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ABSTRACT

Diversity has long been used as a design tactic in computer
systems to achieve various properties. Multi-agent systems,
in particular, have utilized diversity to achieve aggregate
properties such as efficiency of resource allocations, and fair-
ness in these allocations. However, diversity has usually been
introduced manually by the system designer. This paper pro-
poses a decentralized technique, clonal plasticity, that makes
homogeneous agents self-diversify, in an autonomic way. We
show that clonal plasticity is competitive with manual di-
versification, at achieving efficient resource allocations and
fairness.
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1 INTRODUCTION

Socio-technical systems are all around us, and increasingly
computers are an intrinsic part of these systems [3]. Smart-
grids [11], vehicular ad-hoc networks [6, 9], smart build-
ings [17], e-procurement [16], cloud computing [12], health-
care [1], and transport [10] are some examples of domains
where humans interact with computer systems to achieve a
particular goal. Due to the speed, complexity, and frequency
of decision-making involved in these domains, computers are
often required to be autonomic and adaptive to the dynamic
environment around them. Indeed this is a foundational
reason why we create self-adaptive systems. Socio-technical
systems were first defined by Emery and Trist [7] to be a
complex interaction between humans, machines and their
joint environment. This makes the aggregate outcome of in-
dividual agent actions dynamic and difficult to predict. An
action taken by an agent at a particular point in time may
have an outcome that is vastly different from the same action
at a different point in time. In many such systems, agents
make (or recommend) decisions that result in allocation of
common pool resources [15]. That is, resources in a social
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context are divided amongst actors/entities in a manner that
achieves some objective. In such systems, less-than-ideal out-
comes are most clearly visible where some resource is being
allocated, and there is no centralized mechanism to ensure
that autonomous actions by each agent does not result in a
disastrous allocation, at the aggregate level. This is specially
so in cases where the agents are not, apriori, designed to be
cooperative (e.g., traffic jams, where each vehicle is exhibit-
ing individually rational behaviour). In many domains, the
natural model is a competitive set of agents where each agent
attempts to fulfill its goals, without regard to the effect it
has on the system-as-a-whole. Indeed, if the system is large
enough, the agent cannot even view the system-as-a-whole.
Examples of such domains include traffic, energy markets,
financial markets, etc. In such domains, multi-agent system
designers need a mechanism that can harness the multiplicity
of agents to produce good outcomes, even where the agents
are not explicitly designed to cooperate. In other words, re-
source allocation mechanisms in multi-agent systems must
guard against some agents grabbing more than their fair
share of resources without actually trampling on the auton-
omy of the agents themselves. As pointed out by Chevaleyre
et al., in some systems, it is impossible to allocate resources
(roads, in this case) such that the result is both efficient and
envy-free [5]. Furthermore, in certain simultaneous games,
even solely envy-freeness is impossible to guarantee [2]. This
paper is concerned with ameliorating the negative effect of
the impossibility of envy-freeness in such games, by enabling
long-term fairness through cumulative allocations. It is in this
context that we introduce the idea of fairness. We distinguish
fairness from envy-freeness, by observing that a series of envi-
ous allocations may, over time, turn out to be cummulatively
fair. The contribution of this paper is to present a technique
that allows us to achieve both efficiency and fairness. We
borrow diversity as a metaphor from ecology, and model
the multi-agent-system as an ecosystem, where each agent is
concerned in a selfish way, only with its own survival. We had
previously shown [14] that diversity in an ecosystem of
competing agents can drive the collective measure of
efficiency and fairness higher. However, the algorithmic
diversity demonstrated was achieved via deliberate human
design. This is not a scalable mechanism for long-lived, large
multi-agent systems consisting of thousands of agents.
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In this paper, we present a mechanism (clonal plasticity)
that allows agents to self-diversify in an autonomic fashion.
We evaluate the diversity achieved via clonal plasticity, and
reflect on its scalability.

2 ALGORITHMIC DIVERSITY

Decision-making and resource allocation mechanisms are all
realized by various algorithms, and hence we view algorithmic
diversity as an appropriate level of granularity for achieving
our goals. We define Algorithmic Diversity as: a variability
in the output produced by a set of algorithms, when faced
with the same input/input-sequence. We do not consider dif-
ferences in the internal data structures used (stacks, queues,
trees, etc.) or control flow implemented (iteration, recursion,
continuations, labelled jumps, etc.). This definition positions
us in domains where there are multiple valid answers and
no deterministic ways of calculating the optimal response in
advance. Traffic flow management systems are a good exam-
ple of such a domain. Each vehicle in traffic has (possibly)
different source and destination and different strategies in
how it gets there (e.g., fastest route, shortest route, least
polluted route, etc.). We use a self-organizing game called
the Minority Game (MG) [4] as our exemplar Multi-Agent
System in a traffic setting, primarily because it has been
well-studied and well-understood. The Minority Game (MG)
consists of an odd number (N) of agents, playing a game in
an iterated fashion1. At each timestep, each agent chooses
from one of two actions (A or B), and the group that is
in the minority, wins. Since 𝑁 is an odd integer, there is
guaranteed to be a minority. Winners receive a reward, while
losers receive nothing. After each round, all agents are told
which action was in the minority. This feedback loop induces
the agents to re-evaluate their action for the next iteration.

3 AUTOMATED GENERATION OF
DIVERSITY

We introduce the main contribution of this paper: a self-
adaptation mechanism called clonal plasticity which can be
used by a group of agents to self-diversify. We use Clonal
Plasticity, to generate diversity automatically amongst the al-
gorithms implemented. We show that this generated diversity
is competitive with the manually introduced diversity pre-
sented in the previous section. We had previously used clonal
plasticity [13] to enable decentralized adaptation, based on
localized environmental changes. Due to its decentralized
nature, the adaptations performed by multiple agents in the
system, results in variations being naturally produced at a
system-wide level. Each minority game was played with a
population size of 501 agents, through a simulation time
period of 2000 steps. For each variation in the experimental
setup, the data is reported as an average of 100 simulations2.

1Note that the exact number of agents does not impact the results, as
long as there is a well-defined minority at every stage.
2All code for this experiment can be found at:
https://bitbucket.org/viveknallur/clonal plasticity algo diversity.git

Diversity Reward Gini

1.7 509 11.2

2.1 616 1.0

2.2 755 1.3

2.5 789 0.9

2.6 770 1.1

2.7 867 2.1

Table 1: Relationship between Diversity and Reward
and Fairness

We measure the efficiency of the system through the median
amount of rewards accumulated by the agent, after the simu-
lation period. We measure the fairness of the system using
the Gini index. The Gini index is used to calculate dispersion
in the income distribution of a society [8]. In a society that
is perfectly equal, the Gini index is equal to zero. Therefore,
the closer the Gini index is to zero, the fairer the distribution
of rewards.

3.1 Effectiveness of Diversity in Fairness
and Efficiency

From Table 1 we see that the lowest level of diversity is also
responsible for the highest level of the Gini index. Recall that
the Gini index measures the inequality of the distribution
of income. Thus, the closer the Gini index value is to zero,
the more equitable the distribution is. This table shows
that attaining both, efficiency of the mechanism (close to
the theoretical optimum of 1000) and fairness (a theoretical
optimum of zero) is a difficult problem. While increasing
diversity directly increases the efficiency (867 is closer to
1000 than 509), it does not have the same clear impact on
fairness. While the fairness achieved with the highest diversity
(H-index of 2.7 results in Gini index of 2.1) is certainly better
than the fairness achieved with low diversity (H-index of 1.7
results in Gini index of 11.2), it is interesting to see that a
diversity level of 2.5 actually provides the highest amount of
fairness (Gini index of 0.9). This indicates the system might
have an optimal ‘sweet spot’ for diversity, and going beyond
such a limit might not necessarily improve both efficiency
and fairness.

4 CONCLUSION

In ecological sciences, as well as computer science, diversity
has been shown to be an important property of an ecosystem.
The concept of diversity has previously been used in com-
puter security, search, machine-learning, as well as software
engineering. However, instead of qualitative statements about
diversity, we present a quantitative approach to measuring
the effects of diversity, and an adaptation approach that
increases the amount of diversity present in the system. This
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is especially important in socio-technical systems that in-
volve human interactions. Further, we present an adaptation
process (clonal plasticity) that can drive a system, from low
levels of diversity to higher levels, depending on the num-
ber of plasticity points that individual agents possess. Being
a completely decentralized mechanism, clonal plasticity is
suitable for systems consisting of a large number of agents.
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