,⋆ fails even weak separability. In fact,

we will show something more general.

Proposition 3.6. Let k ≥ 1. For⋆ ∈ {+, leximin}, Fk -app,⋆ is not
even weakly separable.

Proof. Consider the preference profile P for 2k + 2 agents over
2k + 1 goods

G = {a1, . . . ,ak ,b1, . . . ,bk , c}
given as follows: Agents 1, . . . ,k + 1 share the preference

>1, . . . , >k+1 : a1 a2 · · · ak c b1 b2 · · · bk ,

while agents k + 2, . . . , 2k + 2 share the preference

>k+2, . . . , >2k+2 : b1 b2 · · · bk c a1 a2 · · · ak .
Let us denote A = {1, . . . ,k + 1} and B = {k + 2, . . . , 2k + 2}.

Now, Fk-app,+(P) consists of all allocations that give the goods
a1, . . . ,ak to agents fromA and the goods b1, . . . ,bk to agents from

B (and c to any agent).

Note that under any allocation, one of the agents fromA and one

of the agents from B will have utility 0 with respect to k-app. By
giving the items a1, . . . ,ak to distinct agents from A and the items

b1, . . . ,bk to distinct agents from B, we can however make sure

that all but two agents have positive utilities, so Fk-app, leximin
(P)

contains exactly these allocations.

In particular, Fk-app, leximin
(P) ⊆ Fk-app,+(P). Letπ ∈ Fk-app,+(P).

As noted, at least one of the agents fromAwill not receive any of the

goods a1, . . . ,ak under π , and we can assume without loss of gen-

erality that k + 1 is such an agent (hence πk+1 = ∅ or πk+1 = {c}).
Similarly, assume without loss of generality that agent 2k + 2 re-
ceives none of the items b1, . . . ,bk .

Let i be the agent with c ∈ πi . Distinguish two cases:

Case 1: i ∈ A. Then consider the subset of agents N 1 = A ∪
{2k + 2}. Under π , these receive the goods G1 = {a1, . . . ,ak , c},
with agent 2k + 2 receiving nothing. The induced preference profile
P ′ = P |N 1,G1 has k + 1 preferences

>1 |G1 , . . . , >k+1 |G1 : a1 a2 · · · ak c

and one preference

>
2k+2 |G1 : c a1 a2 · · · ak .

The restricted allocation π |N 1 gives all items from G1
to the first

k + 1 agents. Such an allocation cannot be in Fk-app,⋆(P ′), since the
allocation ρ = (a1,a2, . . . ,ak , ∅, c) is superior to π |N 1 , both in the

leximin ordering and as measured by utilitarian social welfare.

Case 2: i ∈ B. Consider the subset N 1 = {k + 1} ∪ B of agents.

Under π these receive the goods G1 = {b1, . . . ,bk , c}. The induced
preference profile P ′ = P |N 1,G1 has one preference

>k+1 |G1 : c b1 b2 · · · bk

and k + 1 preferences

>k+2 |G1 , . . . , >
2k+2 |G1 : b1 b2 · · · bk c .

The restricted allocation π |N 1 gives all items from G1
to the latter

k + 1 agents. Such an allocation cannot be in Fk-app,⋆(P ′), since the
allocation ρ = (c,b1,b2, . . . ,bk , ∅) is superior to π |N 1 , both in the

leximin ordering and as measured by utilitarian social welfare. ❑

Note that the counterexamples in the proof, maybe atypically,

involve instances with more agents than goods, but they could

easily be modified by introducing additional goods (undesirable to

everyone).
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3.3 Two Trivial Examples of Separability
Motivated by their examples, which show failure of separability in

many common cases, Baumeister et al. [2] conjecture that “(perhaps
under mild conditions on s and ⋆), no positional scoring allocation
rule is separable”. It is clear that some conditions will indeed have to

be put on s and⋆, for it is easy enough to find silly counterexamples

to the conjecture when s and ⋆ are unrestricted.

Example 3.7. (1) Consider an arbitrary extended scoring vec-

tor s with all components non-zero (e.g., s could be the Borda,
lexicographic, or Borda-quasi-indifference scoring vector)

andmax as an aggregation function. The resulting scoring al-

location correspondence Fs,max will simply assign all goods

to a single player (i.e., π ∈ Fs,max(P) if and only if π satisfies

πi = G for some i). This is obviously a separable allocation

correspondence.

(2) Consider the extended scoring vector 1 = (1, 1, . . . , 1) and
aggregation functionmin (or leximin). The resulting scoring

allocation correspondence F1,min (or F1, leximin
) will simply

always return all the even-shares allocations under which all

agents will receive the same number of goods up to one good.

This allocation correspondence is also clearly separable (the

even-shares condition, stating that the sizes of the sets πi
differ by at most 1 for different i , still holds when we restrict

to any subset of players).

These two scoring allocation correspondences may not be par-

ticularly desirable, but they still give some hints regarding the

conjecture: The first example uses an unusual aggregation func-

tion but works with many reasonable scoring vectors, whereas the

second example employs an unusual scoring vector but eminently

reasonable aggregation functions. This shows that we will have

to put conditions on both s and ⋆ to ensure failure of separability

for Fs,⋆. Furthermore, both examples do enjoy certain desirable

properties; e.g., they are both anonymous and the leximin- and

max-aggregation functions are monotonic.

Still, one major criticism that can be levelled at the examples

above is that Fs,max(P) and F1,min(P) hardly depend on P at all!

That is, the resulting allocations can be determined without even

looking at the preference profile.

3.4 Refuting the Conjecture
While we might consider the rules above pathological examples

of separable scoring allocation rules, we will now show (in Theo-

rems 3.10 and 3.14) that there do exist separable scoring allocation

rules that are unquestionably sensible and useful. These are (un-

der mild conditions) the well-studied sequential allocation rules,
introduced by Kohler and Chandrasekaran [9].

3.4.1 All Sequential Allocation Rules are Scoring Allocation Rules.

Definition 3.8. Let N = {1, . . . ,n} with n ≥ 1 be a set of agents

and G = {д1, . . . ,дm } a set of m goods. Furthermore, let σ =
(σ1, . . . ,σm ) ∈ Nm

. Let P = (>1, . . . , >n ) be a preference profile of
N overG . We now inductively define partial allocations π 0, . . . ,πm

(i.e., allocations of some subset of G to N ). π 0
is the empty allo-

cation. Assume π j−1 has been defined. In π j , one additional good
will be allocated, namely agent σj will get to pick one good that

is not yet allocated. More precisely, set π
j
i = π

j−1
i for all i , σj .

Set π
j
σj = π

j−1
σj ∪

{
дj
}
, where дj is the good ranked highest in the

preference >σj which is not contained in

⋃n
i=1 π

j−1
i . Finally, set

F
seq

σ (P) = πm .

We call F
seq

σ : P(G)n → Π(G,n) the sequential allocation rule
associated to the picking sequence σ .

The two most common choices for picking sequences are the

sequence

(1, 2, . . . ,n, 1, 2, . . . ,n, . . . )
and the sequence

(1, 2, . . . ,n, n,n − 1, . . . , 1, 1, 2, . . . ,n, . . . ).

Example 3.9. Consider three agents with the preference profile

P = (beahgcdfi, adcfhgbei, cfabidegh) and the picking sequence

σ = (1, 2, 3, 1, 2, 3, 1, 2, 3). In the first round of picking, agent 1

picks b, then agent 2 picks a, and agent 3 picks c . Then it is agent

1’s turn again and she picks e , then agent 2 picks d , and agent 3

picks f . Finally, agent 1 picks h (since a is already gone), agent

2 picks д (since c , f , and h are gone), and agent 3 picks the last

remaining item i . So we get the allocation F
seq

σ = (beh, adg, cfi).
Note that this allocation is not in Fs,⋆(P) for any strictly decreasing
scoring vector s and any ⋆ ∈ {+,min, leximin} (cf. Example 3.4).

Theorem 3.10. All sequential allocation rules are scoring alloca-
tion rules for a suitable choice of scoring vector and social welfare
ordering.

Proof. Let G be a set of m goods and n ≥ 1. We will use the

scoring vector s = lex = (2m−1, . . . , 21, 20). Note that, with this

scoring vector, for any preference profile P and allocation π , we
can uniquely determine the ranks of the goods each player re-

ceived (according to her preference ranking) from the utility vector
uP,s (π ) = (u1, . . . ,un ) ∈ Nn

0
alone. That is because

ui = u>i ,s (πi ) =
∑
д∈πi

s
rank(д,>i ) =

∑
д∈πi

2
m−rank(д,>i )

is a sum of distinct powers of 2 and every number can be written

in only one way as such a sum (its binary expansion). So if, e.g.,

m = 5 and u is such that

u3 = 11 = 2
3 + 21 + 20 = 2

5−2 + 25−4 + 25−5,

thenwe know that agent 3 received the goods ranked second, fourth,

and fifth in her preference ranking.

Hence, given a utility vector u = uP,s (π ) ∈ Nn
0
, we can define as

ri,k (u) the rank of agent i’s kth-favorite good among the ones she

received in πi , or ri,k (u) =m + 1 if agent i received fewer than k
items. Like the notation indicates, we need to know neither P nor

π , but only u, to determine ri,k (u).2 In the example above, where

u3 = 11, we would thus have r3,1(u) = 2, r3,2(u) = 4 and r3,3(u) = 5.

Now let σ ∈ {1, . . . ,n}m be a picking sequence. Recall that

σj denotes the player who gets to pick an item in round j of the

2
This is crucial: We will use these numbers to define a social welfare ordering. By

definition, the social welfare ordering is defined onQn≥0 ; it does not “see” the preference
profile, only the resulting scores. To explicitly determine ri,k (u) from u alone: Write

ui in its binary expansion ui =
∑l
j=0 εj 2

j
, where εj ∈ {0, 1} for j ∈ {0, . . . , l }.

Now determine the index of the k th 1 in this binary expansion, i.e., let jk be such that

εjk = 1 and | {j ≥ jk | εj = 1} | = k − 1, and set ri,k (u) =m − jk . If there aren’t at
least k 1s in the binary expansion of ui then we set ri,k (u) =m + 1.
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sequential allocation rule. We will need, for j ∈ {1, . . . ,m}, the
number pj = |{j ′ ≤ j | σj′ = σj }|, i.e., pj tells us how many picks

agent σj can make up to round j; e.g., if the picking sequence is

σ = (1, 2, 3, 3, 2, 1, 1, 2, 3, 3), we have p7 = 3 because agent 1 is on

her 3rd pick in round 7 (she got to pick before in rounds 1 and 6).

Now set

rσ (u) = (m − rσ1,p1 (u), . . . ,m − rσm,pm (u)).
Finally, define a total preorder ≿ on Zn by

u ≿ u ′ ⇐⇒ rσ (u) ≥lex rσ (u ′).
We claim that the positional scoring allocation rule F

lex,≿ is

equal to F
seq

σ . The following example illustrates our setup for the

proof of this assertion.

Example 3.11. Consider three players who want to divide up

eight goodsG = {a,b, c,d, e, f ,д,h}. Their preference rankings are
as follows:

P = (gafebcdh, afbechgd, aehgdcbf ).
We use the picking sequence σ = (1, 2, 3, 1, 2, 3, 1, 2). The resulting
allocation for the sequential allocation rule is

F
seq

σ (P) = (gfc, abd, eh).
To see how our scoring allocation rule above works, consider some

allocation, say π = (gde, abfh, c). The utilities according to the

scoring vector s = lex = (27, . . . , 21, 20) are
u = uP,s (π ) = (274, 356, 4).

In binary, u = (100100102, 111001002, 000001002). By taking the

resulting utility vector and considering the binary expansions of

each component, we can recover (without needing to know π or P )
the information that agent 1 received her 1st-, 4th-, and 7th-favorite

goods, agent 2 received her 1st-, 2nd-, 3rd-, and 6th-favorite goods,

and agent 3 merely received her 6th-favorite good in π . Hence, we
have

r1,1(u) = 1 r2,1(u) = 1 r3,1(u) = 6

r1,2(u) = 4 r2,2(u) = 2

r1,3(u) = 7 r2,3(u) = 3

r2,4(u) = 6

For all other i , j , we have ri, j (u) = 9, by definition. Now our defini-

tion of rσ yields

rσ (uP,s (π )) = (8 − r1,1(u), 8 − r2,1(u), 8 − r3,1(u),
8 − r1,2(u), 8 − r2,2(u), 8 − r3,2(u),
8 − r1,3(u), 8 − r2,3(u))

= (8 − 1, 8 − 1, 8 − 6,

8 − 4, 8 − 2, 8 − 9,

8 − 7, 8 − 3)
= (7, 7, 2, 4, 6,−1, 1, 5).

Meanwhile, for the winning allocation under the sequential rule,

we can compute

rσ (uP,s (F
seq

σ (P))) = (7, 7, 6, 5, 5, 5, 2, 0),
so indeed, rσ (uP,s (F

seq

σ (P))) ≥lex rσ (uP,s (π )), i.e., uP,s (F
seq

σ (P)) ≿
uP,s (π ).

By definition, F
lex,≿(P) contains the allocations π for which the

vector rσ (uP,s (π )) is maximal with respect to the lexicographic

order. Which allocations have this property?

As we use the lexicographic order on the vectors rσ (uP,s (π )),
for an allocation π to be optimal, the first component of this vector

must be maximal among all possible choices for π .
The first component, by definition, ism − rσ1,p1 (uP,s (π )), which

is maximal if rσ1,p1 (uP,s (π )) is minimal. This is the rank of agent

σ1’s favorite item among the ones she receives in π (note, p1 is

always 1). For this to be minimal, agent σ1 has to be assigned her

favorite item in π .
Let π 1

be the partial allocation that only assigns this one good.

Note that this is precisely the partial allocation π 1
that appears in

the definition of the sequential allocation rule F
seq

σ (recall Defini-

tion 3.8).

For an induction, assume that the allocations π for which the

first i components of rσ (uP,s (π )) are optimal (according to the

lexicographic ordering) are exactly those that extend the allocation

π i fromDefinition 3.8. To find the allocations for which the first i+1
components of rσ (uP,s (π )) are optimal, we need to determine all

allocations for which the (i + 1)st component is optimal among all

allocations that extend π i . The (i+1)st component of rσ (uP,s (π )) is
m−rσi ,pi (uP,s (π )), which is maximal if rσi ,pi (uP,s (π )), the rank of
agent σi ’s pi th favorite good among πσi , is minimal. pi −1 is exactly
the number of goods that have already been allocated to agent σi
in π i . So minimizing this number means assigning agent σi her
favorite good among all those that have not been assigned yet in π i .
This yields precisely the partial allocation π i+1 from Definition 3.8.

Hence, by induction, the allocations for which rσ (uP,s (π )) is
maximal in the lexicographic order are those that extend πm =
F
seq

σ (P). Since πm already allocates all goods, there is only one

optimal allocation with respect to the order≿, namely F
seq

σ (P). ❑

3.4.2 Sequential Allocation Rules are Separable. Finally, we need
to show that sequential allocation rules, using suitable picking

sequences, are indeed separable. The “suitability” here regards the

fact that the picking sequences for varying numbers of agents and

goods have to be chosen in a coherent way. It is easy to define what

“coherent” should mean when varying the number of goods, i.e.,

the length of the picking sequence. Here, we simply demand that

there be some infinite picking sequence, e.g., (1, 2, 3, 1, 2, 3, . . . ),
and the picking sequence used form goods simply consists of its

firstm terms. Defining when a collection (σn )n≥1 of such infinite

sequences for each number n of agents is coherent, is a little more

involved. Essentially, removing t of the agents from the sequence

σn should give σn−t , up to relabeling. This is formalized as follows:

Definition 3.12. A collection of infinite picking sequences is a

family σ = (σn )n≥1, where σn = (σni ) ∈ {1, . . . ,n}N for each

n ∈ N.
For n ∈ N and N 1 ⊆ {1, . . . ,n} with |N 1 | = r , let σn |N 1 de-

note the sequence arising from σn by deleting all terms σni that

are not in N 1
. Furthermore, set σ r |N 1

= (f (σ ri )) ∈
(
N 1

)N
, where

f : {1, . . . , r } → N 1
is the unique order-preserving bijection be-

tween these sets.

The collection σ is called coherent if σn |N 1 = σ r |N 1

for all n ∈ N
and all subsets N 1 ⊆ {1, . . . ,n} with |N 1 | = r .
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The following example makes the intuition behind this definition

clear.

Example 3.13. For each n ∈ N, we can define the infinite picking

sequence

σn = (1, 2, . . . ,n, n,n − 1, . . . , 1, 1, 2, . . . ,n, n,n − 1, . . . , 1, . . . ).
So, for example,

σ 5 = (1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, . . . ).
Now letM = {2, 4, 5} ⊆ {1, 2, 3, 4, 5}, som = |M | = 3. Then we

get σ 5 |M by simply deleting all 1s and 3s from σ 5
:

σ 5 |M = (2, 4, 5, 5, 4, 2, 2, 4, 5, 5, 4, 2, . . . ).
The unique increasing bijection f : {1, 2, 3} → M sends f (1) = 2,

f (2) = 4, and f (3) = 5. Now

σ 3 = (1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, . . . ).
Applying f to all the terms yields

σ 3 |M = (2, 4, 5, 5, 4, 2, 2, 4, 5, 5, 4, 2, . . . ).
So, in this case we see that, indeed, σ 5 |M = σ 3 |M .

It is now easy to convince oneself that for the picking sequences

σn , this holds for arbitrary n ≥ 1 andM ⊆ {1, . . . ,n}. Hence, they
form a coherent collection of infinite picking sequences.

Similarly, the collection τ = (τn ) with
τn = (1, 2, . . . ,n, 1, 2, . . . ,n, 1, 2, . . . ,n, . . . )

is also coherent.

Given a collection σ = (σn ) of infinite picking sequences, we can
define the allocation rule scheme, consisting of, for each n ∈ N and

finite set G with |G | =m, the sequence allocation rule F
seq

σn , using

the firstm terms of the infinite sequence σn as a picking sequence.

As before, we simply denote all of these functions by F
seq

σ .

Theorem 3.14. If σ = (σn )n≥1 is a coherent collection of picking
sequences, then F

seq

σ is a separable allocation rule scheme.

Proof. Let N = {1, . . . ,n} be a set of players and G a set ofm
goods. Let P be a preference profile of N over G. Let

π = F
seq

σn (P)
be the allocation resulting from the sequential allocation rule. Let

N 1 ⊆ N be a subset of the agents with |N 1 | = k and let G1 =⋃
i ∈N 1 πi be the set of goods they received. Let

π ′ = F
seq

σ k
(P |N 1,G1 ).

By coherence of the family σ , the picking sequence σk arises from

σn by deleting all terms not in N 1
and relabeling. This means

that the agents from N 1
pick in exactly the same order in the

procedure defining F
seq

σ k
as they did in the procedure for F

seq

σn . The

only difference is that in F
seq

σ k
they only get to pick from the set G1

.

But the items that are not inG1
are exactly the ones these agents did

not manage to pick in the original procedure F
seq

σn anyway (because

they got picked by some agent from N \ N 1
before an agent from

N 1
had the chance).

Hence, each agent from N 1
picks exactly the same items (in the

same order) in the procedure F
seq

σ k
as in F

seq

σn , meaning π ′
is exactly

π |N 1 . ❑

The following example illustrates the proof of Theorem 3.14.

Example 3.15. In Example 3.9, we considered the preference

profile

P = (beahgcdfi, adcfhgbei, cfabidegh)

With the standard picking sequence σ 3 = (1, 2, 3, 1, 2, 3, 1, 2, 3) we
obtained

F
seq

σ 3
= (beh, adg, cfi).

Now consider the subset N 1 = {2, 3} of agents and the subsetG1 =

{a, c,d, f ,д, i} of goods they received. The restricted preference

profile is

P |N 1,G1 = (adcfgi, cfaidg).

Restricting the picking sequence and relabeling gives the standard

picking sequence σ 2 = (1, 2, 1, 2, 1, 2).
If we now carry out the procedure to compute F

seq

σ 2
(P |N 1,G1 ), we

find indeed that the agents pick exactly the same items in the same

order as before (agent 1 picks a, agent 2 picks c , agent 1 picks d ,
agent 2 picks f , agent 1 picks д, agent 2 picks i), so

F
seq

σ 2
(P |N 1,G1 ) = (adg, cfi) = π |N 1 .

4 CONCLUSIONS AND FUTUREWORK
We exhibited scoring allocation rules F

lex,≿, based on lexicographic

scoring vectors and specially constructed social welfare orderings,

which are equal to sequential allocation rules F
seq

σ and we showed

these to be separable under certain reasonable conditions on the

picking sequence σ , thus disproving a conjecture from Baumeister

et al. [2]. In view of this, the conjecture that separability might fail

for “all” aggregation functions was overly optimistic (or pessimistic,

if you will).
3

Still, the social welfare ordering used in the proof of Theorem 3.10

was tailor-made to imitate sequential allocation rules. So while the

conjecture fails in the stated generality, it is still worthwhile consid-

ering the question for the well-studied social welfare functions from

Example 2.8. Let us then suggest a more realistic, and presumably

quite challenging, question:

Does separability fail for all scoring allocation rules
of the form Fs,Wp , where s is a strictly decreasing ex-
tended scoring vector andWp is one of the social welfare
functions introduced in Example 2.8?

For any particular choice of p and s , it is usually easy to find

counterexamples for separability experimentally. But it seems much

harder to prove general statements covering a whole range of scor-

ing vectors or a whole range of values for p.
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3
Though the social welfare ordering used in the proof of Theorem 3.10 was described

in an algorithmic manner, it is in fact induced by an aggregation function, which could

be written down in an explicit, closed form (though such an expression would hardly

be enlightening).
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