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ABSTRACT
Designing mechanisms that leverage cooperation between agents
has been a long-lasting goal in Multiagent Systems. The task is
especially challenging when agents are selfish, lack common goals
and face social dilemmas, i.e., situations in which individual inter-
est conflicts with social welfare. Past works explored mechanisms
that explain cooperation in biological and social systems, provid-
ing important clues for the aim of designing cooperative artificial
societies. In particular, several works show that cooperation is able
to emerge when specific network structures underlie agents’ in-
teractions. Notwithstanding, social dilemmas in which defection
is highly tempting still pose challenges concerning the effective
sustainability of cooperation. Here we propose a new redistribu-
tion mechanism that can be applied in structured populations of
agents. Importantly, we show that, when implemented locally (i.e.,
agents share a fraction of their wealth surplus with their nearest
neighbors), redistribution excels in promoting cooperation under
regimes where, before, defection prevailed.
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1 INTRODUCTION
Explaining cooperation among selfish and unrelated individuals has
been a central topic in evolutionary biology and social sciences [23].
Simultaneously, the challenge of designing cooperative Multiagent
Systems (MAS) has been a long standing goal of researchers in
artificial intelligence (AI) [10, 19]. More than thirty years ago it
was already clear that ”Intelligent agents [would] inevitably need to
interact flexibly with other entities. The existence of conflicting goals
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[would] need to be handled by these automated agents, just as it is
routinely handled by humans.“ [10].

In cooperative multiagent interactions, agents need to collabo-
rate towards common goals, which introduces challenges associated
with coordination, communication and teamworkmodeling [19, 28].
Self-interested interactions, in contrast, require the design of indi-
rect incentive schemes that motivate selfish agents to cooperate in a
sustainable way [7, 19]. Cooperation is often framed as an altruistic
act that requires an agent to pay a cost (c) in order to generate
a benefit (b) to another. Refusing to incur such a cost is associ-
ated with an act of defection and results in no benefits generated.
Whenever the benefit exceeds the cost (b > c > 0) and plays occur
simultaneously, agents face the Prisoner’s Dilemma, a decision-
making challenge that embodies a fundamental social dilemma
within MAS [21]: rational agents pursuing their self-interests are
expected to defect, while the optimal collective outcome requires
cooperation. If defection is the likely decision of rational agents,
however, how can we justify the ubiquity of cooperation in the real
world? Evolutionary biology has pursued this fundamental question
by searching for additional evolutionary mechanisms that might
help to explain the emergence of cooperative behavior [22, 23].
Some of these mechanisms allowed to develop solutions that found
applications in computer science, such as informing about ways of
incentivizing cooperation in p2p networks [9, 11], wireless sensor
networks [2], robotics [48] or resource allocation and distributed
work systems [44] – to name a few.

Network reciprocity is one of the most popular mechanisms to
explain the evolution of cooperation in social and biological systems
[24, 26, 30–32, 38]. In this context, populations are structured and
interactions among agents are constrained. These constraints are
often modelled by means of a complex network of interactions.
Applications of this mechanism have been explored in the design
of MAS that reach high levels of cooperation [1, 17, 29, 34]. Despite
these advances, cooperation on structured populations is still hard
to achieve when considering social dilemmas with high levels of
temptation to defect. Additional complementary mechanisms are
required.

Here we consider that agents contribute a percentage of their
surplus (defined below), which is later divided among a Benefi-
ciary Set of other agents. In this context, we aim at answering the
following questions:

• Does redistribution of wealth promote the evolution of co-
operation?
• How should Beneficiary Sets be selected?
• What are the potential disadvantages of such a mechanism?
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Using methods from Evolutionary Game Theory (EGT) [45] and
resorting to computer simulations, we explore how wealth redis-
tribution impacts the evolution of cooperation in a population of
agents without memory (i.e. unable to recall past interactions) and
rationally bounded (i.e. lacking full information on payoff struc-
ture of the game they are engaging). We assume that agents resort
to social learning through peer imitation, which proves to be a
predominant adaptation scheme employed by humans [36]. Also,
we consider that strategies are binary – Cooperate and Defect –
opting to focus our attention on the complexity provided by 1)
heterogeneous populations, 2) the redistribution mechanism and 3)
the self-organizing process of agents when adapting over time. The
role of larger strategy spaces (such as in [29, 34, 41]) lies outside
the scope of the present work.

With redistribution, we show that cooperation emerges in a
parameter region where previously it was absent. Moreover, we
show that the optimal choice of redistribution groups consists in
picking the nearest neighbors (local redistribution). This result fits
with a local and polycentric view of incentive mechanisms [27, 47]
in MAS, which may not only be easier to implement but, as we
show, establish an optimal scale of interaction in terms of eliciting
cooperation.

2 RELATEDWORK
The problem of Cooperation is a broad and intrinsically multidisci-
plinary topic, which has been part of the MAS research agenda for
a long time [10, 19]. In the realm of evolutionary biology, several
mechanisms were proposed to explain the evolution of cooperation
[22]. Kin selection [13], direct reciprocity [46], indirect reciprocity
[25, 42, 43] and network reciprocity [26, 38] constitute some of the
most important mechanisms proposed. Remarkably, these mech-
anisms have been applied in AI in order to design MAS in which
cooperation emerges. For example, Waibel et al. associated kin se-
lection with evolutionary robotics [48]; Griffiths employed indirect
reciprocity to promote cooperation in p2p networks while Ho et al.
investigated the social norms that, through a system of reputations
and indirect reciprocity, promote cooperation in crowdsourcing
markets [12, 16]. Similarly, Peleteiro et al. combined indirect reci-
procity with complex networks to design a MAS where, again,
cooperation is able to emerge [29]. On top of that, Han applied
EGT – as performed in our study – in order to investigate the role
of punishment and commitments in multiagent cooperation, both
in pairwise [14] and group interactions [15]. Regarding alterna-
tive agent-oriented approaches to sustain cooperation in MAS, we
shall underline the role of electronic institutions [4, 8] whereby
agents’ actions are explicitly constrained so that desirable collective
behaviors can be engineered.

The role of population structure and network reciprocity is, in
this context, a prolific area of research. In [31] it was shown that
complex networks are able to fundamentally change the dilemma
at stake, depending on the particular topology considered [18, 31];
Ranjbar-Sahraei et al. applied tools from control theory in order to
study the role of complex networks on the evolution of cooperation
[34]. Importantly, the role of dynamic networks – i.e., agents are
able to rewire their links – was also shown to significantly improve
the levels of cooperation, especially in networks with high average

degree of connectivity [32, 39]. A survey on the topic of complex
networks and the emergence of cooperation inMAS can be accessed
in [17].

Previous works found that cooperation in structured population
substantially decreases when the temptation to defect increases
(see Model for a proper definition of Temptation). Thereby, here
we contribute with an additional mechanism of cooperation on
structured populations. We consider a mechanism of redistribu-
tion, inspired in the wealth redistribution mechanisms that prevail
in modern economic/political systems, mainly through taxation.
We are particularly interested in understanding how to sample re-
distribution groups in an effective way. In this context, we shall
underline the works of Salazar et al. and Burguillo-Rial, in which
a system of taxes and coalitions was shown to promote coopera-
tion on complex networks [37] and regular grids [5]. While [37]
and [5] do an excellent job showing how coalitions – leaded by a
single agent – emerge, here we consider a simpler/decentralized
model (e.g. no leaders are considered and taxes are redistributed
rather than centralized in a single entity) and focus our analysis on
showing that local redistribution sets are optimal. Our approach
does not require additional means of reciprocity, memory, leader-
ship, punishment or knowledge about features of the network. We
cover a wide range of dilemma strengths and explicitly show when
the local redistribution promotes cooperation by itself. Notwith-
standing, the analysis performed in [37] and [5] surely provides
important insights to address in future works, on how to explicitly
model the adherence to Beneficiary Sets and guarantee their stabil-
ity. Also, while here we assume an egalitarian redistribution over
each individual in the Beneficiary Set, we shall note that different
redistribution heuristics may imply different levels of allocation
fairness [33]. In this context, a recent work introduces the concept
of Distributed Distributed Justice [20] and shows that local inter-
actions may provide a reliable basis to build trust and reputation
between agents, which can be used to regulate, in a decentralized
way, the levels of justice in agents’ actions. This way, it is reward-
ing to note that local interactions not only constitute an optimal
scale to form cooperative Beneficiary Sets (as we show, see below),
but also provide the convenient interaction environment to allow
justice in contributions to be sustained.

3 MODEL
3.1 Three Stage Redistribution Game
Here we propose a sequential game dynamics made of three stages.
Focusing on an arbitrary agent i , these stages can be described as
follows:

(1) Agent i participates in a one-shot game (here a Prisoner’s
Dilemma) with all his/her neighbors j . From each interaction
j, he/she obtains a payoff πi, j . After all interactions, agent i
accumulates a total payoff Πi =

∑
j πi, j ;

(2) Next, agent i contributes a fraction α of his/her payoff sur-
plus (Πi − θ ) to be redistributed. The group that benefits
from agent i contribution is called Beneficiary Set i (Bi ).

(3) Finally, agent i receives his/her share from each Beneficiary
Set that he/she is part of.

We refer to α as the level of taxation, as it defines the fraction of
the surplus that agents contribute, while θ is the threshold level of
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Figure 1: Solutions for the two-person game with wealth re-
distribution. Each curve indicates the critical taxation levels
(α∗) above which the nature of the social dilemma changes,
for different payoff thresholds (θ ) and as a function of the
Temptation parameter (T ).

payoff that defines the surplus. By definition, agents with negative
payoff cannot contribute (i.e., θ > 0); they might, however, receive
benefits from the Beneficiary Sets. Each agent i contributes only to
one Beneficiary Set Bi from which they cannot be part of, that is,
agents do not receive from the Beneficiary Set they contribute to.
A central question of this work is how to select Bi for each i . As
we show, this decision has a profound and non-trivial impact on
the overall cooperation levels in the system.

3.2 The Prisoner’s Dilemma Game
In general, all the possible outcomes of a two-strategy two-player
game, in which two agents engage in a one-shot interaction that
requires them to decide – independently and simultaneously –
whether they wish to Cooperate (C) or to Defect (D), can be sum-
marized in a payoff matrix, such as

C D

C R S

D T P

which reads as the payoff obtained by playing the row strategy
when facing an opponent with the column strategy. Here, R rep-
resents the Reward payoff for mutual cooperation and P the Pun-
ishment for mutual defection. When one of the individuals Defects
and the other Cooperates, the first receives the Temptation pay-
off (T ) while the second obtains the Sucker’s payoff (S). In this
manuscript we consider that agents interact according to the Pris-
oner’s Dilemma (PD). Agents are said to face a PD whenever the
relationship between the payoffs is such that T > R > P > S
[45]. In such a scenario, rational agents seeking to optimize their
self-returns are expected to always Defect. However, since the best
aggregated outcome would have both players cooperating (R > P ),
agents are said to face a social dilemma: optimizing self-returns
clashes with optimizing the social outcome. In this sense, mutual
cooperation is Pareto Optimal and contributes to increase both
average payoff (over mutual defection) and egalitarian social wel-
fare (over unilateral cooperation) [6]. It is noteworthy to mention
that other situations – with different optimal rational responses –
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Figure 2: Graphical depiction of the specific structures used
in this work. a) Homogeneous Networks correspond to a
structure in which all nodes have the same degree. b) Het-
erogeneous Networks are characterized by a high variance
among the degree of nodes. The color of each node indicates
its degree: blue tones represent lower degree and red tones
higher degree. Panel c) and d) show, respectively, the degree
distributions of the Homogeneous and Heterogeneous net-
works under analysis. In particular, we use scale-free net-
works as representatives of heterogeneous structures; these
have a degree distribution that decays as a power law [3].

arise when the parameters take a different relationship [21]: the
Stag Hunt game when R > T > P > S ; the Snowdrift Game when
T > R > S > P ; the Harmony Game when R > T > S > P ; or the
Deadlock Game whenT > P > R > S , to name a few. Notwithstand-
ing, the PD is by far the most popular metaphor of social dilemmas
[45] and the one that presents the biggest challenge for cooperation
to emerge. For these reasons, PD shall be the main focus of study
in this manuscript. We further simplify the parameter space by
considering that R = 1, P = 0, S = 1 −T and 1 < T ≤ 2 with the
game being fully determined by the Temptation value (T). In that
sense, higher temptation creates more stringent conditions for the
emergence of cooperation.

3.3 Prisoner’s Dilemma with Wealth
Redistribution

As an introductory example, let us start by analyzing the particular
case of two interacting agents (i and j) in a one-shot event. In this
case, the Beneficiary Sets of each agent (Bi and Bj ) are composed
only by the opponent. Wealth/payoff redistribution can thus be
analyzed by considering a slightly modified payoff matrix, that
takes into account the second and third stages. The resulting payoff
matrix becomes

C D

C 1 1 −T + α (T − θ )

D T − α (T − θ ) 0
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where θ is the payoff threshold and α is the level of taxation. The
rationale to arrive at this payoff structure is the following: whenever
both players choose to act the same way the payoff remains the
same as their contributions (from taxes) and benefits (from receiving
the contributions of their opponent) cancel out. A Defector playing
against a Cooperator sees his payoff of T subtracted by an amount
α (T − θ ) while not receiving any benefit, since the Cooperator has
negative payoff and does not contribute. Likewise, the Cooperator
is exempt from contributing but receives an additional contribution
of α (T − θ ), which represents the amount taxed to the Defector.

To inspect whether wealth redistribution changes the nature of
the social dilemma (i.e. from a Prisoner’s Dilemma to another type
of game) we have to inspect whether there is a difference in the
relationship between the payoffs R and T or P and S . This sums up
to solving a single inequality,

T − α (T − θ ) < 1 (1)

which results in the critical values of α ,

α∗ >
T − 1
(T − θ )

(2)

Hence, depending on the choice of θ and for a given T , α∗ is the
minimum level of taxation required to observe a change in the
nature of the game faced by agents. It is straightforward to notice
that the nature of the game changes from a Prisoner’s Dilemma to
an Harmony Game as the relationship moves from T > R > P > S
to R > T > S > P . Figure 1 shows α∗ for different values ofT and θ .
Clearly, in well-mixed populations and under the simple scenario of
a MAS composed by two agents, the redistribution mechanism has
the simple effect of reshaping the payoff matrix, trivially changing
the nature of the dilemma. Such a trivial conclusion cannot be
drawn with large populations playing on networks, where we will
show that different ways of assigning the Beneficiary Sets have a
profound impact on the ensuing levels of cooperation.

3.4 Structured Populations
Let us consider a population of Z agents arranged as nodes/vertices
in a complex network, while links dictate who interacts with whom.
The structure reflects the existence of constraints that limit interac-
tions between agents. These constraints can arise from spatial or
communication limitations.

The number of interactions that each agent i participates in
defines his/her degree zi . The distribution of degrees, D (z), de-
scribes the fraction of agents that has degree z. In this work we
consider two structures: Homogeneous Random Graphs [40, 41]
and Scale-Free Barabási Networks [3].

Homogeneous Random Graphs are generated by successively
randomizing the ends of pairs of links from an initially regular
graph (e.g. Lattice or Ring). The resulting structure has a random
interaction structure but all nodes in the network have the same
degree. Figure 2a) depicts graphically an example of such structures
and Figure 2c) the corresponding Degree distribution.

Scale-free networks are generated by an algorithm of growth
and preferential attachment [3]. This algorithm is as follows: 1)
start from three fully connected nodes; 2) add, sequentially, each
of the Z −m remaining nodes; 3) each time a new node is added,
it connects tom pre-existing nodes, selecting preferentially nodes
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Figure 3: Level of Cooperation on Homogeneous Random
Networks (a) and Heterogeneous (Scale-free) Networks (b).
Each plot shows the level of cooperation under a different
combination of taxation level, α , and Temptation, T . In all
cases the fitness threshold is fixed at θ = R = 1.0. Blue indi-
cates regionswhereCooperation dominates, Red delimits re-
gions dominated by Defectors. Top bars above each panel in-
dicate the level of cooperation in the absence ofwealth redis-
tribution, as a function of the Temptation payoff parameter.
The level of cooperation is computed by estimating the ex-
pected fraction of cooperators when the population reaches
a stationary state. To that end we run 104 independent sim-
ulations that start with 50% cooperators and 50% defectors.
Population size of Z = 103 and intensity of selection β = 1.0.

with higher degree. Here we have usedm = 3. The resulting net-
work is characterized by a heterogeneous degree distribution (one
which decays as a power law), in which the majority of the nodes
have few connections while a few have many. Figure 2b) shows
a graphical example of such structure and Figure 2d) the degree
distribution.
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Figure 4: Level of cooperation on Heterogeneous (a) and Ho-
mogeneous (b) populations for different values of the payoff
threshold (θ ) as a function of the Temptation payoff param-
eter (T ). Gray Dashed line shows the results obtained in the
absence of a wealth redistribution scheme. Population size
of Z = 103 and intensity of selection β = 1.0.

In the following we explore the case of networks with Z = 103
nodes and average degree of ⟨z⟩ =

∑
z zD (z) = 4. During the

simulations we make use of 20 independently generated networks
of each type.

3.5 Games on Networks
We study the expected level of cooperation attained by the popu-
lation. We estimate this quantity through computer simulations.
The level of cooperation corresponds to the expected fraction of
cooperators in a population that evolved after 2.5 × 106 iterations.
We estimate this quantity by averaging the observed fraction of
cooperators at the final of each simulation, over 104 independent
simulations.

Each simulation starts from a population with an equal compo-
sition of Cooperators and Defectors, which are randomly placed
along the nodes of the network. In between each update round,
each agent i plays once with all his/her zi nearest neighbors (i.e.,
agents they are directly connected with). The accumulated payoff
over all interactions an agent i participates can be computed as

Πi = n
C
i T − σi (1 −T ) (n

D
i + n

C
i ) (3)
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Figure 5: Comparison between the effects of assigning the
nearest neighbors of an agent i to the corresponding Bene-
ficiary Set Bi (dark blue line) and when agents are assigned
at random to Bi (light blue), on the level of cooperation in
the domain of the Temptation payoff parameter, T. Panel a)
shows the results on Heterogeneous populations and panel
b) the impact onHomogeneous populations. Population size
of Z = 103 and intensity of selection β = 1.0.

where nDi (nCi ) is the number of neighbors of i that Defect (Co-
operate) and σi is equal to 1 if i is a Cooperator and 0 otherwise.
From the accumulated payoff, agents contribute to a pool a fraction
α of the surplus Π − θ . The fitness fi of an agent i results from
subtracting from his/her accumulated payoff his/her contributions
plus the share he/she obtains from each of the Beneficiary Sets j
he/she participates in. We shall underline that, while T is the same
for all agents (that is, the dilemma is the same for everyone in the
population), heterogeneous populations introduce an additional
complexity layer by implying that different agents may vary in the
maximum values of accumulated payoff that they are able to earn.
This can be formalized as

fi = (1 − α ) (Πi − θ ) +
Z∑
j
δi, j

α (Πj − θ )

|Bj |
(4)

where δi, j is equal to one if i is part of the Beneficiary Set towards
which j contributes and zero otherwise, while |Bj | denotes the size
of set Bj .
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Evolution in the frequency of strategies adopted in the popula-
tion happens through a process of imitation or social learning. At
each iteration a random agent, say i , compares his fitness with the
fitness of a neighbor, say j. Depending on the fitness difference, i
adopts the strategy of j with probability

p =
1

1 + Exp (−β ( fj − fi ))
(5)

The meaning of this sigmoid function can be understood as follows:
if j is performing much better than i , then i updates his/her strategy,
adopting the strategy of j . Conversely, if j is performingmuchworse,
i does not update the strategy. The parameter β , often called the
intensity of selection and akin to a learning rate, dictates how sharp
is the transition between these two regimes, as fj − fi approaches
zero. Large β means that individuals act in a more deterministic
way, updating strategies at the minimum difference; small β means
that individuals are prone to make imitation mistakes.

4 RESULTS
4.1 Wealth Redistribution and the Level of

Cooperation in Structured Populations
In this section we start by analyzing the scenario in which the Bene-
ficiary Set of each agent i corresponds to his/her nearest neighbors.
Hence, the size of the Beneficiary set of i is |Bi | = zi . These are
also the agents from whom he/she interacts with and obtains a
payoff from. Figure 3 shows the achieved levels of cooperation
when the payoff threshold is set to θ = R = 1.0, as a function of the
Temptation payoff (T ) and the level of taxation (α ). Figure 3a shows
the results on Homogeneous networks, and Figure 3b on Hetero-
geneous. We find that, for a fixed payoff threshold (θ ), increasing
the level of taxation results in an increase in the levels of cooper-
ation. This effect diminishes with an increase in the Temptation
(T ). That is, when increasing T the minimum value of α necessary
to promote cooperation increases as well. The same behavior is
observed in both structures. However, there is a larger degree of
cooperation on Heterogeneous networks, where there is always a
level of taxation for a given Temptation that guarantees a 100% level
of cooperation. Hence, in order for cooperation to be evolutionary
viable on homogeneous networks, more stringent conditions are
necessary, e.g. higher tax levels.

Figure 4 shows how the level of cooperation depends on vari-
ations of the fitness threshold (0 ≤ θ ≤ 2.0, in intervals of 0.4)
while keeping a fixed level of taxation under different levels of the
Temptation payoff (T ). Figure 4a shows the results obtained for
Heterogeneous networks and panel b) the results on Homogeneous
structures. For a constant level of taxation, α , decreasing the payoff
threshold, θ , increases the range of Temptation, T , under which
cooperation can possibly evolve. This is the case in both types
of structures. However, once again, the effect is more limited in
homogeneous populations.

Both Figure 3 and 4 highlight the positive impact of a local wealth
redistribution mechanism in the enhancement of cooperation. It
also evidences that the success of such mechanism depends on the
volume of payoff that is redistributed. Ultimately, this can be done
by either increasing the level of taxation, α , or decreasing the payoff
threshold, θ , that defines the taxable payoff.
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Figure 6: Panel a) compares how extending beneficiary sets,
from the nearest neighbors (d = 1) to nodes at a distance up
to d = 4 links away, impacts the level of cooperation on Het-
erogeneous networks. Panel b) shows how extended benefi-
ciary sets impact the level of cooperation on Homogeneous
networks. In both cases extending the set of beneficiaries
has a negative a negative impact in the levels of cooperation.
Population size of Z = 103 and intensity of selection β = 1.0.

4.2 Randomized Beneficiary Set
Next we explore to which extent the results obtained depend on the
way agents are being assigned to each Beneficiary Set. To that end,
we compare two cases: i) nearest set assignment – the Beneficiary
Set of each agent corresponds to her/his nearest neighbors, as above;
and ii) random set assignment – agents are assigned at random
to each Beneficiary Set. The number of agents assigned to each
set is equal to the degree of the contributing agent, in both cases,
which guarantees that the collected payoffs from each agent are
distributed among the same number of individuals in both i) and
ii).

Figure 5a and b show the results obtained, respectively, on Het-
erogeneous and Homogeneous networks. We explore the domain
1.0 ≤ T ≤ 2 for fixed θ and α . Dark blue curves show the results
obtained under the nearest set assignment and light blue curves the
results obtained under a random set assignment. The results show
that the ability of a wealth redistribution mechanism lies in the
redistribution of the taxed payoff among the agents that are spa-
tially related. A random assignment of agents drastically decreases
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Figure 7: Panel a) shows the fixation times (in generations)
on homogeneous networks. Panel b) shows the fixation
times (in generations) in heterogeneous networks. A gener-
ation corresponds to Z iteration steps and the fixation times
indicate the expected time that the population takes to ar-
rive to a state dominated by Cooperators or Defectors when
starting from a state with equal abundance of both strate-
gies. Population size of Z = 103 and intensity of selection
β = 1.0.

the levels of cooperation obtained in both networks. But to which
extent do the Beneficiary Sets need to be constrained spatially?

4.3 Extended Beneficiary Set
To answer the previous question, we explore the case in which all
nodes (up to a distance of d links) are assigned to the Beneficiary
Set of a focal agent i; when d = 1 the previous results are thereby
obtained.

Figure 6a and b show the results up to d = 4 on Heterogeneous
and Homogeneous networks respectively. In both cases, we see
that an expansion in the size of the Beneficiary Set leads to a de-
crease in the levels of cooperation. This result further reinforces the
conclusion that wealth redistribution is only efficient when agents

return, in form of taxes, a share of the accumulated payoffs to the
agents they have engaged with. We shall underline that here both
distance and size of Bi play a role on the obtained results, while
in the previous section the size of Bi was kept constant for each i
across the different treatments, thus disambiguating the effect of
Bi size and distance on the resulting cooperation levels.

4.4 Fixation times and wealth redistribution
Figure 7a and b show the fixation times of populations when θ = 1.0
along the domain bounded by 0.0 ≤ α ≤ 1.0 and 1.0 ≤ T ≤ 2.0.
The fixation times correspond to the expected number of gener-
ations (i.e., sets of Z potential imitation steps) for the population
to reach a state in which only one strategy is present in the popu-
lation. These plots map directly into Figure 3a and b, allowing to
compare the relative fixation times of regions with high/low levels
of cooperation.

We observe that the evolution of cooperation is associated with
an increase in the fixation times. This increase can result, in some
situations, in a fixation time 2 orders of magnitude higher. The
regions that exhibit larger fixation times lie in the critical boundary
that divides areas of defectors and cooperators dominance (Fig-
ure 3). Hence, promoting cooperation by redistributing wealth also
requires a longer waiting time for the population to reach a state of
full cooperation. However, setting higher taxation values than the
bare minimum necessary for the emergence of cooperation allows
populations to reach fixation quicker.

4.5 Multiple Contribution Brackets
In real world, taxes are unlikely to be defined by a single threshold
(θ ) that separates agents who contribute from those that do not. In
reality taxes are progressive, in the sense that taxation levels (α )
increase with increasing level of income (in this case accumulated
payoff). We tested progressive taxes by increasing the number of
taxation brackets.

Let us consider that, instead of a single threshold we now have B
taxation brackets divided by B−1 threshold levels. For each bracket
we define αb as the effective tax and θb as the bottom threshold of
bracket b, where b ∈ {0, 1, 2, ...,B − 1,B}.

By definition B = 0 corresponds to the case in which no taxes
are collected, and the redistribution of wealth is absent. Moreover,
B = 1, implies the existence of a single bracket were all individuals
would contribute, a case that we do not explore in this manuscript.
B = 2, corresponds to the case in which there are two brackets,
which is the scenario that we have explored until now.

We consider the case in which taxation increases linearly with
increasing brackets. Let us define θb = bθ/B. Individuals in bracket
b have their payoff surplus taxed by αb = (b − 1)α/B when their
accumulated payoff falls into θb < Π ≤ θb+1 for b < B − 1. For
b = B the tax level is αb = α and affects all individuals with Π > θ .

As an example, for B = 3 each bracket would be characterized
by the following tax levels

b = 0) αb = 0 for all individuals with Π ≤ θ/3;
b = 1) αb = α/3 for all individuals with θ/3 < Π ≤ 2θ/3;
b = 2) αb = 2α/3 for all individuals with 2θ/3 < Π ≤ θ ;
b = 3) αb = α for all individuals with Π > θ .
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Figure 8: Relative wealth inequality after the redistribution
step, in a heterogeneous population dominated by coopera-
tors and for different combinations of taxation level (α ) and
threshold (θ ). We quantify the relative wealth inequality af-
ter the redistribution step as the ratio between the variance
of the fitness distribution (Varf , i.e. variance in gains across
the population after redistribution) and the variance of the
accumulated payoff distribution (Varp , i.e. variance in gains
before redistribution). Population size of Z = 103 and inten-
sity of selection β = 1.0.

In this way we use θ and α as the upper level bound and only
parameters in this condition.

We find that variations in the number of taxation brackets (B=3,4,5)
have only a marginal impact in the overall levels of cooperation
observed when compared with the scenarios studied so far (B=2).

4.6 Wealth Inequality
Finally, we discuss the effect of wealth redistribution on fitness
inequality. First, it is important to highlight that the observed levels
of inequality depend, by default, on the distribution of strategies
and the network degree. In homogeneous structures, if every agent
adopts the same strategy – either Defectors or Cooperators – ev-
eryone obtains the same fitness. In heterogeneous structures, a
Cooperation dominance scenario bounds the feasible equality lev-
els, given the degree distribution of the population. In fact, some
agents engage in more interactions than others and Beneficiary
Sets have different sizes, depending on the particular connectivity
of agents. We shall focus on this scenario.

We compare the variance of fitness (i.e. gains after the redistribu-
tion step) and the variance of accumulated payoff (i.e. gains before
the redistribution step) in order to quantify the relative inequality
after we apply the proposed redistribution mechanism. In particular,
we use the ratio between the variance of fitness and the variance of
accumulated payoff as a metric of the resulting wealth inequality.

Figure 8 shows that a stronger the redistribution scheme is – i.e.,
with higher levels of θ and α – reduces inequality. In fact, while
increasing payoff threshold limits taxation to the richer agents,
increasing the level of taxation increases the flow of accumulated
payoff from rich agents to their Beneficiary Sets. In the most strict

case – high θ and α – the variance of the fitness distribution is
reduced to as low as 7% of the accumulated payoff distribution.

5 CONCLUSION
To sum up, we show that wealth redistribution embodies an ef-
fective mechanism that significantly helps cooperation to evolve.
It works by fundamentally changing the nature of the dilemma
at stake: by appropriately choosing the level of taxation (α ) and
payoff threshold (θ ) it is possible to shift from a Defector domi-
nance to a Cooperator dominance dynamics. Moreover, we find
that Heterogeneous populations allow us to ease the redistribu-
tion mechanism – that is, imposing lower taxation rates and/or
lower taxable surplus values when compared with Homogeneously
structured populations.

Additionally, we show, for the first time, that different assign-
ments of Beneficiary Sets significantly impact the ensuing levels of
cooperation. Local Beneficiary Sets, where agents receive the con-
tributions from their direct neighbors, constitute a judicious choice
when compared with Beneficiary Sets that are formed by 1) agents
randomly picked from the population or 2) by including agents at
higher distances. Naturally, a Local wealth redistribution scheme
may not only prove optimal in terms of achieved cooperation levels,
but also reveal much simpler to implement, by exempting the need
of central redistribution entities and by minimizing the number of
peers that agents need to interact with. We shall highlight, how-
ever, that promoting cooperation through a wealth redistribution
mechanism bears longer fixation times, in terms of the number of
iterations required to achieve overall cooperation.

Here we assume that the redistribution mechanism is externally
imposed. Agents cannot opt out from the taxation scheme. Given
that this mechanism increases the overall cooperation and average
payoff in the system, an argument for its acceptance - by rational
agents - can be formulated based on the infamous veil of ignorance
proposed by John Rawls [35]: Agents should decide the kind of soci-
ety they would like to live in without knowing their social position.
Agents would, this way, prefer a cooperative society where redis-
tribution exists, provided that here average payoff is maximized.
Notwithstanding, future research shall analyze the role of more
complex strategies that give opportunity of agents to voluntarily
engage (or not) in the proposed redistribution scheme. Alongside,
effective mechanisms that discourage the second order free riding
problem (i.e., free riding by not contributing to the redistribution
pot, while expecting others to do so) shall be examined. Future
works shall also evaluate whether alternative taxation schemes are
prone to be more efficient than the one proposed here. In all these
cases, an evolutionary game theoretic framework – such as the one
here developed – constitutes a promising toolkit to employ.
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