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ABSTRACT
In coalition formation games self-organized coalitions are created

as a result of the strategic interactions of independent agents. For

each couple of agents (i, j), weightwi, j = w j,i reflects how much

agents i and j benefit from belonging to the same coalition. We

consider the modified fractional hedonic game, that is a coalition
formation game in which agents’ utilities are such that the total

benefit of agent i belonging to a coalition (given by the sum ofwi, j
over all other agents j belonging to the same coalition) is averaged

over all the other members of that coalition, i.e., excluding herself.

Modified fractional hedonic games constitute a class of succinctly

representable hedonic games.

We are interested in the scenario in which agents, individually

or jointly, choose to form a new coalition or to join an existing

one, until a stable outcome is reached. To this aim, we consider

common stability notions, leading to strong Nash stable outcomes,

Nash stable outcomes or core stable outcomes: we study their ex-

istence, complexity and performance, both in the case of general

weights and in the case of 0-1 weights. In particular, we completely

characterize the existence of the considered stable outcomes and

showmany tight or asymptotically tight results on the performance

of these natural stable outcomes for modified fractional hedonic

games, also highlighting the differences with respect to the model

of fractional hedonic games, in which the total benefit of an agent

in a coalition is averaged over all members of that coalition, i.e.,

including herself.
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1 INTRODUCTION
Teamwork, clustering and coalition formations have been important

and widely investigated issues in computer science research. In

fact, in many economic, social and political situations, individuals

carry out activities in groups rather than by themselves. In these

scenarios, it is of crucial importance to consider the satisfaction of

the members of the groups.

Hedonic games, introduced in [16], model the formation of coali-

tions of agents. They are games in which agents have preferences
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over the set of all possible agent coalitions, and the utility of an

agent depends on the composition of the coalition she belongs to.

While the standard model of hedonic games assumes that agents’

preferences over coalitions are ordinal, there are several prominent

classes of hedonic games where agents assign cardinal utilities to

coalitions. Additively separable hedonic games constitute a natu-

ral and succinctly representable class of hedonic games. In such

setting each agent has a value for any other agent, and the utility

of a coalition to a particular agent is simply the sum of the values

she assigns to the members of her coalition. Additive separability

satisfies a number of desirable axiomatic properties [3] and is the

non-transferable utility generalization of graph games studied in

[15]. Fractional hedonic games, introduced in [2], are similar to

additively separable ones, with the difference that the utility of

each agent is divided by the size of her coalition. Arguably, it is

more natural to compute the average value of all other members

of the coalition [17]. Various solution concepts, such as the core,

the strict core, and various kinds of individual stability like Nash

Equilibrium have been proposed to analyze these games (see the

Related Work subsection).

In this paper we deal with modified fractional hedonic games
(MFHGs), introduced in [25], and afterward studied in [17, 23].

MFHGs model natural behavioral dynamics in social environments.

Even when defined on undirected and unweighted graphs, they

suitably model a basic economic scenario referred to in [2, 10] as

Bakers and Millers. Moreover, MFHGs can model other realistic

scenarios: (i) politicians may want to be in a party that maximizes

the fraction of like-minded members; (ii) people may want to be

with an as large as possible fraction of people of the same ethnic or

social group.

In MFHGs, slightly differently than in fractional hedonic games,

the utility of an agent i is divided by the size of the coalition she

belongs to minus 1, that indeed corresponds to the average value of

all other members than i of the coalition. Despite such small differ-

ence, we will show that natural stable outcomes in MFHGs perform

differently than in fractional hedonic games. Specifically, we adopt

Nash stable, Strong Nash stable and core outcomes. Informally, an

outcome is Nash stable (or it is a Nash equilibrium) if no agent

can improve her utility by unilaterally changing her own coalition.

Moreover, an outcome is strong Nash stable if no subset of agents

can cooperatively deviate in a way that benefits all of them. Finally,

an outcome is in the core or is core stable, if there is no subset of

agents T , whose members all prefer T with respect to the coalition

in the outcome. We point out that, (strong) Nash stable outcomes

are resilient to a group of agents that can join any coalition and

therefore represent a powerful solution concept. However, there

are settings in which it is not allowed for one or more agents to join

an existent coalition without asking for permission to its members:

in these settings the notion of core, where in a non-stable outcome
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a subset ofT agents can only form a new coalition itself and cannot

join an already non-empty coalition, appears to be more realistic.

Our aim is to study the existence, performance and computability

of natural stable outcomes for MFHGs. In particular, we evaluate

the performance of Nash, strong Nash, and core stable outcomes for

MFHGs, by means of the widely used notions of price of anarchy

(resp. strong price of anarchy and core price of anarchy), and price

of stability (resp. strong price of stability and core price of stability),

which are defined as the ratio between the social optimal value and

the social value of the worst (resp. best) stable outcome.

An instance of MFHG can be effectively modeled by means of

a weighted undirected graph G = (N ,E,w), where nodes in N
represent the agents, and the weightw({i, j}) of an edge {i, j} ∈ E
represents how much agents i and j benefit from belonging to the

same coalition.

1.1 Related Work
To the best of our knowledge, only few papers dealt with stable

outcomes for MFHGs. Olsen [25] considers unweighted undirected

graphs and investigates computational issues concerning the prob-

lem of computing a Nash stable outcome different than the triv-

ial one where all the agents are in the same coalition. The author

proves that the problem is NP-hard when we require that a coalition

must contain a given subset of the agents, and that it is polynomial

solvable for any connected graph containing at least four nodes.

Kaklamanis et al. [23] show that the price of stability is 1 for un-

weighted graphs. Finally, Elkind et al. [17] study the set of Pareto

optimal outcomes for MFHGs.

Fractional hedonic games have been introduced by Aziz et al.

[2]. They prove that the core can be empty for games played on

general graphs and that it is not empty for games played on some

classes of undirected and unweighted graphs (that is, graphs with

degree at most 2, multipartite complete graphs, bipartite graphs

admitting a perfect matching and regular bipartite graphs). Brandl

et al. [12], study the existence of core and individual stability in

fractional hedonic games and the computational complexity of de-

ciding whether a core and individual stable partition exists in a

given fractional hedonic game. Bilò et al. [9] initiated the study

of Nash stable outcomes for fractional hedonic games and study

their existence, complexity and performance for general and spe-

cific graph topologies. In particular they show that the price of

anarchy is Θ(n), and that for unweighted graphs, the problem of

computing a Nash stable outcome of maximum social welfare is

NP-hard, as well as the problem of computing an optimal (not nec-

essarily stable) outcome. Furthermore, the same authors in [10]

consider unweighted undirected graphs and show that 2-Strong

Nash outcomes, that is, an outcome such that no pair of agents

can improve their utility by simultaneously changing their own

coalition, are not always guaranteed. They also provide upper and

lower bounds on the price of stability for games played on different

unweighted graphs topologies. Finally, Aziz et al. [4] consider the

computational complexity of computing welfare maximizing par-

titions (not necessarily Nash stable) for fractional hedonic games.

We point out that fractional hedonic games played on unweighted

undirected graphs model realistic economic scenarios referred to

in [2, 10] as Bakers and Millers.

Hedonic games have been introduced by Dréze and Greenberg

[16], who analyzed them under a cooperative perspective. Proper-

ties guaranteeing the existence of core allocations for games with

additively separable utility have been studied by Banerjee, Konishi

and Sönmez [8], while Bogomolnaia and Jackson [11] deal with

several forms of stable outcomes like the core, Nash and individual

stability. Ballester [5] considers computational complexity issues

related to hedonic games, and show that the core and the Nash sta-

ble outcomes have corresponding NP-complete decision problems

for a variety of situations, while Aziz et al. [3] study the computa-

tional complexity of stable coalitions in additively separable hedonic

games. Moreover, Olsen [24] proves that the problem of deciding

whether a Nash stable coalitions exists in an additively separable he-

donic game is NP-complete, as well as the one of deciding whether

a non-trivial Nash stable coalitions exists in an additively separable

hedonic game with non-negative and symmetric preferences (i.e.,

unweighted undirected graphs).

Feldman et al. [18] investigate some interesting subclasses of

hedonic games from a non-cooperative point of view, by charac-

terizing Nash equilibria and providing upper and lower bounds

on both the price of stability and the price of anarchy. It is worth

noticing that in their model they do not have an underlying graph,

but agents lie in a metric space with a distance function modeling

their distance or “similarity”. Peters [26] considers “graphical” he-

donic games where agents form the vertices of an undirected graph,

and each agent’s utility function only depends on the actions taken

by her neighbors (with general value functions). It is proved that,

when agent graphs have bounded treewidth and bounded degrees,

the problem of finding stable solutions, i.e., Nash equilibria, can be

efficiently solved. Finally, hedonic games have also been considered

by Charikar et al. [13] and by Demaine et al. [14] from a classical

optimization point of view (i.e, without requiring stability for the

solutions) and by Flammini et al. in an online setting [19].

Peters et al. [27] consider several classes of hedonic games and

identify simple conditions on expressivity that are sufficient for the

problem of checking whether a given game admits a stable outcome

to be computationally hard.

From a different perspective, strategyproof mechanisms for ad-

ditively separable hedonic and fractional hedonic games have been

proposed in [20, 28].

Finally, hedonic games are being widely investigated also under

different utility definitions: For instance, in [6, 7], coalition for-

mation games, in which agent utilities are proportional to their

harmonic centralities in the respective coalitions, are considered.

1.2 Our Results
We start by dealingwith strongNash stable outcomes.We first prove

that there exists a simple star graph with positive edge weights

that admits no strong Nash stable outcomes. Therefore we focus

on unweighted graphs, and present a polynomial time algorithm

that computes an optimum outcome that can be transformed in

a strong Nash stable one with the same social welfare, implying

that strong Nash stable outcomes always exist and that the strong

price of stability is 1. We further prove that the strong price of

anarchy is exactly 2. In particular, we are able to show that, even

for jointly cooperative deviations of at most 2 agents, the strong
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price of anarchy is at most 2 (we emphasize that, as we will describe

in the next paragraph, the price of anarchy for Nash stable outcomes

that are resistant to deviations of one agent grows linearly with

the number of agents), while it is at least 2 for jointly cooperative

deviations of any subsets of agents.

We subsequently turn our attention on Nash stable outcomes.

We notice that Nash stable outcomes are guaranteed to exist only if

edge weights are non-negative. In a similar way as in [9], we prove

that the price of anarchy is at least Ω(n), where n is the number of

agents, even for unweighted paths, and that it is at most n − 1 for

the more general case of non-negative edge-weighted graphs, thus

giving an asymptotically tight characterization. We also prove a

matching lower bound of Ω(n) to the price of stability.

We finally consider core stable outcomes and show that they

always exist, and in particular that an outcome that is core sta-

ble can be computed in polynomial time, even in the presence of

negative weights, i.e., for general undirected weighted graphs. We

then establish that the core price of stability is 2. We further show

that the core price of anarchy is at most 4. We also provide a tight

analysis for unweighted graphs.

Due to space limitations, some proofs are omitted.

In the next subsection we emphasize the differences between

MFHGs and fractional hedonic games.

1.3 Main Differences between MFHGs and
Fractional Hedonic Games

Roughly speaking, we say that an outcome is a k-strong Nash equi-
librium if no subset of at most k agents can jointly change their

strategies in a way that all of the k agents strictly improve their

utility. It is easy to see that, for any k,k ′ ≥ 2, such that k ′ ≥ k , a
k ′-strong Nash equilibrium is also a k-strong Nash equilibrium. It

is known that 2-strong Nash stable outcomes are not guaranteed

to exist for fractional hedonic games, even for unweighted graphs

[10]. In this paper we show that for MFHGs played on unweighted

graphs, k-strong Nash equilibrium always exists and can be com-

puted in polynomial time, for any 1 ≤ k ≤ n, where n is the number

of agents, and provide a tight analysis on the strong price of anarchy

and stability.

For both MFHGs and Fractional Hedonic Games, Nash stable

outcomes (or equivalently 1-strong Nash stable) are guaranteed to

exist [9] for positive weights, but not for negative ones; moreover,

the price of stability grows linearly with the number of agents.

For fractional hedonic games played on unweighted graphs, it is

known [10] that the price of stability is greater than 1 even for

simple graphs and that computing an optimum is NP-hard. For

MFHGs we show that it is possible to compute in polynomial time

a (strong) Nash equilibrium that is also optimum.

Finally, it is known that the core can be empty even for fractional

hedonic games played on unweighted graphs and that it is NP-hard

deciding the existence [12]. In this paper we show that for MFHGs

the core is not empty for any graphs (this result was also observed

in [1] for unweighted graphs), and that a core stable outcome can

be computed in polynomial time. We further provide a tight and

an almost tight analysis for the core price of stability and anarchy,

respectively.

2 PRELIMINARIES
For an integer k > 0, denote with [k] the set {1, . . . ,k}.

We model a coalition formation game by means of a undirected

graph. For an undirected edge-weighted graph G = (N ,E,w),
denote with n = |N | the number of its nodes. For the sake of

convenience, we adopt the notation (i, j) and wi, j to denote the

edge {i, j} ∈ E and its weight w({i, j}), respectively. Say that

G is unweighted if wi, j = 1 for each (i, j) ∈ E. We denote by

δ i (G) = ∑
j ∈N :(i, j)∈E wi, j , the sum of the weights of all the edges

incident to i . Moreover, let δ imax (G) = maxj ∈N :(i, j)∈E wi, j be the

maximum edge-weight incident to i . We will omit to specify (G)
when clear from the context. Given a set of edges X ⊆ E, denote
withW (X ) = ∑

(i, j)∈X wi, j the total weight of edges in X . Given a

subset of nodes S ⊆ N , GS = (S,ES ) is the subgraph of G induced

by the set S , i.e., ES = {(i, j) ∈ E : i, j ∈ S}.
Given an undirected edge-weighted graph G = (N ,E,w), the

modified fractional hedonic game induced byG , denoted as G(G), is
the game in which each node i ∈ N is associated with an agent. We

assume that agents are numbered from 1 to n and, for every i ∈ [n],
each agent chooses to join a certain coalition among n candidate

ones: the strategy of agent i is an integer j ∈ [n], meaning that

agent i is selecting candidate coalitionCj . A coalition structure (also

called outcome or partition) is a partition of the set of agents into n
coalitions C = {C1,C2, . . . ,Cn } such that Cj ⊆ N for each j ∈ [n],⋃
j ∈[n]Cj = N and Ci ∩Cj = ∅ for any i, j ∈ [n] with i , j. Notice

that, since the number of candidate coalitions is equal to the number

of agents (nodes), some coalition may be empty. If i ∈ Cj , we say

that agent i is a member of the coalition Cj . We denote by C(i) the
coalition in C of which agent i is a member. In an outcome C, the
utility of agent i is defined as ui (C) =

∑
j ∈C(i)

wi, j
|C(i) |−1

. We notice

that, for any possible outcome C, we have that ui (C) ≤ δ imax .

Each agent chooses the coalition she belongs to with the aim

of maximizing her utility. We denote by (C, i, j), the new coali-

tion structure obtained from C by moving agent i from C(i) to
Cj ; formally, (C, i, j) = C \ {C(i),Cj } ∪ {C(i) \ {i},Cj ∪ {i}}. An
agent deviates if she changes the coalition she belongs to. Given

an outcome C, an improving move (or simply a move) for agent i
is a deviation to any coalition Cj that strictly increases her utility,

i.e., ui ((C, i, j)) > ui (C). Moreover, agent i performs a best-response
in coalition C by choosing a coalition providing her the highest

possible utility (notice that a best-response is also a move when

there exists a coalition Cj such that ui ((C, i, j)) > ui (C)). An agent

is stable if she cannot perform a move. An outcome is (pure) Nash
stable (or a Nash equilibrium) if every agent is stable. An improving
dynamics, or simply a dynamics, is a sequence of moves, while a

best-response dynamics is a sequence of best-responses. A game

has the finite improvement path property if it does not admit an im-

provement dynamics of infinite length. Clearly, a game possessing

the finite improvement path property always admits a Nash stable

outcome. We denote with N(G(G)) the set of Nash stable outcomes

of G(G).
An outcome C is a k-strong Nash equilibrium if, for each C′

obtained from C, when a subset of at most k agents K ⊆ N (with

|K | ≤ k) jointly change (or deviate from) their strategies (not nec-

essarily selecting the same candidate coalition), ui (C) ≥ ui (C′)
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for some i belonging to K , that is, after the joint collective devia-
tion, there always exists an agent in the set of deviating ones who

does not improve her utility. We denote with k−SN(G(G)) the set
of strong Nash stable outcomes of G(G). We simply say that an

outcome C is a strong Nash equilibrium if C is an n-strong Nash
equilibrium. It is easy to see that, for any graph G and any k ≥ 2,

k−SN(G(G)) ⊆ k − 1−SN(G(G)), while the vice versa does not in
general hold. Clearly, 1−SN(G(G)) = N(G(G)). Analogously to the

notion of Nash equilibrium, also for strong Nash equilibria it is

possible to define a dynamics as a sequence of improving moves,

where each move performed by agents in K leading from outcome

C to outcome C′
is such that all of them improve their utility, i.e.

ui (C′) > ui (C) for every i ∈ K .
We say that a coalition T ⊆ N strongly blocks an outcome C, if

each agent i ∈ T strictly prefers T , i.e., strictly improve her utility

with respect to her current coalition C(i). An outcome that does

not admit a strongly blocking coalition is called core stable and is

said to be in the core. We denote with CR(G(G)) the core of G(G).
The social welfare of a coalition structure C is the summation

of the agents’ utilities, i.e., SW(C) = ∑
i ∈N ui (C). We overload the

social welfare function by applying it also to single coalitions to

obtain their contribution to the social welfare, i.e., for any i ∈ [n],
SW(Ci ) =

∑
j ∈Ci uj (C) so that SW(C) = ∑

i ∈[n] SW(Ci ). It is worth

noticing that, equivalently, for any i ∈ [n], SW(Ci ) =
2W (ECi )
|Ci |−1

and

SW(C) = ∑
i ∈[n]

2W (ECi )
|Ci |−1

.

Given a game G(G), an optimum coalition structure C∗(G(G))
is one that maximizes the social welfare of G(G). The price
of anarchy (resp. strong price of anarchy and core price of
anarchy) of a modified fractional hedonic game G(G) is de-

fined as the worst-case ratio between the social welfare of

a social optimum outcome and that of a Nash equilibrium

(resp. strong Nash equilibrium and core). Formally, for any

k = 1, . . . ,n, PoA(G(G)) = maxC∈N(G(G))
SW(C∗(G(G)))

SW(C)
(resp. k−SPoA(G(G)) = maxC∈k−SN(G(G))

SW(C∗(G(G)))
SW(C) and

CPoA(G(G)) = maxC∈CR(G(G))
SW(C∗(G(G)))

SW(C) ). Analogously, the

price of stability (resp. strong price of stability and core price of
stability) of G(G) is defined as the best-case ratio between the

social welfare of a social optimum outcome and that of a Nash

equilibrium (resp. strong Nash equilibrium and core). Formally,

for any k = 1, . . . ,n, PoS(G(G)) = minC∈N(G(G))
SW(C∗(G(G)))

SW(C)
(resp. k−SPoS(G(G)) = minC∈k−SN(G(G))

SW(C∗(G(G)))
SW(C) and

CPoS(G(G)) = minC∈CR(G(G))
SW(C∗(G(G)))

SW(C) ). Clearly, for any

game G(G) it holds that 1 ≤ PoS(G(G)) ≤ PoA(G(G)) (resp.
1 ≤ k−SPoS(G(G)) ≤ k−SPoA(G(G)) and 1 ≤ CPoS(G(G)) ≤
CPoA(G(G))).

3 STRONG NASH STABLE OUTCOMES
In this section we consider strong Nash stable outcomes. We start

by showing that even the existence of 2-strong nash equilibria is

not guaranteed for non-negative edge-weights graphs.

Theorem 3.1. There exists a star graph G containing only non-
negative edge-weights such that {G(G)} admits no 2-strong Nash
stable outcome.

Given the above negative result, in the remainder of this section,

we focus on unweighted graphs.

Let K1, K2 and K3 be the unweighted cliques with 1, 2 and 3

nodes, respectively, i.e., K1 is an isolated node, K2 has 2 nodes and

a unique edge and K3 is a triangle with 3 edges. We say that a

coalition being isomorphic to K1, K2 or K3 is a basic coalition.

3.1 Strong Price of Stability
In this subsectionwe show that, for unweighted graphs, it is possible

to compute in polynomial time an optimum outcome and also a

strong Nash outcome with the same social value. As consequence

we get that the strong price of stability is 1.

In order to show how to compute in polynomial time an optimal

solution, we first need some additional lemmata.

Lemma 3.2. Given a coalition C with |C | ≥ 4, there exists an edge
e = (i, j) belonging to EC such that

SW({i, j}) + SW(C \ {i, j}) ≥ SW(C).

Proof. Letm = |EC | and k = |C | be the number of edges and

nodes in coalition C , respectively. Moreover, let e = (i, j) be the
edge minimizing ∆ = δ i + δ j . Let us assume by contradiction that

SW({i, j}) + SW(C \ {i, j}) = 2 +
2(m − ∆ + 1)

k − 3

<
2m

k − 1

= SW(C).

By simple calculations, we obtain that

∆ >
k2 − 3k + 2 + 2m

k − 1

(1)

We denote by δmax and δmin the maximum and the minimum

degrees of nodes in GC , respectively. We have

2m =
∑
i ∈C

δi ≥ (k − 1)δmin + δmax (2)

∆ ≤ δmax + δmin (3)

Substituting (2), (3), in (1), the following holds:

∆ >
k2 − 3k + 2 + 2m

k − 1

≥ k2 − 3k + 2 + (k − 1)δmin + δmax
k − 1

δmax + δmin ≥ ∆ >
k2 − 3k + 2 + (k − 1)δmin + δmax

k − 1

(δmax + δmin ) (k − 1) > k2 − 3k + 2 + (k − 1)δmin + δmax

kδmax − δmax > k2 − 3k + 2 + δmax

(k − 2)δmax > (k − 1)(k − 2)
δmax > (k − 1) :

a contradiction, because the maximum degree of a node is at most

k − 1. �

We are now ready to prove the following theorem, showing that

it is possible to consider, without decreasing the social welfare of

the outcome, only coalition structures formed by basic coalitions.

Theorem 3.3. For any coalition structure C, there exists a coalition
structure C′ containing only basic coalitions and such that SW(C′) ≥
SW(C).
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(a) (b)

(c) (d)

Figure 1: Possible coalitions with three nodes.

Proof. Consider any coalition C belonging to C. In the follow-

ing we show that either coalition C is basic, or the nodes in C
can be partitioned in h ≥ 2 basic coalitions C ′

1
, . . . ,C ′

h such that∑h
i=1

SW(C ′
i ) ≥ SW(C). This statement proves the claim because

we can consider and sum up over all coalitions C belonging to C.
We prove the statement by induction on the number k of nodes

in C .
The base of the induction is for k ≤ 3: For k = 1 and k = 2,

C is already a basic coalition. For k = 3, there are four possible

configurations shown in Figure 1. For configurations (a), (b) and

(c), again C already is a basic coalition (or can be trivially divided

in basic coalitions). For configuration (d), let x1,x2,x3 the 3 nodes

in C; clearly, SW(C) = 2. Consider coalitions C ′
1
= {x1,x2} and

C ′
2
= {x3}. It is easy to check that SW(C ′

1
) + SW(C ′

2
) = 2 = SW(C).

As to the induction step, given any k ≥ 4, assume now that the

statement holds for 1, . . . ,k − 1; we want to show that it also holds

for k .
By Lemma 3.2, we know that there exists an edge e = (i, j)

belonging to EC such that SW({i, j}) + SW(C \ {i, j}) ≥ SW(C).
Since |C \ {i, j}| ≤ k − 2, by the induction hypothesis, coalition

C \ {i, j} can be decomposed in h basic coalitions C ′′
1
, . . . ,C ′′

h such

that

∑h
i=1

SW(C ′′
i ) ≥ SW(C \{i, j}). Therefore, given that also {i, j}

is a basic coalition, we have proven the induction step. �

By Theorem 3.3, in order to compute an optimal solution for the

coalition structure generation problem (i.e., an outcomemaximizing

the social welfare), it is possible to exploit a result from [22]:

Theorem 3.4 ([22]). Given an unweighted graph G, it is possible
to compute in polynomial time a partition of the nodes of G in sets
inducing subgraphs isomorphic to K1, K2 or K3 (i.e., a coalition struc-
ture composed by basic coalitions) maximazing the number of nodes
belonging to sets inducing subgraphs isomorphic to K2 or K3.

In fact, by combining Theorems 3.3 and 3.4, it is possible to prove

the following result.

Theorem 3.5. Given an unweighted graph G, there exists a poly-
nomial time algorithm for computing a coalition structure C∗ maxi-
mizing the social welfare.

Proof. By Theorem 3.3, there must exist an optimal outcome

C∗ = (C∗
1
, . . . ,C∗

n ) in which, for all i = 1, . . . ,n, C∗
i is a basic

coalition. Notice that any node in a basic coalition isomorphic to

K1 does not contribute to the social welfare, while all nodes in

other coalitions contribute 1 to SW(C∗). It follows that, in order

to maximize the social welfare, the number of nodes belonging

to coalitions isomorphic to K2 or K3 has to be maximized, and

therefore the solution computed in Theorem 3.4 is optimal also for

our problem. �

In [23] the authors show that the price of stability of modified

unweighted fractional hedonic games is 1, without considering

complexity issues. The different characterization of the optimum

done in Theorem 3.3 allows us to first compute in polynomial time

an outcome that maximizes the social welfare (done in Theorem

3.5) and then to transform this optimal outcome into a strong Nash

without worsening its social welfare, again by a polynomial time

transformation. The following theorem completes this picture by

providing a polynomial time algorithm for transforming an optical

outcome into a strong Nash with the same social welfare, thus also

proving that the strong price of stability is 1.

Theorem 3.6. Given an unweighted graph G, it is possible to
compute in polynomial time an outcome C ∈ n−SN and such that
SW(C) = SW(C∗).

Proof. Let C∗
be the optimal outcome computed in polynomial

time by Theorem 3.5. Let N ′ ⊆ N the set of agents belonging in C∗

to coalitions isomorphic to K2 or K3. Notice that SW(C∗) = |N ′ |.
No agent in i ∈ N ′

can have an incentive in changing her strategy

(and thus can belong to any deviating subset of agents), because

ui (C) = 1 and a node can gain at most 1 in any outcome. Therefore,

if N ′ = N , then C∗
is also a strong Nash equilibrium and the claim

directly follows.

In order to complete the proof, it is sufficient to (i) show the

existence of a dynamics involving only the set of agents K ⊆ N ′′
,

where N ′′ = N \ N ′
, and leading to a strong Nash outcome C; (ii)

providing a polynomial time algorithm for computing C.
For anyh = 1, 2, 3, let C∗

h ⊆ C∗
be the set containing all coalitions

of C∗
isomorphic to Kh . We first provide some useful properties of

nodes in N ′′
:

(P1) For any couple of distinct nodes i, j ∈ N ′′
, edge (i, j) < E,

because otherwise the social welfare of C∗
could be improved

by putting i and j in the same coalition: a contradiction to

the optimality of C∗
.

j i j i

Figure 2: Proof of (P2).

(P2) For any i ∈ N ′′
and any vertex j belonging to a coalition in

C∗
3
, edge (i, j) < E, because otherwise the social welfare of C∗

could be improved by removing j from her current coalition

and putting her in the same coalition of i: a contradiction to

the optimality of C∗
( see Figure 2).

(P3) For any couple of distinct nodes i, j ∈ N ′′
and any coalition

{i ′, j ′} ∈ C∗
2
, if there exists an edge connecting node i to a

node in {i ′, j ′} (assume without loss of generality to node

i ′, i.e. assume that (i, i ′) ∈ E), then edge (j, j ′) < E, because
otherwise the social welfare of C∗

could be improved by
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i i′ j′ i i′ j′

Figure 3: Proof of (P3).

removing i ′ and j ′ from their current coalition and putting

them in the same coalition of i and j, respectively: a contra-
diction to the optimality of C∗

(see Figure 3).

i

i′ j′ j′′ i′′

j

i

i′ j′ j′′ i′′

j

Figure 4: Proof of (P4).

(P4) For any couple of distinct nodes i, j ∈ N ′′
and any couple

of coalitions {i ′, j ′}, {i ′′, j ′′} ∈ C∗
2
, if there exist an edge

connecting node i to a node in {i ′, j ′} (assumewithout loss of

generality to node i ′, i.e. assume that (i, i ′) ∈ E), and another
edge connecting node j to a node in {i ′′, j ′′} (assumewithout

loss of generality to node i ′′, i.e. assume that (j, i ′′) ∈ E),
then edge (j ′, j ′′) < E, because otherwise the social welfare
of C∗

could be improved by removing i ′, i ′′ and j ′ from their

current coalition and putting them in the same coalition of i ,
j and j ′′, respectively: a contradiction to the optimality of

C∗
(see Figure 4).

Consider an initial dynamics, ending in outcome C0
, in which

every agent in i ∈ N ′′
unilaterally moves in order to increase her

utility (that in C∗
is 0). By properties (P1) and (P2) it follows that,

for any i ∈ N ′′
, i selects a coalition in C∗

2
and by property (P3) it

follows that after this initial dynamics, all coalitions in C0 \ C∗
(i.e.,

all coalitions modified by this initial dynamics) are isomorphic to

star graphs, i.e. only one node has degree greater than 1.

Consider now a sequence of improving moves performed by

any subset of agents K ⊆ N and such that for any i ∈ K , agent
i improves her utility after this move. For any t ≥ 1, let Ct

be

the outcome reached after the t-th move of this dynamics and Kt

be the set of moving agents. We want to show that this dynamics

converges, i.e., that a strong Nash equilibrium is eventually reached.

By properties (P3) and (P4) it follows that:

(P5) For any coalition in C∗
2
, there exists an agent that will al-

ways have utility 1 during any dynamics; let N̄ ⊆ N the set

containing these nodes. Clearly, every agent in N̄ , as well as

all nodes belonging to coalitions in C∗
3
, will never belong to

a subset of nodes performing an improving move and there-

fore will always remain in the same coalition she belongs in

C∗
.

(P6) For any t ≥ 1, and any agent i ∈ Kt
(potentially i could be

an agent of a coalition in C∗
1
or also an agent of a coalition

in C∗
2
not belonging to N̄ ), Ct (i) is such that there exists a

unique j ∈ Ct (i) ∩ N̄ and i will have a unique edge in Ct (i)
connecting her to j.

By properties (P5) and (P6), the only nodes participating in the

dynamics are nodes either belonging to coalitions in C∗
1
or belong-

ing to coalitions in C∗
2
but not belonging to N̄ ; let

¯̄N be the set of

these nodes, i.e., for any t > 1, Kt ⊆ ¯̄N .

In order to obtain a strong Nash equilibrium, we notice that the

“residual” game played by agents in
¯̄N is equivalent to a singleton

congestion game with identical latency functions (CGI), in which

we also have a set of resources (i.e. a strong Nash equilibrium in

this new game is also a strong Nash equilibrium in our game and

vice versa). In a CGI, agent’s strategy consists of a resource. The

delay of a resource is given by the number of agents choosing it,

and the cost that each agent aims at minimizing is the delay of her

selected resource. In particular, the set of agents is
¯̄N and the set

of resources is N̄ . In fact, in our “residual” game every agent aims

at minimizing the cardinality of the star coalition she belongs to.

In [21] it has been shown how to compute in polynomial time a

strong Nash equilibrium for a class of congestion games including

the one of CGI.

Let us call C the obtained strong Nash equilibrium. It remains to

show that SW(C) = SW(C∗). Observe that the difference between
C and C∗

is that some coalitions belonging to C∗
isomorphic to K2

becomes a coalition isomorphic to a star graph in C, and that some

coalitions belonging to C∗
isomorphic to K1 disappears in C. The

claim follows by noticing that the contribution to the social welfare

of a coalition isomorphic to K1 is zero, and that the contribution to

the social welfare of a coalition isomorphic to K2 (whose value is 2)

is the same as the one of a coalition isomorphic to a star graph. �

As a direct consequence of Theorem 3.6, the following corollary

holds.

Corollary 3.7. For any unweighted graph G and any k =
1, . . . ,n, k−SPoS(G(G)) = 1.

3.2 Strong Price of Anarchy
In this subsection we study the strong price of anarchy for un-

weighted graphs.

Theorem 3.8. Given any ϵ > 0, there exists an unweighted graph
G such that n−SPoA(G(G)) ≥ 2 − ϵ .

Theorem 3.9. For any unweighted graph G, 2−SPoA(G(G)) ≤ 2.

Proof. Let C∗
the optimal solution computed by Theorem 3.5,

in which all coalitions are basic ones.

Consider any 2-strong Nash equilibrium C.
For any coalition C∗ = {i, j} of C∗

isomorphic to K2, on the one

hand we have that SW(C∗) = 2. On the other hand, since C is a

2-strong Nash stable outcome, ui (C) = 1 or uj (C) = 1, because

otherwise i and j could jointly perform an improving move. Thus,

ui (C) + uj (C) ≥ 1, whereas ui (C∗) + uj (C∗) = 2.

For any coalition C∗ = {i, j,k} of C∗
isomorphic to K3, on the

one hand we have that SW(C∗) = 3. On the other hand, since C is
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a 2-strong Nash stable outcome, at least 2 agents among i, j,k must

have utility 1 in C, because otherwise there would exist two agents
aiming at jointly perform an improving move: a contradiction to

the 2-strong Nash stability of C. Thus, ui (C) + uj (C) + uk (C) ≥ 2,

whereas ui (C∗) + uj (C∗) + uk (C∗) = 3.

For any h = 1, 2, 3, let Nh ⊆ N be such that for any j ∈ Nh , C
∗
j is

isomorphic toKh . Since agents being in coalitions of C∗
isomorphic

to K1 do not contribute to SW(C∗), we obtain
SW(C∗)
SW(C) ≤

∑
j ∈N2

SW(C∗
j ) +

∑
j ∈N3

SW(C∗
j )∑

j ∈N2

∑
i ∈C∗

j
ui (C) +

∑
j ∈N3

∑
i ∈C∗

j
ui (C)

≤
∑
j ∈N2

SW(C∗
j ) +

∑
j ∈N3

SW(C∗
j )∑

j ∈N2

1

2
SW(C∗

j ) +
∑
j ∈N3

2

3
SW(C∗

j )

≤
∑
j ∈N2

SW(C∗
j ) +

∑
j ∈N3

SW(C∗
j )

1

2

(∑
j ∈N2

SW(C∗
j ) +

∑
j ∈N3

SW(C∗
j )
) = 2

�

From Theorems 3.8 and 3.9, we immediately get the following

result.

Corollary 3.10. The strong price of anarchy for unweighted
graphs is 2.

4 NASH STABLE OUTCOMES
In this section we consider Nash stable outcomes. We start by show-

ing that there exists a graph G containing negative edge-weights

such that the game induced by G admits no Nash stable outcome.

This result is very similar to Lemma 1 of [9].

Theorem 4.1. There exists a graph G containing edges with nega-
tive weights such that G(G) admits no Nash stable outcome.

We further show that there exists a dynamic of infinite length

for games played on unweighted graphs.

Theorem 4.2. There exists an unweighted graphG such that G(G)
does not possess the finite improvement path property, even under
best-response dynamics.

Despite the above negative results, it is easy to see that, if a

graph G does not contain negative edge-weights, then the game

induced byG admits a Nash equilibrium, that is the outcome where

all the agents are in the same coalition. Therefore, in the next

subsections we characterize the efficiency of Nash stable outcomes

in modified fractional hedonic games played on general graphs

with non-negative edge-weights.

By definition, we have that 1 ≤ PoS ≤ PoA.

4.1 Price of Anarchy
We first show that the price of anarchy grows linearly with the

number of agents, even for the special case of unweighted paths.

Theorem 4.3. There exists an unweighted path G such that
PoA(G(G)) = Ω(n).

We are able to show an asymptotically matching upper bound,

holding for weighted (positive) graphs.

Theorem 4.4. For any weighted graph with non-negative edge-
weights G, PoA(G(G)) ≤ n − 1.

4.2 Price of Stability
On the one hand, since we have proved in Corollary 3.7 that, for

the setting of unweighted graphs, the strong price of stability is 1,

it directly follows that also the price of stability is 1 in this setting,

because any strong Nash equilibrium is also a Nash equilibrium.

On the other hand, in the weighted case, given the upper bound

to the price of anarchy provided in Theorem 4.4, the following

theorem shows an asymptotically matching lower bound to the

price of stability.

Theorem 4.5. There exists a weighted star G with non-negative
edge weights such that PoS(G(G)) = Ω(n).

5 CORE STABLE OUTCOMES
In this section we consider the core of MFHGs. We first show that

for any graph G, the core of the game G(G) in not empty, and that

a core stable outcome approximating the optimal social welfare by

a factor of 2 can be computed in polynomial time.

Theorem 5.1. Given any graphG = (N ,E,w), there exists a poly-
nomial time algorithm for computing a core stable coalition structure
C such that SW(C) ≥ 1

2
SW(C∗(G(G))) and all coalitions in C are of

cardinality at most 2.

Proof. Consider the following algorithm, working in phases

t = 1, 2, . . . . Let G0 = (N ,E0,w) be the subgraph of G such that

E0 = {e ∈ E : w(e) ≥ 0}, that is, G0
has the same vertices as G

and only contains the edges of G of non-negative weight. For any

t ≥ 1, let Gt = (N t ,Et ,w) be the graph obtained after phase t . In
any phase t ≥ 1, a new coalition isomorphic to K2 is added to C as

follows: Let et−1 = {i, j} be an edge in Et−1
of maximum weight

wi, j = maxe ∈Et−1 we . We add to C the coalition formed by i and j,

i.e., C = C ∪ {i, j}. Moreover, let Gt
such that N t = N t−1 \ {i, j}

and Et ⊂ Et−1
the subset of edges of G0

induced by nodes N t
.

When Et = ∅, the algorithm ends returning C ∪ {{i}|i ∈ N t }.
Since at each phase at least an edge is removed from the graph, the

algorithms terminates in at most |E | phases returning an outcome

with all coalitions of cardinality at most 2.

We first show that C is a core stable outcome of G(G). Remind

that, for any possible outcome, ui (C) ≤ δ imax . Therefore, in the

outcome C, agents i and j selected at phase t = 1 are achieving the

maximum utility they can hope. It implies that such agents cannot

belong to any strongly block coalition. The proof continues by

induction as follows. Suppose that all the agents selected until phase

q, i.e., agents belonging to N \ Nq
, cannot belong to any strongly

block coalition, then agents iq+1 and jq+1 selected in the phase

q + 1 cannot belong to any strongly block coalition as well. In fact,

suppose that such agents have a certain utility x in the coalition C.
For the inductive hypothesis we have that they can create a strongly

block coalition only with agents belonging to Nq+1
. However, since

the edge (iq+1, jq+1) has the maximum weights in Gq+1
, if implies

that they cannot get utility greater than x . Finally, for the agents
that are not matched, i.e., agents that are alone in a coalition, since

they form and independent set, they cannot form a strongly block

coalition, and this finishes the proof.

It remains to show that SW(C) ≥ 1

2
SW(C∗(G(G))). First of all

notice that in any phase t , a coalition contributing 2we t−1 to the
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social welfare is added to C; we thus obtain that

SW(C) =
∑
t ≥1

2we t−1 .

For any e ∈ E, let f (e, i) ∈ {0, 1, 2} be the number of endpoints of

e belonging to coalition C∗
i . It is possible to bound SW(C∗(G(G)))

as follows:

SW(C∗) =
∑

C∗
i ∈C∗

SW(C∗
i )

=
∑

C∗
i ∈C∗

∑
t ≥1

∑
e ∈EC∗

i
∩(Et \Et−1)

2we
|C∗
i − 1|

≤
∑

C∗
i ∈C∗

∑
t ≥1

2f (et−1, i)we t−1 (|C∗
i − 1|)

|C∗
i − 1| (4)

=
∑
t ≥1

∑
C∗
i ∈C∗

2f (et−1, i)we t−1

=
∑
t ≥1

4we t−1 , (5)

where inequality 4 holds becausewe t−1 = maxe ∈Et−1 we and every

endpoint of et−1
belonging toC∗

i can have at most |C∗
i − 1| adjacent

edges (notice that all edges in Et \ Et−1
are adjacent to an endpoint

of et−1
), and equality 5 holds because, given that C∗

1
, . . . ,C∗

n are a

partition of N , it follows by definition of f that

∑
C∗
i ∈C∗ f (et−1, i) =

2. Therefore,

SW(C∗(G(G)))
SW(C) ≤

∑
t ≥1

4we t−1∑
t ≥1

2we t−1

= 2.

�

As a direct consequence of Theorem 5.1, the following corollary

holds.

Corollary 5.2. For any graph G, CPoS(G(G)) ≤ 2.

We now show a matching lower bound on the CPoS for the case

of weighted graphs.

Theorem 5.3. For any ϵ > 0, there exists a weighted graphG such
that CPoS(G(G)) ≥ 2 − ϵ .

Proof. Consider the graph G represented in Figure 5.

i1 i2 i3 i4
1

1 + ϵ
2 1

Figure 5: Graph G.

On the one hand, it is easy to check that the only core stable

coalition C is the one where the two central agents i2 and i3 are

together in the same coalition, while agent i1, as well as agent
i4, are alone in different coalitions, i.e., C = {{i1}, {i2, i3}, {i4}}.
Notice that SW(C) = 2

(
1 + ϵ

2

)
. On the other hand, the outcome

C′ = {{i1, i2}, {i3, i4}}, has a social welfare equal to 4, and therefore

SW(C∗) ≥ 4. It follows that CPoS(G(G)) ≥ 4

2(1+ ϵ
2
) ≥ 2 − ϵ . �

For unweighted graphs, it is easy to see that the optimum out-

come produced in Theorem 3.6 is also core stable, and therefore the

following proposition holds:

Proposition 5.4. For any unweighted graphG , CPoS(G(G)) = 1.

We are also able to prove a constant upper bound to the core

price of anarchy.

Theorem 5.5. For any graph G, CPoA(G(G)) ≤ 4.

Proof. Let C′
be the solution computed by Theorem 5.1, in

which all coalitions have cardinality at most 2.

Consider any core stable outcome C.
For any coalition C ′ = {i, j} of C′

isomorphic to K2, on the one

hand we have that SW(C ′) = 2. On the other hand, since C is a core

stable outcome,ui (C) = 1 oruj (C) = 1, because otherwise coalition

{i, j} would strongly block outcome C. Thus, ui (C) + uj (C) ≥ 1,

whereas ui (C′) + uj (C′) = 2.

Let N ′ ⊆ N be such that for any j ∈ N ′
, C ′

j is isomorphic to K2.

Since agents being in all other coalitions of C′
do not contribute to

SW(C′), we obtain
SW(C′)
SW(C) ≤

∑
j ∈N ′ SW(C ′

j )∑
j ∈N ′

∑
i ∈C ′

j
ui (C)

≤
∑
j ∈N2

SW(C ′
j )∑

j ∈N2

1

2
SW(C ′

j )
= 2.

The claim follows because, by Lemma 5.1, SW(C∗(G(G))) ≤ 2 ·
SW(C′). �

For unweighted graphs we get the following tight characteriza-

tion on the core price of anarchy.

Proposition 5.6. For any unweighted graphG , CPoA(G(G)) = 2.

Proof. For the lower bound, it is easy to see that, given an

unweighted path of four nodes i1, i2, i3, i4, the outcome C =

{{i1}, {i2, i3}, {i4}} is core stable and has social welfare 2, while

the optimum outcome C∗ = {{i1, i2}, {i3, i4}} has social welfare 4.

A matching upper bound can be obtained by exploiting the same

arguments used in the proof of Theorem 3.9. �

6 CONCLUSIONS
We notice that one could consider relaxed strong Nash stable and

strict core outcomes, where among the agents that cooperatively

deviate, all of them do not worsen their utility, and at least one of

them gets a strictly better utility. However, these stable outcomes

do not exist even for very simple instances. In fact, if G is an un-

weighted path of 3 nodes, (G(G)) admits no relaxed strong Nash

stable outcomes as well as no strict core outcomes.

There are some open problems suggested by our work. First of all,

it would be nice to close the gap between the lower bound of 2 for

the core price of stability and the upper bound of 4 for the core price

of anarchy, and to study the complexity of computing an optimal

outcome when the graph is weighted. Another research direction

could be that of designing truthful mechanisms for MFHGs that

perform well with respect to the sum of the agents’ utility. Finally,

it would be interesting to adopt different social welfare than the one

considered in this paper. An example could be that of maximizing

the minimum utility among the agents.
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