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ABSTRACT
Diseases such as heart disease, stroke, or diabetes affect hundreds

of millions of people. Such conditions are strongly impacted by obe-

sity, and establishing healthy lifestyle behaviors is a critical public

health challenge with many applications. Changing health behav-

iors is inherently a multiagent problem since people’s behavior is

strongly influenced by those around them. Hence, practitioners

often attempt to modify the social network of a community by

adding or removing edges in ways that will lead to desirable be-

havior change. To our knowledge, no previous work considers the

algorithmic problem of finding the optimal set of edges to add and

remove. We propose the RECONNECT algorithm, which efficiently

finds high-quality solutions for a range of different network inter-

vention problems. We evaluate RECONNECT in a highly realistic

simulated environment based on the Antelope Valley region in

California which draws on demographic, social, and health-related

data. We find the RECONNECT outperforms an array of baseline

policies, in some cases yielding a 150% improvement over the best

alternative.
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1 INTRODUCTION
Hundreds of millions of people suffer from lifestyle-related condi-

tions such as heart disease, stroke, or diabetes [1]. Obesity is an

important factor in many of these conditions [20], which often

starts in childhood [37] and is difficult to reverse once established

[39]. Indeed, the World Health Organization has recently stressed

the importance of establishing healthy lifestyle behaviors in the

first two years of life [33] to prevent the onset of obesity. Eating and

physical activity, health behaviors linked to obesity risk, are rooted

in social networks [9, 10, 40, 45]: people infer what is normative

from those around them [9, 18], they learn behaviors from others

[2], and they unconsciously respond to social cues [36]. This is a

multiagent phenomena since interactions and learning between

members of the population (agents) drive the collective dynamics.

Hence, new interventions to combat obesity attempt to change

the social environment around mothers and their young children by
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Figure 1: Left: example of a social network anti-obesity in-
tervention [37]. Right: the Antelope Valley region. [42].

providing themwith healthy role models or peer groups [37] (Figure

1). These interventions change the structure of the social network by

adding new connections or removing existing ones. Deciding how

to best modify a network to promote healthier behaviors among

network members is a complex optimization problem. However,

there is currently no algorithmic guidance available to practitioners.

To fill the gap, we provide a comprehensive approach to this al-

gorithmic social intervention problem. We model a service provider

who uses one of two intervention designs to alter the network

[44]. First, a peer mentoring program which creates edges between

specific pairs of agents (a dyad intervention). This models pair-

ing unhealthy agents with a healthy buddy. Second, a peer support

group, where several agents are placed in a group and form edges to

the other group members. The number of interventions carried out

is always limited in practice since altering edges requires personal

interaction (e.g., home visits) with a health worker to establish and

maintain ties [37]. The question is which specific edges should be

created to maximize the health of a set of targeted agents after some

period of time.

This domain presents a number of challenges. First, normal prop-

erties in network intervention (e.g., submodularity in influencemax-

imization [21]) do not apply: our objective function does not exhibit

diminishing returns and is highly nonlinear. Second, interventions
are not guaranteed to have beneficial effects at the community level.

Indeed, a network modification which inadvertently increased the

prominence of an unhealthy agent could negatively impact the

health of others. Third, interventions can spark secondary changes

in the network. For instance, people are typically only able to main-

tain a limited number of social ties [35]. So, if an intervention leads

an agent to add a new relationship, he or she may drop an existing

one. Fourth, we require an extremely efficient algorithm since even

evaluating the full objective function for each possible edge to add

is computationally costly. For instance, we show that the greedy

algorithm, which sets the standard for computational efficiency in

other network problems [16, 41], does not scale beyond 100-node
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networks in ours. Realistic interventions will need to accommodate

networks with thousands of nodes.

We design the RECONNECT algorithm (short for Reconnecting

social networks for preventative health) to find high-quality inter-

ventions strategies while accounting for the above challenges. Our

primary motivation is interventions for obesity. However, similar

challenges appear in many domains where practitioners attempt

to harness or alter social influence processes as part of behavior

change interventions, for example preventing smoking [46] or HIV

[30]. While a great deal of work in public health considers such is-

sues, to our knowledge no previous work addresses the algorithmic
problem of optimally modifying network structure for preventative

health. Existing algorithms (e.g., for search engine optimization

[32] or wildlife corridor design [27, 48]) fail to address one or more

of our domain’s challenges. We survey previous work in Section 4.

In short, we make four main contributions. First, we introduce
a new multiagent systems problem, preventative health network

intervention (PHNI). PHNI encompasses a range of realistic net-

work intervention designs. Second, we present the RECONNECT
algorithm, which efficiently computes near-optimal targeting strate-

gies for all of these settings in a unified manner. Third, we provide
theoretical analysis of each intervention design which exploits the

combinatorial structure in our domain to enable scale-up. Fourth, we
compare our algorithm to an array of baselines in a highly realistic

testbed which draws on data from the Antelope Valley community

in California (Figure 1). We create a social simulation informed by

demographic data (e.g., age, ethnicity, gender), spatial information

on population density, and status-quo obesity rates. We find that

RECONNECT outperforms all baselines, at times exceeding the best

alternative by over 150%.

2 PROBLEM DESCRIPTION
Model and objective: The input to the PHNI problem is a directed

graph G = (V ,E) with |V | = n. G represents the interactions be-

tween agents in the community; a directed edge (u,v) indicates
that u influences v . Each node (agent) v ∈ V has a continuous state

xv ∈ [0, 1], where higher states are better. xv represents the level

of healthiness of agent v . For instance, 1 might correspond to being

nonoverweight, while 0 is a weight categorized as overweight or

obese.

Since obesity-related behaviors are subject to social influence

[9, 10], we model a social influence processes where agents update

their behavior (and thus weight status) in response to the behavior

of those around them. The process takes place over discrete time

steps t = 1...T whereT is the time horizon. At each step, each node

updates its state to be a convex combination of its previous state

and the average of its neighbors. Formally, we have a parameter

λ ∈ [0, 1]. Let δ in (v) denote nodev’s in-neighbors; likewise δout (v)
denotes v’s out-neighbors. d(v) = |δ in (v)| is the in-degree of v .
Each node updates as

xv (t + 1) = (1 − λ)xv (t) + λ
1

d(v)

∑
u ∈δ in (v)

xu (t)

This averaging behavior can be seen as an instance of DeGroot

learning, an extensively used model of social learning [11, 19, 28]

which has been validated in large-scale experiments [7]. We include

Figure 2: Top: example of multiagent dynamics with λ =
0.5. Bottom: numerical example of adding and removing
edgeswith corresponding perturbationmatrix and objective
value.

the term (1 − λ)x(t) to represent that healthiness (e.g., weight)

does not change overnight; instead agents take a step towards the

behavior that is considered normative based on their neighbors.

Figure 2 provides an illustration. We assume that there is a set of

target nodes S ⊆ V . The objective is to maximize

∑
v ∈S xv (T ), or

the combined state of the target nodes after T steps.

Actions: A number of different network intervention strategies

have been proposed in the preventative health literature [43, 44].

Accordingly, we define a flexible modeling framework which allows

us to handle these different settings in a unified algorithm. Note

that any given intervention only falls into one setting; it is only the

underlying algorithmic approach which is shared. We consider two

basic interventions, of which different variants are possible. First, in

an dyad intervention, we add a set of specific edges to the network.

Any set of edges (which are not already present) are admissible.

This models a peer mentor program, where nodes are connected

with “healthy buddies", or healthier agents who they can learn from.

Second, in a group intervention action, we place a set of M nodes

in a peer group. Each node forms links to each other node in the

group. This models peer support groups, in which small groups of

agents meet periodically.

When edges are added to the network, a corresponding number

of edges must be removed. Edge removals are necessary because

agents can only maintain a limited number of social ties [35]. Ac-

cordingly, whenever we add an edge (u,v) (denoting that v is in-

fluenced by u), v must remove an edge (w,v) for some otherw . u
does not have to remove an edge because ties are directed, so the

relationship is not necessarily reciprocated (though if edge (v,u)
were added, then u would also have to remove an edge). There

are two cases for edge removals. First, they may be controlled by

the algorithm (e.g., a service provider recommends that an agent

decrease contact with an unhealthy acquaintance). We call this the

controlled removal case. Second, they may occur at random beyond

the algorithm’s control. I.e., if we add an edge to node v , then v
will drop an edge from some neighbor u chosen at random. We call

this the random removal case.
In total, our framework encompasses a range of possible inter-

vention designs by taking an addition operation from {dyad,дroup}
and a removal operation from {controlled, random}. This has two
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benefits. First, we obtain unified algorithm which can handle many

different preventative health settings. Second, this flexibility en-

ables practitioners to compare the impact of different intervention

designs and select the one which is most effective for their commu-

nity. We again note that these intervention settings are separate

(e.g., removals are either controlled or random but not both), but

we provide a common algorithmic approach encompassing all of

them.

3 CONTROLLED REMOVALS
We first present our formulation and algorithms for controlled re-
movals. Then, Section 6 extends our approach to handle random

removals.

Constraints: In the dyad setting, we consider two principle con-

straints on the actions available to the algorithm. First, there is a

global budget constraint that at most KD edges can be added. The

budget constraints models the fact that service providers have only

limited resources (time, staff) to perform interventions. Second,

there is a limit on the number of edges which may be added to

each node. This models the fact that we cannot entirely change an

agent’s social circle: at most a limited number of new relationships

can be added. Specifically, for each node, at most κin new in-edges

and κout new out-edges can be added. In the group setting, the

algorithm is allowed to form at most KG groups, each of which con-

sists ofM nodes. The limit KG again reflects the service provider’s

resource limitations. We do not consider separate constraints on

κin and κout because this would be redundant: a practitioner would
choose the group size so that formingM −1 new edges (to the other

group members) and removing corresponding edges from outside

the group is realistic.

Let χ inv (A) denote the number of in-edges added to nodev in the

set A. Similarly, χoutv (A) denotes the number of out-edges added to

v (because an in-edge was added to another agent). In either the

dyad or group setting, we denote the feasible set of edges to add

as CA. E.g., in the dyad setting CA = {A ⊆ E : |A| ≤ KD , χ
in
v (A) ≤

κin and χoutv (A) ≤ κout ∀v ∈ V }. Here, A is a set of edges to add.

In the group setting, CA is all sets of edges which are induced by a

choice of KG groups of M nodes each. Given a set of edges A, let
CR (A) be the feasible set of removals, where each element is a valid

set of edges to remove. Let remv (R) be the number of v’s in-edges
removed by R. We have CR (A) = {R ⊆ E : remv (R) = χ

in
v (A) ∀v ∈

V }, which requires that removals and additions balance at each

node. The algorithm may select any A ∈ CA and R ∈ CR (A).
Optimization problem: Let f (A,R) =

∑
v ∈S xv (T ) denote the

total state of target agents after T time steps when the edges in A
are added to the network and the edges in R are removed from the

network. We aim to solve the following problem:

max

A∈CA,R∈CR (A)
f (A,R) (1)

Note that the dyad/group distinction is captured by the feasi-

ble set CA. We also give an alternate formulation of the function

f (A,R) which is helpful to formulate a continuous relaxation of

our problem. Our objective is to formulate an optimization problem

over a continuous set, where integral points in the feasible set cor-

respond to the valid solutions of our problem. We now introduce

the mapping from the discrete to continuous domains; see Figure 2

for an example.

LetW be the transposed adjacency matrix of G andWnorm be

the corresponding row-stochastic matrix (W normalized by the sum

of entries along each row so that every row sums to 1). Note that

without any perturbation, the final state vector after T timesteps is

x(T ) = (λWnorm + (1 − λ)I )
T x(0)

where I is the identity matrix. We can now identify each (A,R)
with a perturbation matrix X (A,R) which is added to the original

adjacency matrix. For example, suppose that we add a set of edgesA
and remove a set of edges R. The corresponding perturbation matrix

X (A,R) has Xv,u = 1 ∀(u,v) ∈ A and Xv,u = −1 ∀(u,v) ∈ R. Note
that we set Xv,u instead of Xu,v because we are working with the

transposed matrixW . The transposed adjacency matrix after the

modifications isW + X . Let rowsum(X ) be a vector where entry
i is the sum of the ith row of X . Let ψ be a function mapping a

perturbation matrix X to the final row-stochastic transition matrix:

ψ (X ) = λdiaд(1/rowsum(X +W ))(X +W ) + (1 − λ)I

where diaд(v) is the matrix with the vector v on the diagonal.

That is,ψ first row-normalizes X +W so that every row sums to 1

and then takes the convex combination with the identity matrix I
(representing the weight that agents place on their own previous

behavior). Let 1S be the indicator vector which has a 1 in the entries

corresponding to elements of S and 0 elsewhere. We can now write

f (A,R) = 1
⊤
Sψ (X (A,R))

T x(0) (which gives the total state of target

agents after T steps) and maximize over the perturbation matrix X .

In this formulation, we obtain a natural relaxation of the problem

by allowing X to take continuous values. Specifically, let P =

conv({X (A,R) : A ∈ CA,R ∈ CR (A)}) where conv denotes the

convex hull. P is the convex hull of feasible solutions. For any

X ∈ P, we define the continuous objective д(X ) = 1
⊤
Sψ (X )

T x(0).
The continuous extension of our problem is maxX ∈P д(X ).

4 PREVIOUS WORK
Previous work has addressed a range of network design problems

targeting different application areas. One body of work concerns

conservation planning, where the objective is to purchase nodes or

edges in a graph so that animals are able to move between habitat

locations [27, 38, 48]. Another area is preventing disease spread or

other contagion by removing edges from a graph [23, 25]. None of

this work considers the challenge of simultaneously adding and

removing edges, which is a crucial feature of preventative health

domains that RECONNECT accounts for. Further, the algorithmic

techniques used in this previous work do not translate to our do-

main. E.g., conservation planning work typically relies on mixed

integer linear programming. Their objective is linearizable because

the ultimate objective is to encode whether a node in a graph is

reachable. By contrast, our objective is highly nonlinear because all

of the decision variables are raised to the powerT , so mixed integer

linear programming does not apply. Greedy algorithms (as in [23])

also do not apply due to scalability issues (as we detail later).

Khalil et al. [22] study edge addition and removal in the linear

threshold model. However, they study each task in isolation, where

we simultaneously add and remove edges in the same intervention.
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Algorithm 1 RECONNECT

1: //Run L iterations of Frank-Wolfe on continuous extension

2: X 0← 0

3: for ℓ = 1...L do
4: ∇ℓ ← GradientOracle(X ℓ−1)

5: Y ℓ ← LinearOracle(∇ℓ)

6: X ℓ ← (1 − γr )X
ℓ−1 + γℓY

ℓ

7: //Select best integral point

8: X ∗← argmaxℓ=1...L д(X
ℓ)

9: //Return corresponding additions and removals

10: A← {(u,v) : X ∗v,u = 1}

11: In controlled setting:

12: R← {(u,v) : X ∗v,u = −1}
13: return (A,R)
14: In random setting:

15: return A

Further, their objective is to maximize (or minimize) the spread

of a contagion starting from a random source node. By contrast,

we wish to shape agents’ behavior by amplifying the influence of

particular nodes in the network, not increase the network’s overall

susceptibility to influence. Klein et al. [24] consider edge changes

but do not optimize the global impact on the network.

A parallel line of work concerns influence maximization [8, 21,

47, 49], where the task is to select a set of seed nodes who will

effectively diffuse information throughout the network. This work

is quite different from ours, both because we modify the structure
of the network, and because the techniques used for influence

maximization (based on submodularity) do not apply to our domain.

Lastly, work in multiagent systems has more broadly considered

the modeling of social influence (in health and other domains)

[5, 15, 17, 50].

5 ALGORITHM
Our domain is algorithmically challenging because typical paradigms

such as submodular optimization do not apply:

Proposition 5.1. Problem 1 is not submodular in A or R.

A proof can be found in the supplement
1
. Our algorithmic ap-

proach is to optimize the continuous relaxation д(X ) and then

round the solution to an integral point. This route is still algorith-

mically difficult (д is easily shown to be nonconcave). However,

there are two motivations for using the continuous approach in

our domain. First, gradient-based techniques are guaranteed to

converge to a local optimum of the continuous problem (even if

finding a global optimum is computationally intractable). Second,

our chosen gradient-based method can be made highly efficient

by exploiting the structure present in our domain. This allows our

algorithm to easily optimize over realistic networks with thousands

of nodes, where purely combinatorial algorithms such as greedy op-

timization fail to scale up. While this procedure does not come with

approximation guarantees (since the problem does not possess the-

oretically convenient properties like submodularity or convexity),

1
https://www.dropbox.com/s/ethu39cucqakiyb/supplement_netopt.pdf?dl=0

our results show it to be empirically successful at rapidly finding

high-quality solutions.

5.1 Approach
We now describe our approach to solving the continuous optimiza-

tion problem. We use a Frank-Wolfe style algorithm [14]. Frank-

Wolfe is a gradient-based optimization procedure originally de-

veloped for concave optimization. However, it is also known to

converge to a local optimum for nonconcave problems [26]. We

will see that the Frank-Wolfe approach exploits the combinatorial

structure of our domain and delivers good practical results.

Algorithm 1 presents pseudocode for the Frank-Wolfe algorithm.

The algorithm runs for some number L steps, generating a series

of feasible points X 0...XL ∈ P (where P is the feasible set for

any of our settings). X 0
can be an arbitrary feasible point (e.g., the

all zeros matrix representing no perturbations). Each iteration ℓ

alternates between two steps. First, we compute the gradient ∇ℓ

of the objective at the current point X ℓ
(Line 4). Second, we find

the point which optimizes the gradient over the feasible set by

solving the linear optimization problem Y ℓ = argmaxY ∈P ⟨Y ,∇
ℓ⟩

where ⟨., .⟩ denotes the inner product (Line 5). Then, we setX ℓ+1 =

(1 − γℓ)X
ℓ + γℓY

ℓ
, where γℓ is a step size denoting how far the

algorithm moves towards Y ℓ
. Since P is convex and X ℓ

is a convex

combination of X ℓ−1
and Y ℓ

, we are guaranteed that X ℓ
remains

in P

Frank-Wolfe is a general optimization methodology, not an out

of the box approach: two oracles are required to instantiate the algo-

rithm in our domain. First, a gradient oracle which supplies ∇д(X )
for any given X . This is relatively straightforward for controlled re-

movals (though additional difficulties arise with random removals

in Section 6). Second, a linear optimization oracle which solves

the problem argmaxY ∈P ⟨Y ,∇д(x)⟩. Developing fast algorithms

for linear optimization is the crucial step enabling scale-up.

Once we have obtained the final point XL
, we need a way of

rounding the fractional perturbation matrix to a discrete set of

edges to modify, that is, some A ∈ CA (and R ∈ CR (A) in the con-

trolled removal setting). Our approach to the continuous problem

is well-suited to such rounding because at each step, its current

solution is explicitly represented as a convex combination of ver-

tices of P. Each vertex represents some feasible integral strategy

(A,R). Hence, we simply examine each of the (A,R) which form the

continuous solution and take the one with highest objective value

(lines 8-11). RECONNECT takes time O(L(T1 +T2)) where T1 is the
time to compute the gradient and T2 is the time to perform linear

optimization. Since these depend on the setting, we give values for

them below.

5.2 Gradient evaluation
.

We now show how to efficiently calculate gradients of the objec-

tive (GradientOracle in Algorithm 1). Note that д depends on X
through the functionψ , which row-normalizes its input to produce

a valid transitionmatrix. Formally, for any i , j ,ψ (X )i j = λ
Wi j+Xi j
d (i)

(the term for (1 − λ)I is constant and does not contribute to the

gradient). We ignore the case i = j because it is impossible to add
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Algorithm 2 GreedyDyad

1: A, R← ∅
2: while |A| < KD do
3: C ← {((u,v), (w,v)) : (u,v) ∈ E \ A, (w,v) ∈ E, χ inv (A) <
κin and χoutu (A) < κout }

4: ((u,v), (w,v)) ← argmaxC ∇v,u − ∇v,w
5: A← A ∪ {(u,v)}
6: R← R ∪ {(w,v)}

7: return X (A,R)

self-loops. Since d(i) is constant in all of the interventions that we

consider, we have

dψ (X )i j
dXi j

= λ
d (i) . Via the chain rule, this yields

dд

dXi j
=

dд

dψ (X )i j

dψ (X )i j

dXi j
=

λ

d(i)

dд

dψ (X )i j

and now we can calculate the gradient by computing
dд

dψ (X ) .

Note that this gradient is a matrix, where the ij entry is
dд

dψ (X )i j
.

Using matrix calculus [34], we can compactly express the derivative

as

dд

dψ (X )
=

T−1∑
r=0
(ψ (X )r )⊤1⊤S x(0)(ψ (X )

T−1−r )⊤

By appropriately ordering computations, this can be computed in

T matrix multiplications for runtime T1 = O(Tn
ω ) where ω is the

matrix multiplication constant.

5.3 Linear optimization
We now introduce efficient algorithms for linear optimization over

the feasible set P. In general, this can be done by linear program-

ming. However, our problem has Θ(n2) variables (entries of X ).
Further, the number of linear inequalities to define P (which is

the convex hull of exponentially many integral points) could be

intractably large (particularly in the group setting). The key to

computational efficiency is a set of highly efficient greedy algo-

rithms which exploit the combinatorial structure of our domain.

Importantly, greedy algorithms for linear optimization are very

efficient even though greedy optimization of the full objective is

computationally expensive.

Note first that any linear objective is optimized at a vertex of

P, where the perturbation matrix X has integral values. Hence, in

order to solve the continuous linear optimization problem, we can

equivalently solve the combinatorial problem of selecting the set

of edge additions and removals which best align with the gradient.

To translate between the continuous and combinatorial problems,

note the following decomposition of the linear objective:

⟨∇д(X ℓ),X (A,R)⟩ =
∑
(u,v)∈A

(∇д(X ℓ))v,u −
∑
(u,v)∈R

(∇д(X ℓ))v,u

which expresses the inner product with the gradient as the sum

over which entries are selected by the non-zero elements ofX (A,R)
(recall that the inner product ⟨·, ·⟩ outputs a scalar which is the

sum of the elementwise products of the two matrices). The first

summation corresponds to the entries whereX (A,R)v,u = 1 and the

second summation corresponds to entries where X (A,R)v,u = −1.
This lets us formulate the linear optimization oracle as the following

combinatorial optimization problem:

max

(A,R)∈C

∑
(u,v)∈A

∇д(X ℓ)v,u −
∑
(u,v)∈R

∇д(X ℓ)v,u (2)

This combinatorial problem is also linear; hence, its difficulty

depends on the underlying constraint structure C. We analyze this

structure for the different intervention settings that we consider

and prove either approximation or hardness results.

Dyad intervention: When we choose individual edges to add

and remove, a natural strategy is to greedily pick one pair of edges
at a time, where each pair is of the form ((v,u), (w,u)). Here (v,u)
is an edge to add and (w,u) is a corresponding edge to remove.

This ensures that additions and removals are balanced at each step.

Algorithm 2 presents the corresponding greedy algorithm, which

iteratively selects the pair with highest gradient contribution. Re-

call that the gradient is a matrix, and by adding edge (u,v) we

gain weight ∇д(X ℓ)v,u towards the scalar objective of the linear

optimization problem. We prove the following approximation guar-

antee:

Proposition 5.2. Algorithm 2 obtains a 1

3
-approximation to linear

optimization in dyad interventions with controlled removals.

Proof. We use a hybrid argument. The greedy algorithm runs

for KD iterations; let Si denote its selections up to iteration i . Let
H0 denote the set of edges added and removed by OPT . Hi for

i = 1...KD changes Hi−1 by adding the ith element that greedy

selects and removing some of OPT ’s elements to ensure feasibility.

Hence, HKD is greedy’s selection. Letw(S) be the total weight of S
(i.e., the objective value for Problem 2). We show that there is a valid

sequence H1...HKD such that at each iteration i ,w(Si ) −w(Si−1) ≥
1

2
(w(Hi−1) − w(Hi )). To see this, suppose that greedy adds edge

(u,v) and removes edge (w,v), adding the pair ((u,v), (w,v)) to its

solution. To maintain feasibility for Hi , we claim that at most two

elements from Hi−1 need be discarded. Discarding any single item

suffices to satisfy the global budget constraint KD . Besides this,

adding ((u,v), (w,v)) to Hi can violate at most two constraints: the

constraint κin the number of in-edges added tov and the constraint

κout on the number of out-edges added to u. Both can be repaired

by removing one pair which contains an in-edge for v and one

pair that contains an out-edge for u. Both pairs were candidates

for greedy to choose in iteration i , so ((u,v), (u,w)) must have at

least as high weight as both individually. From this, the claim that

w(Si ) −w(Si−1) ≥
1

2
(w(Hi−1) −w(Hi )) follows. Hence, we lose a

value at most twice what we gain. Summing over all iterations gives

KD∑
i=1

w(Si ) −w(Si−1) ≥
1

2

KD∑
i=1

w(Hi−1) −w(Hi )

which implies that

w(SKD ) −w(S0) ≥
1

2

(w(H0) −w(HKD ))
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and since w(S0) − 0 and w(HK ) = w(SKD ), we conclude that

w(SKD ) ≥
1

3
w(H0) =

1

3
OPT .

�

We also note that Algorithm 2 takes time T2 = O(KDn
2).

Group intervention: We now turn to the setting where the

intervention establishes a set of peer groups. Each node in a given

group establishes edges with the other nodes in that group. We can

easily reduce from the densest k subgraph (dks) problem to show:

Proposition 5.3. Optimizing linear functions over the feasible
set in the group setting is NP-hard

Unfortunately, there are not even constant factor approximation

algorithms known for dks. We propose an efficient greedy heuris-

tic which iteratively grows each group. A naive greedy approach

would be to greedily form the first groupG1, then the second group

G2, and so on. However, this approach fails because it over-allocates

target nodes to the first groups instead of spreading them equally

over all of the groups. Too many target nodes in a single group

results in "deviancy training" [12] where the target nodes exert a

negative influence on each other, exceeding the positive influence

of the healthy role models in the group (see Section 7). Accord-

ingly, we take an alternate approach which grows the KG groups

simultaneously, one node at a time. Algorithm 3 gives pseudocode.

Algorithm 3 starts by finding a good "seed node" to start each group

with (lines 4-9). Specifically, it chooses the KG nodes which have

the most extreme M − 1 entries in the corresponding row of the

gradient. These are nodes which have many high-weighted edges

to potentially add or remove and so represent good candidates for

starting a group. Then, it adds one node at a time to each group

until the maximum group sizeM is reached (lines 11-14). Each new

addition is chosen to maximize the total gradient value captured

by the edges added and removed in the group. The total runtime is

T2 = O(KGMn2).

6 RANDOM REMOVALS
We now extend RECONNECT to handle the case where edges are re-

moved at random, not chosen by the algorithm. Here, the algorithm

selects A ∈ CA and R is drawn at random from some distribution

pr emove (A) over CR (A) (induced by the random choice of each

agent on which edges to remove). We aim to solve the problem

maxA∈CA ER∼pr emove (A) [f (A,R)].
In the random removal case, the full perturbation matrix is not

chosen by the algorithm. The decision variable X is a partial pertur-

bation matrix which only has ones in the entries where edges are

added. Then, the full perturbationmatrix is a random variable which

depends on which entries are removed. Let PR = conv({X (A, ∅) :
A ∈ CA}). PR is the convex hull of feasible partial perturbation

matrices. Consider a point X ∈ PR , represented as a convex combi-

nation of integral points X =
∑
i θiX (Ai , ∅) where θ is the weights

of the convex combination. We define the continuous problem as

дR (X ) =
∑
i
θi E

R∼pr emove (Ai )

[
1
⊤
Sψ (X (Ai ,R))

T x(0)
]

We now give the two main ingredients needed to apply RECON-

NECT in this setting.

Algorithm 3 GreedyGroup

1: A,R ← ∅
2: G ← {Gk = ∅|k = 1...KG }
3: //Select best seed

4: for k = 1...KG do
5: //TopSum(x , S) returns sum of largest x elements of set S
6: AddVal(v)← TopSum(M − 1, {∇v,u ,u < δ

in (v)})
7: RemoveVal(v)← TopSum(M − 1, {−∇v,ww ∈ δ

out (v)})
8: v ← argmaxv ∈V \Gk−1 ...G1

AddVal(v) + RemoveVal(v)
9: Gk ← Gk ∪v

10: //Select group members with highest weight gained

11: forM iterations do
12: for k = 1...KG do
13: v ← argmaxv ∈V \Gk−1 ...G1

GroupVal(Gk ∪ {v},∇) −
GroupVal(Gk ,∇)

14: Gk ← Gk ∪v

15: //Add edges between group members who are not already

linked

16: A← {(u,v) : u,v ∈ Gi , i ∈ 1...KG ,v < δ
in (u)}

17: //Remove edges with most negative gradient weight

18: R ←
⋃
Gi

⋃
v ∈Gi {the |Gi \ δ

in (v)| − 1 edges (u,v) of δ in (v) \
Gi minimizing ∇v,u }

19: return X (A,R)
20:

21: //Total gradient weight from adding group Gi
22: function GroupVal(Gi )

23: A← {(u,v) : u,v ∈ Gi , i ∈ 1...KG ,v < δ
in (u)}

24: R ←
⋃
Gi

⋃
v ∈Gi {|Gi \ δ

in (v)| − 1 edges (u,v) of δ in (v) \
Gi minimizing ∇v,u }

25: return
∑
u,v ∈A ∇v,u −

∑
u,v ∈R ∇v,u

Gradient oracle: Differentiating the expression for дR yields

∇дR (X ) =
∑
i
θi E

R∼pr emove (Ai )

[
∇X

[
1
⊤
S X (Ai ,R)

T x(0)
] ]
.

The main difficulty that we cannot compute the expectation

(which ranges over exponentially many scenarios) in closed form.

We resolve this dilemma by drawing samplesRi
1
...Rim frompr emove

for each Ai and averaging over the gradient values at the samples,

giving an unbiased estimator of the true gradient. Empirically, we

find that relatively few samples suffice for good accuracy.

Linear optimization oracles: Our algorithms for linear opti-

mization in the random removals case are analogous to those in

the controlled removals case (Algorithms 2 and 3). They simply

average over random samples of which edges are removed instead

of allowing the algorithm to select the removed edges. In the dyad

setting, we prove an approximation guarantee corresponding to

that in the controlled case (Proposition 5.2):

Proposition 6.1. Greedily maximizing the expected change in
gradient weight produces a 1

3
-approximation to the linear optimiza-

tion problem with dyad interventions and random removals.

See the supplement for a proof. The main insight is that, unlike

in the controlled setting, the feasible set CA can be written as

the intersection of two matroid constraints. The proposition then
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follows from known results for matroids [6]. In the group setting,

our hardness result (Proposition 5.3) still applies. However, a greedy

strategy modeled on Algorithm 3 (which randomly simulates the

removed edges on lines 7 and 24) performs well in practice.

7 EXPERIMENTS
We build a highly realistic simulation environment to compare our

algorithm to baseline approaches. Our simulation is based on the

Antelope Valley community in California. Antelope Valley (AV)

covers 2,934 square miles and is larger than the States of Delaware

and Rhode Island. The population of the AV region is estimated to

be about 447,472. Over 34% of the area’s population is under the age

of 18. Overall, 33% of the population is Latino and 15.6% is African

American. Approximately 15% of the total population lives at or

below the U.S. Federal Poverty Level. Only 10% of children ages 0-17
in this region are perceived by their parents to be healthy. Rates of
obesity in this region are among some of the highest in Los Angeles

County: 20% of children are obese (BMI above the 95th percentile),

while 36% of adults are overweight and 35% are obese. Hence, AV

is a highly salient target for anti-obesity interventions.

Simulation features: We use a range of geographic, demo-

graphic, and health-related data compiled from the U.S. Census,

the Los Angeles County Department of Public Health, and Los

Angeles Times Mapping L.A. project. Our simulation consists of a

population of n agents who comprise the nodes of a social network.

Each agent is endowed with a geographic location, age, ethnicity,

gender, and weight status. These features allow us to capture the

interdependency between demographics, obesity, and network con-

nections. Details on data sources and the procedure for generating

agents may be found in the supplement.

Generating the network: Once we have sampled a population

of agents and their features, we simulate the social network. Our

network simulation uses the features to produce networks which re-

flect widely observed characteristics of real-world networks. Specif-

ically, we use the spatial preferential attachment model [4, 13].

Preferential attachment is a generative process which replicates the

heavy-tailed degree distributions observed in many real networks

[3]. In classical preferential attachment, the agents arrive one at a

time. Each agent who arrives formsm links to agents who arrived

previously, selected with probability proportional to the previous

agents’ degrees. The spatial preferential attachment model modifies

preferential attachment to account for homophily, another widely

observed network characteristic where agents tend to form links

to others with similar characteristics. Let yi be the feature vector
of agent i and yj be the feature vector of agent j. In the spatial

preferential attachment model, the probability of j linking to i is

proportional to e−ρ | |yi−yj | |2d(i), where ρ is a parameter. We take

ρ = 0.1 throughout.

Baselines: No previous work directly addresses our setting, so

we construct competitive baselines using alternate algorithmic ap-

proaches to the problem. First, greedy. In the dyad case, greedy

successively adds the edge to add (and remove, if applicable) which

results in the largest increase in the objective value. In the group

case, greedy successively adds the agent to the group which results

in greatest value (while also greedily choosing edges to remove

in the controlled removal case). We also tried growing the groups

simultaneously (as in Algorithm 3) and observed very similar re-

sults. Second, matching, which randomly matches unhealthy target

agents with healthy ones. This represents a natural intervention

strategy which connects agents to healthy influences without con-

sidering the overall network topology. In the dyad case, match-

ing evenly divides the edge addition budget KD among the target

agents, connecting each one to
KD
|S | healthy agents chosen at ran-

dom (recall that S is the set of target agents). In the group case, it

randomly places
|S |
KG target agents into each group, and fills the

rest of the group with random healthy agents. When removals are

controlled, matching randomly removes edges from target agents

to unhealthy neighbors. Third, simulated annealing (SA), which
is a common black-box optimization technique. SA is guaranteed

to find the global optimum if run long enough, but may require

exponential time to do so. Lastly, we test a variation of RECON-

NECT, REC-myopic, which runs RECONNECT with time horizon

T = 1. Since the T = 1 objective is linear, our greedy algorithms

can efficiently find high-quality solutions (with constant-factor ap-

proximation guarantee for the dyad case). However, REC-myopic

does not consider long-term dynamics.

Results: We now analyze the solution quality and runtime

produced by each algorithm in each of our four settings. Figure 3

shows solution quality as we vary the network size n. For the dyad
case, we fix KD = 0.2 · n, κin = κout = 3, λ = 0.5. For the group

case, we use KG = 0.05 ·n andM = 5. Both settings useT = 10. We

ran RECONNECT for L = 10 iterations with step size γℓ =
1

0.25ℓ+1 .

The x axis on each plot shows the number of agents in the network

and the y axis shows the improvement produced by each algorithm

averaged over 24 networks. Improvement is the difference between

the objective value produced by the algorithm’s intervention and

the value of not intervening (allowing the network to evolve for

T steps unmodified). For instance, the point in Figure 3(a), n =
3000, for RECONNECT indicates that RECONNECT produced a

total improvement of 230 in the state of target nodes compared

to not intervening. Intuitively, RECONNECT averted 230 cases of

obesity (though the impact may be split fractionally across multiple

agents). Error bars show one standard deviation, but are sometimes

hidden underneath markers. RECONNECT outperforms all of the

baselines in all settings. The difference is particularly dramatic in

the controlled dyad case, where RECONNECT outperforms the

next baseline by more than 150% for n = 3000. For the group case,

REC-myopic is closer (though always outperformed by the full

RECONNECT).

Greedy and SA do not scale past 250-node networks and were

cut off after 24 hours of runtime (indicated by the dashed lines near

the x axis in Figure 3). Greedy’s solution quality is comparable with

RECONNECT for networks with under 250 nodes. However, we

stress that realistic interventions will involve networks with thou-

sands of nodes, and greedy’s runtime explodes as n grows past 100

nodes. Hence, RECONNECT’s advantage is providing performance

which is at least as good in a highly scalable manner. SA is always

substantially outperformed by RECONNECT.

Figure 4 examines the runtime of each algorithm. RECONNECT

successfully scales to networks with thousands of nodes within

100-1000 seconds. REC-myopic and matching also run quickly.
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Figure 3: Improvement produced by each algorithm as n grows. (a) Dyad intervention, controlled removals (b) Dyad interven-
tion, random removals (c) Group intervention, controlled removals (d) Group intervention, random removals.

Figure 4: Runtime for each algorithm as n grows. (a) Dyad intervention, controlled removals (b) Dyad intervention, random
removals (c) Group intervention, controlled removals (d) Group intervention, random removals.

Figure 5: Performance varying T with controlled removals.
Left: dyad, right: group. n = 1000.

However, greedy and SA are extremely computationally expen-

sive. Greedy was terminated past 100-node networks after 24 hours

of runtime, while SA was terminated for networks larger than

250 nodes. Greedy is slow in our domain because it needs Θ(n2)
objective function evaluations per iteration in the dyad setting

(evaluating each edge to add or remove) and Θ(nKG ) in the group

setting.

Figure 5 shows solution quality as we vary the time horizonT for

n = 1000. We show results for controlled removals; other settings, as

well as results varying the budgets KD and KG , can be found in the

supplement. RECONNECT’s advantage over REC-myopic grows

as T increases, particularly in the group setting; e.g., RECONNECT

outperforms REC-myopic by 32.5% for T = 25. In the dyad setting,

the performance of all algorithms decreases slightly for large T
since the long-term planning problem is more difficult. However,

RECONNECT still substantially outperforms the baselines.

Lastly, we test robustness to alternate network topologies by

experimenting on the facebook dataset with 2888 nodes [29]. We

exclude greedy and SA due to the network size and use the same

parameter settings as in Figure 1. Agent states are assigned uni-

formly at random since we have no demographic information. Table

Table 1: Average improvement on Facebook. "D" and "G" de-
note dyad/group; "C" and "R" denote controlled/random.

D/C D/R G/C G/R

RECONNECT 263.6 80.9 120.2 108.6

Matching 20.36 28.1 7.59 10.39

REC-myopic 56.18 23.5 103.7 98.27

1 shows that RECONNECT outperforms all of the baselines in each

setting.

8 CONCLUSION
Social network based interventions are a critical tool for creating

behavior change. We introduced the algorithmic social intervention

problem of preventative health network interventions and proposed

the RECONNECT algorithm to find scalable, high-quality solutions

across a range of network intervention designs. To test our algo-

rithm, we created a simulation environment of the Antelope Valley

region of California which draws on a range of demographic and

health-related data. RECONNECT outperforms an array of base-

lines in each setting, sometimes improving on the best alternative

by over 150%. Our work demonstrates that algorithmic approaches

have substantial promise in preventative health domains.
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