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ABSTRACT
We consider tournaments played by a set of agents in order to estab-

lish a ranking among them. We introduce the notion of irrelevant

match, as a match that does not influence the ultimate ranking of

the involved parties. After discussing the basic properties of this

notion, we seek out tournaments that have no irrelevant matches,

focusing on the class of tournaments where each agent challenges

each other exactly once. We prove that tournaments with a static

schedule and at least 5 agents always include irrelevant matches.

Conversely, dynamic schedules can be devised in ways that avoid

irrelevant matches, at least for one of the involved agents.

KEYWORDS
Tournaments; Game theory for practical applications; Social choice

theory

ACM Reference Format:
Marco Faella and Luigi Sauro. 2018. Do all Tournaments Admit Irrelevant

Matches?. In Proc. of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018,
IFAAMAS, 8 pages.

1 INTRODUCTION
Tournaments are sets of pairwise contests, called matches, aimed

at establishing a ranking among a set of participants. Sport compe-

titions are often organized in tournaments that attract significant

popular interest and financial resources. Depending on the type of

tournament and on the ranking rule, there may be matches that

have no effect on the ultimate ranking of the two contestants. For

instance, in 2014 the last match in the preliminary group stage

of the UEFA Champions League (Group H) was Porto vs Šachtar.

Before the match, Porto was on top of the group with 13 points

whereas Šachtar was second with 8 points. Since in football tourna-

ments winning a match yields 3 points, Šachtar had no chance of

overtaking Porto, so any possible outcome of the match would not

have changed the final ranking. Incidentally, the match ended in

an unexciting 1–1 tie.

Clearly, such irrelevant matches are undesirable, as they lack the

incentive that is the very essence of a tournament. In this paper, we

formalize the notion of relevant and irrelevant match and we tackle

the problem of designing tournaments that contain no irrelevant

matches.

The very definition of relevance is not trivial and it is the subject

of Section 3. Assume for simplicity that a match between a and
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b can only end in two possible ways: a wins or b wins. We start

from the intuition that a match is relevant for one of the involved

agents if the future ranking of that agent depends on its outcome.

If the future ranking is uniquely determined by the outcome of

the present match (say that we are analysing the last match in the

tournament), we only need to compare two rankings from the point

of view of our agent. We stipulate that agents compare two rankings

according to the following preference: they prefer to have fewer

agents above them; equal that, they prefer to have fewer agents at

the same level as them.

Generally, the future ranking is not uniquely determined by the

outcome of the present match. Other matches may follow, possibly

influencing the ultimate ranking. We resolve the uncertainty on

the future matches via a probabilistic setting, in which agents hold

prior beliefs on the relative strengths of their peers. As in the clas-

sical Bradley-Terry model [1], such beliefs can be used to estimate

the probability that any future match ends in either way. We then

define a match to be relevant for an agent if the ranking distribution

corresponding to one of the two outcomes stochastically dominates
the ranking distribution induced by the other outcome [4] (Defi-

nition 3.2). We also develop an equivalent non-probabilistic char-

acterization of relevance for the class of point-based round-robin

tournaments
1
.

Once the basic definitions have been laid out, in Section 4 we

study the circumstances under which relevant tournaments exist.

In common tournaments, the sequence of matches is fixed a-priori,
regardless of the outcomes. We call these static tournaments. We

also consider the more general class of dynamic tournaments, in

which the sequence of matches adapts according to past outcomes.

We then obtain the following main results:

(1) All round-robin tournaments with a static schedule and at

least 5 agents include a match that is irrelevant for both of

the involved agents (Theorem 4.1).

(2) For all numbers of agents, there is a round-robin tournament

with a dynamic schedule where all matches are relevant for

at least one of the involved agents (Theorem 4.7).

(3) All round-robin balanced tournaments with at least 6 agents

include a match that is irrelevant for one of the involved

agents (Theorem 4.8).

The present preliminary work could be extended in various direc-

tions, some of which are described in our conclusive Section 5.

Related work. In graph theory, a tournament is a complete and

asymmetric directed graph [9]. Nodes represent agents and an edge

from a to b indicates that a won the match against b. In common

1
In a round-robin tournament each agent challenges all other agents exactly once. A

tournament is point-based if agents accrue points corresponding to winning or losing

each match, and the final ranking is based on such points [10].
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terms, a tournament is in fact an outcome of a round-robin (real-

world) tournament. Hence, graph-theoretic tournaments ignore the

temporal aspects and only focus on the ultimate outcome of all the

matches. On the other hand, a match may be relevant if played at

the beginning of a tournament and irrelevant if played towards the

end. So, in this paper we explicitly model the temporal ordering of

the matches.

The problem of ranking the participants to a tournament has

been studied in the literature, with the two most prominent ap-

proaches being the maximum likelihood method and the points

system [7, 10]. In this paper, we focus on the points system, as it is

commonly used in real-world tournaments.

Tournament rankings are special cases of rank aggregation prob-

lems, widely studied in machine learning [2, 13]. The common

objectives in that area are orthogonal to ours, mainly concerning

accuracy (i.e., obtaining a ranking that is close to some model of

ground truth) and efficiency (i.e., obtaining a ranking from few

comparisons).

Finally, the Economics literature discusses of tournament design

with the objective of maximizing profit for the organizers [3, 12].

The inquiry that is most related to ours finds strong correlation

between match attendance and importance for either agent, where
the latter is measured by an ad-hoc formula based on the possibil-

ity that the agent will win the championship and the number of

remaining matches [5].

To the best of our knowledge, the notion of (ir)relevant match

was not considered in the literature.

2 PRELIMINARIES
Informally, by tournament we mean a schema of possible matches

among multiple agents which, according to the outcomes of the

single matches, eventually returns a scoreboard. More specifically,

in this paper we focus on tournaments that are ordinal in the sense

that what really matters is the mutual placement of agents rather

than their absolute scores. For this reason, we assume that the final

outcome of a tournament is a ranking among agents which, by

allowing possible ties, is represented by a weak order.

In the following, unless differently specified, we assume a fixed

set of agents A = {1, . . . ,n}. A ranking is a weak order on A, i.e., a
total, reflexive, and transitive relation, ⪯⊆ A×A. As usual, by ∼ and
≺ we denote the symmetric and asymmetric parts of ⪯, respectively.

Intuitively, a ≺ b means that the agent b has a better placement

than a, whereas a ∼ b means that they are ranked the same (a.k.a.

a tie).
We call match a pair of distinct agents. Generally speaking, a

match may have multiple outcomes. Here, we focus on binary

tournaments, whose matches can have one of two possible outcomes
w or l.

Then, a tournament T is a labelled full binary tree where: (i)
each internal node is labelled with a match; (ii) the left (resp., right)
arc coming out of an internal node is labelled with the outcome

w (resp., l); (iii) each leaf is labelled with a ranking. Intuitively,

given an internal node x labelled with a match (a,b), the left child
xw corresponds to a having won the match and the right child xl
corresponds to a having lost the match (and therefore, b having

won it).

The labels attached to a node and to either one of its outgoing

arcs describe a match and its result, respectively. We collect these

labels in a triple (a,b,o), called an event. A path from an internal

node to a leaf induces a sequence of events and a final ranking,

denoted by the sequence ⟨e1, . . . , eh , ⪯⟩. When this does not cause

confusion, we will identify a path and its sequence of events. We

call full path a path from the root of T . Given a path π , we denote
by won(π ,a) (resp. lost(π ,a)) the number of matches won (resp.

lost) by a in π .

Types of tournaments. We distinguish the following families of

tournaments:

A tournament is static if it is a complete tree and all its internal

nodes at a given level are labelled with the same match. In other

words, the sequence of matches is the same on all full paths.

A round-robin tournament is a tournament where in all full paths

each agent challenges all the other agents exactly once. Notice that

each full path in a round-robin tournament with n agents comprises(n
2

)
=

n (n−1)
2

events.

A tournament is point-based if agents implicitly accrue points

corresponding to winning or losing each match, and the final rank-

ing is based on such points. Formally, let

score(c,π ) = won(c,π )pw + lost(c,π )pl ,

where c is an agent, π is a full path, and pw, pl are real numbers.

We say that a tournament is point-based if there exist pl < pw such

that for all full paths π = ⟨e1, . . . , eh , ⪯⟩ and agents a and b, we
have that a ⪯ b iff score(a,π ) ≤ score(b,π ).

A round-robin tournament is balanced if n is even and for all

full paths π = ⟨e1, . . . , eh , ⪯⟩ and all i = 0, . . . ,n − 2, the set of n
2

events {
ej

���� j = i
n

2

+ 1, i
n

2

+ 2, . . . , (i + 1)
n

2

}
involves all agents. In other words, balanced tournaments are or-

ganized into n − 1 rounds. Every agent plays one match in each

round.

Example 2.1. Figure 1 shows a tournament T among the agents

a, b, and c . In particular, the path highlighted in bold corresponds

to π = ⟨(a,b,w), (a, c, l), (b, c,w), ⪯⟩, where in the final ranking ⪯

all the agents tie.

Note that all full paths from the root to a leaf share the same

sequence of matches where each agent challenges the other ones

exactly once. Consequently, T is a static round-robin tournament.

Moreover, the placement of an agent at the end of a full path π =
⟨e1, e2, e3, ⪯⟩ depends on the number of matches it won, i.e., t1 ⪯ t2
iff won(t1,π ) ≤ won(t2,π ). Then, since won(·,π ) corresponds to
the score function where pl = 0 and pw = 1, we have that T is

point-based.

Similarly to utility functions in Decision Theory [8], the follow-

ing theorem shows that the score function associated to a point-

based tournament is invariant under linear transformations.

Theorem 2.2. LetT be a point-based round-robin tournament and
pl and pw be two real values such that pl < pw. Then, for each full path
π = ⟨e1, . . . , eh , ⪯⟩, we have that a ⪯ b iff score(a,π ) ≤ score(b,π ).

Proof. From T being point-based, there exist some p′l < p′w
such that, for each full path π = ⟨e1, . . . , eh , ⪯⟩, the score function
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a – b

a – c a – c

b – c b – c b – c b – c

c ≺ b ≺ a b ≺ c ≺ a c ∼ b ∼ a b ≺ a ≺ c c ≺ a ≺ b c ∼ b ∼ a a ≺ c ≺ b a ≺ b ≺ c

w l

w l w l

w l w l w l w l

Figure 1: A tournament among three agents.

score′(·,π ) = won(·,π )p′w + lost(·,π )p′l is monotonic w.r.t. the

ranking ⪯. By construction, we have that

score(·,π ) = won(·,π )pw + lost(·,π )pl
= won(·,π )pw + (h − won(·,π ))pl
= won(·,π ) (pw − pl) + hpl .

Similarly, score′(·,π ) = won(·,π ) (p′w−p
′
l )+hp

′
l . Then, it is straight-

forward to see that score(·,π ) = αscore′(·,π ) + β , where

α =
pw − pl
p′w − p′l

and β = pl −
pw − pl
p′w − p′l

p′l .

Since α > 0, then score(·,π ) and score′(·,π ) are co-monotonic and

hence the thesis. □

Roughly speaking, Theorem 2.2 says that the score function

representing a point-based tournament does not depend on which

weights pl < pw we choose. Therefore, w.l.o.g. we will always

assume that pl = 0 and pw = 1, that is, score(a,π ) = won(a,π ).
Then, the score vector vπ of a full path π is the sequence of scores

{won(a,π )}a∈A, ordered by non-decreasing value [9]. We say that

a vector u of integers is a round-robin score vector if there exists
a round-robin tournament T and a full path π = ⟨e1, . . . , eh , ⪯⟩
in T such that u is the score vector of π . We recall the following

classical result, called Landau’s theorem.

Theorem 2.3 ([6]). A vector (u1, . . . ,un ) ∈ Nn is a round-robin
score vector if and only if, for all k = 1, . . . ,n − 1,

k∑
i=1

ui ≥

(
k

2

)
and

n∑
i=1

ui =

(
n

2

)
.

Next, define the following relation between paths: we say that

two paths π = ⟨e1, . . . , eh , ⪯⟩ and π
′ = ⟨e ′

1
, . . . , e ′h′ , ⪯

′⟩ are homol-
ogous if (e1, . . . , eh ) is a permutation of (e ′

1
, . . . , e ′h′ ). Consider a

node x in a round-robin tournament and its children xw and xl. It
is straightforward to see that the above relation induces a bijection

between the paths starting from xw and those starting from xl.
The following lemma states that, once we fix the number of

agents, all possible round-robin score vectors occur in all point-

based round-robin tournaments. The proof is straightforward and

left as an exercise to the reader.

Lemma 2.4. Let T be a point-based round-robin tournament with
n agents and let u be a round-robin score vector with n agents. Then,
there exists a full path π in T such that u = vπ .

3 NOTIONS OF RELEVANCE
In the following, unless differently specified, we assume a fixed

number n of agents. Given two rankings ⪯1 and ⪯2 we say that

an agent a prefers ⪯2 to ⪯1 if there are fewer agents above a in

the former ranking or, those being equal, the number of ties is

smaller. Formally, let ba (⪯) = |{b ∈ A | a ≺ b}| be the number of

agents that have a better placement than a in the ranking ⪯, and

let sa (⪯) = |{b ∈ A | a ∼ b}| be the number of agents having the

same placement as a. We say that a prefers ⪯2 to ⪯1, denoted by

Pa (⪯1, ⪯2), iff:

(i) ba (⪯2) < ba (⪯1), or
(ii) ba (⪯2) = ba (⪯1) and sa (⪯2) ≤ sa (⪯1).

For instance, consider the two rankings a ≺ b ≺ c and a ∼ b ∼ c .
Agent c prefers the former, because it is the only agent on top. On

the other hand, agent b prefers the latter, because there is no agent

strictly above it.

The preference relation Pa is itself a weak order among rank-

ings. We write [⪯]a to denote the class of rankings ⪯′ that are

a-equivalent to ⪯, i.e., Pa (⪯, ⪯
′) and Pa (⪯

′, ⪯). Since the num-

ber of possible rankings is finite, Pa induces a finite sequence

Ca
1
, . . . ,Cam of a-equivalent classes, linearly ordered by Pa .

We would like each match in a tournament to be relevant to both
involved agents. Intuitively, a match is relevant for an agent if its

future ranking depends on the outcome of that match. As antici-

pated in the Introduction, we adopt a probabilistic view: we assume

that each agent is equipped with a belief about the likelihood of

different outcomes for all future matches. We assume that agents

are never absolutely certain about the outcome of future matches,

so that the likelihood of a given outcome lies in the open interval

(0, 1).
In the following, we fix a tournament T and omit it from the

notation. Let E be the set of all events, a belief is a function β :

E → (0, 1) such that for all agents a,b: (i) β (a,b,w) + β (a,b, l) = 1

and (ii) β (a,b,w) = β (b,a, l). A belief assigns probabilities to the

outcomes of every possible match: the first condition derives from

the fact that w and l are the only possible outcomes; the second
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condition simply states that matches are zero-sum games where if

agent a wins then the opponent agent b loses, and vice versa.

For each internal node x , a belief naturally induces a distribution
over all paths starting from x . The probability of any path π =
⟨e1, . . . , eh , ⪯⟩ is simply obtained by combining the beliefs on each

match, treated as independent events:

Prβ (π ) =
h∏
i=1

β (ei ) . (1)

Note that homologous paths in a round-robin tournament have the

same probability to occur according to any belief.

For an agent a, let Ra be the random variable assigning to each

path π = ⟨e1, . . . , eh , ⪯⟩ the a-equivalence class of the ranking ⪯,
i.e., Ra (π ) = [⪯]a . We denote by γ (Ra ,x , β ) the distribution of Ra
over all paths starting from x . More precisely, given an internal node

x and an a-equivalence class Caj with 1 ≤ j ≤ m, let Paths(x ,a, j )
be set of all paths starting from x whose final ranking belongs to

Caj . Then, γ (Ra ,x , β ) associates to the class Caj the probability∑
π ∈Paths(x,a, j )

Prβ (π ).

Example 3.1. Consider again the example in Figure 1 and assume

that a bookmaker estimates the following odds β : agent a has a

probability 0.7 of beating b and a probability 0.5 of beating agent c ;
agent b has a probability 0.4 of beating c .

According to the final rankings, each agent t has four different
equivalence classes Ct

1
, . . . ,Ct

4
, where Ct

1
is the set of all rankings

where t comes in last, Ct
2
means that t is in the second position,

Ct
3
is the case where all the agents tie, and finally in Ct

4
t takes the

first position with no ties.

Thus, the class Ca
4
corresponds in Figure 1 to the two leftmost

paths. Let x be the root of the tree, γ (Ra ,x , β ) assigns probability
0.7 ∗ 0.5 = 0.35 to Ca

4
. Similarly, the paths where agent b takes the

second position are the leftmost and the rightmost ones, hence Cb
2

has probability 0.23.

Now, we formalize when agent a prefers an internal node x1 to
another node x2, based on the corresponding distributions γ1 =
γ (Ra ,x1, β ) and γ2 = γ (Ra ,x2, β ). This notion is based on 1

st
order

stochastic dominance between two distributions taking values over

a linearly ordered set [4, 11]. In our case, the linear order is the

sequence Ca
1
, . . . ,Cam of a-equivalence classes ordered by Pa . Let

Γ1 and Γ2 be the cumulative probabilities of γ1 and γ2, respectively:

Γi (C
a
k ) =

k∑
j=1

γi (C
a
j ) ,

with i = 1, 2. Then, γ2 stochastically dominates γ1 if and only if, for

all 1 ≤ k ≤ m, Γ2 (C
a
k ) ≤ Γ1 (C

a
k ), with a strict inequality for at least

one k .

Definition 3.2. A node x labelled with (a,b) is c-relevant, with
c ∈ {a,b}, iff, for all beliefs β , γ (Rc ,xw, β ) stochastically dominates

γ (Rc ,xl, β ) or vice versa. A tournament is strongly (resp., weakly)
relevant if all internal nodes are relevant for both (resp., at least

one of the) involved agents.

b – c

a – d a – d

{c,d } ≺ {a, e} ≺ b

(2, 4, 1, 1, 2)

{a, c} ≺ {d, e} ≺ b

(1, 4, 1, 2, 2)

d ≺ {a, c, e} ≺ b

(2, 3, 2, 1, 2)

a ≺ {c,d, e} ≺ b

(1, 3, 2, 2, 2)

w l

w

l

w

l

Figure 2: A fragment of a 5-agent tournament (see Exam-
ple 3.3). Each leaf is decorated underneath by its score vector.
Due to space constraints, agents that tie in a final ranking
are grouped in set notation.

b – c

a – c a – c

c ≺ a ≺ b a ≺ c ≺ b a ≺ c ≺ b c ≺ a ≺ b

w l

w l w l

Figure 3: A fragment of a 3-agent tournament.

Example 3.3. Consider a static point-based round-robin tourna-

ment among five agents a, b, c , d , and e and let x be an internal

node where the intermediate scores are:

a b c d e

1 3 1 1 2

and only two matches (b, c ) and (a,d ) are left. Figure 2 shows the
subtree rooted in x .

Given a generic belief β , since at this point agent b will surely

take first place with no ties, both distributions γ (Rb ,xw, β ) and
γ (Rb ,xl, β ) assign probability 1 to the same equivalence class and

zero to all the other classes. Consequently, none of the distributions

stochastically dominates the other and hence x is b-irrelevant.

For round-robin tournaments, we now develop a characterization

of relevance that avoids any reference to the probabilistic setting.

For an agent t and an internal node x , we say that x is t-important
if there exists a path from xw whose ranking is not t-equivalent to
the ranking of the homologous path starting from xl. The following
theorem states that, in round-robin tournaments, relevance implies

importance.

Theorem 3.4. For all nodes x in a round-robin tournament and
all agents t , if x is t-relevant, then it is t-important.

Proof. Assume that node x is t-relevant. Recall that for all be-
liefs β and all pairs of homologous paths π1 and π2, β assigns the

same probability to them, i.e., Prβ (π1) = Prβ (π2).
Assume by contradiction that x is not t-important. By defini-

tion, it follows that all pairs of homologous paths starting from
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xw and xl, respectively, end with t-equivalent rankings. Hence, the
two distributions γ (Rt ,xw, β ) and γ (Rt ,xl, β ) are equal, and so nei-

ther stochastically dominates the other, contradicting our initial

assumption that x is t-relevant. □

Next, we prove that if the tournament is additionally point-based,

relevance is equivalent to importance.

Theorem 3.5. For all round-robin point-based tournaments, nodes
x labeled with match (a,b), and agents t ∈ {a,b}, x is t-relevant iff
it is t-important.

Proof. Theorem 3.4 implies the “only if” direction, so we are

left to prove the “if” implication. Assume that x is t-important, it

follows that there exist two homologous paths πw = ⟨e1, . . . , eh , ⪯w
⟩ and πl = ⟨e′1, . . . , e

′
h , ⪯l⟩ such that ⪯w and ⪯l are not t-equivalent.

Assume w.l.o.g. that t = a. As the tournament is point-based, a
strictly prefers ⪯w to ⪯l, i.e., Pa (⪯l, ⪯w) and not Pa (⪯w, ⪯l).

Let Ca
1
, . . . ,Cam be the a-equivalence classes of rankings, ordered

by Pa . Let β be any belief and let Γw (resp., Γl) be the cumulative

distribution of γ (Ra ,xw, β ) (resp., γ (Ra ,xl, β )). For all homologous

paths (π1,π2) respectively starting from (xw,xl) and ending in

rankings (⪯1, ⪯2), it holds Pa (⪯2, ⪯1). Hence, if ⪯1 belongs to the

class Cai , ⪯2 belongs to a class Caj with j ≥ i . As a consequence,

we have that Γw (C
a
i ) ≤ Γl (C

a
i ) for all i = 1, . . . ,m.

In order to prove stochastic dominance, it remains to show that

there exists an i such that the above inequality is strict. Let Cak
be the least preferred class in that linear order such that there

exist two homologous paths (π1,π2) with π2 ending in C
a
k and π1

ending in a different, and hence strictly preferred, class. Such a

class is guaranteed to exist, due to the pair of paths (πw,πl). Let
p = Prβ (π1) = Prβ (π2), we have that p > 0.

It follows that

γ (Ra ,xw, β ) (C
a
i ) = γ (Ra ,xl, β ) (C

a
i )

for all i = 1, . . . ,k − 1, and

γ (Ra ,xw, β ) (C
a
k ) ≤ γ (Ra ,xl, β ) (C

a
k ) − p < γ (Ra ,xl, β ) (C

a
k ).

Hence, Γw (C
a
k ) < Γl (C

a
k ), and our thesis. □

Example 3.6. Consider again Figure 2. Let x be the root labelled

with (b, c ) and ⪯1, . . . , ⪯4 be the final rankings from left to right.

Consider the two rankings ⪯1 and ⪯3. Since in the former c takes
third place whereas in the latter c comes in second, we have that

c strictly prefers ⪯3 over ⪯1, i.e., Pc (⪯1, ⪯3) and not Pc (⪯3, ⪯1).
Now, those rankings appear at the end of the two homologous paths

⟨(a,d,w), ⪯1⟩ descending from xw and ⟨(a,d,w), ⪯3⟩ descending
from xl. Consequently, x is c-important and, by Theorem 3.5, also

c-relevant.

It is easy to see that being point-based is necessary for Theo-

rem 3.5 to hold. In particular, consider Figure 3, which depicts a

fragment of a 3-agent round-robin tournament. Notice that the

tournament is not point-based. To see this, call ⪯1, . . . , ⪯4 the four

final rankings, left to right. In the path leading to ⪯3, a (resp., c)
has won one more match (resp., one fewer match) compared to the

path leading to ⪯4. This contradicts the fact that a ≺3 c and c ≺4 a.
Now, let x be the root of the fragment, and xw and xl be its left and

right children, respectively. Observe that x is c-important but not c-
relevant. Importance follows from comparing the two homologous

paths starting from xw and xl and leading to ⪯1 and ⪯3, respectively.
Then, consider the belief β that assigns equal probabilities to either

agent winning the match (a, c ). According to β , in both xw and

xl agent c has probability
1

2
of being second and probability

1

2
of

being third (i.e., γ (Rc ,xw, β ) = γ (Rc ,xl, β )). So, neither distribution
stochastically dominates the other and therefore x is not c-relevant.

4 EXISTENCE OF RELEVANT TOURNAMENTS
4.1 Static Tournaments
The following theorem states that, in every round-robin tournament

for at least 5 agents that is static and point-based, there is a match

that is irrelevant for both of the involved agents.

Theorem 4.1. For all n ≥ 5, there is no round-robin tournament
that is static, point-based, and weakly relevant.

Proof. Since the tournament is static, there is a match, say (i, j ),
that is played last in all paths. Consider a path, starting from the

root, in which i wins all matches, j loses all matches, and the other

n − 2 agents win approximately half of their games, leading to a

node x , where only the match (i, j ) remains to be played. At x ,
agent i has score n − 2, agent j has score 0, and the other agents

have score approximately equal to
n−1
2

. Precisely, if n is odd then

all other agents have score
n−1
2

, otherwise some of them have score

⌊ n−1
2
⌋ and some have score ⌈n−1

2
⌉. It is easy to prove that this is

indeed a valid scenario
2
. We prove that neither i nor j can change

their ranking in their last game. Since n ≥ 5, ⌊ n−1
2
⌋ ≥ 2, so even if

agent j wins the last match, its ranking will still be the the last of

all. Dually, ⌈n−1
2
⌉ ≤ n − 3, so even if agent i loses the last match,

its ranking will be the first of all. Notice that the latter argument

does not hold for n ≤ 4. □

Example 4.2. For n = 5, the scenario described in Theorem 4.1

leads to the score vector (s1, . . . , s5) = (0, 2, 2, 2, 3), where the last
match is between agents 1 and 5. Clearly, those agents cannot

modify their ranking as a consequence of their last match.

The following proposition can be checked by inspection.

Proposition 4.3. For all n ≤ 4, there is a strongly relevant static
round-robin tournament.

4.2 Dynamic Tournaments
In this section, we describe a family T (n) of dynamic round-robin

point-based tournaments that are weakly relevant, for all numbers

n of agents. In the following, for a score vector (s1, . . . , sn ), we say
that the vector (δ0, . . . ,δn−1) is the corresponding score difference
vector, where δ0 = s1 and δi = si+1 − si for all i = 1, . . . ,n − 1.

LetT (2) be the trivial round-robin tournament between 2 agents,

T (n + 1) is recursively defined as follows. First, agents 1, . . . ,n play

T (n) (first phase), resulting in a score vector (s1, . . . , sn ) and score

differences (δ0, . . . ,δn−1). We partition the agents into two sets:

• ∆0 = {i = 1, . . . ,n − 1 | δi = 0};

• ∆+ = {i = 1, . . . ,n − 1 | δi ≥ 1} ∪ {n}.

2
This scenario is related to the notions of regular and nearly-regular tournament in
graph theory [9].
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The second phase of the tournament consists in all matches involving

agent n + 1. First, we let n + 1 play against all agents in ∆+, in any

order. Then, we schedule the remaining matches, in any order.

Example 4.4. Let T (5) be a recursive tournament among the

agents {a,b, c,d, e} where the first phase consists in a tournament

T (4) among the first four agents. Then, consider as possible out-

comes of the first phase the score vectors u = (0, 2, 2, 2) and
v = (1, 1, 2, 2), where scores are assigned, from left to right, to

a, b, c , and d . By construction, in the first case ∆0 = {b, c} and
∆+ = {a,d }, whereas in the second case ∆0 = {a, c} and ∆+ = {b,d }.
Consequently, in the first case the match (a, e ) will precede the

match (b, e ) whereas in the second case the opposite holds. This

shows that different outcomes ofT (4) dynamically induce different

schedules in the second phase. In particular, a possible schedule

for the second case (score vector v) requires e to challenge the

other agents in the following order: b, d , c , and a. If we used such a

schedule in the first case (where T (4) ends with the score vector u)
and e beat b, d , and c , then the scores before the last match (e,a)
would be:

a b c d e

0 2 2 2 3

and hence the last match would be irrelevant for both a and e .

The intuition behind the recursive tournament T (n + 1) is the
following. Agents in ∆0 are “safe” in the sense that, when they will

play against n + 1, the match will be relevant for them. The other

agents are “unsafe” in the same sense. Hence, we first schedule

the unsafe matches, because they are certainly relevant for n + 1
(as a consequence of the next Lemma 4.5). Then, we schedule the

remaining matches, that will be relevant for the other agent.

Lemma 4.5. Assume that the sub-tournamentT (n) ends with score
vector (s1, . . . , sn ) and maximum score difference δmax. For all i =
1, . . . ,n such that i ≤ sn and (n − i ) ≥ δmax, the (i + 1)-th match of
the second phase is relevant for agent n + 1.

Proof. Call x a node in the tournament corresponding to the

(i + 1)-th match of the second phase. At that point, agent n + 1 has
played i matches, so its current score ŝ is at most i . Since i ≤ sn ,
if we add a virtual agent 0 with score s0 = 0, there is an index

j ∈ {0, . . . ,n − 1} such that sj ≤ ŝ ≤ sj+1. We now distinguish two

cases.

First, assume ŝ = sj . If agent n + 1 loses all future matches, it

ends up in a leaf y with score ŝ . On the other hand, if agent n + 1
wins the next match and then loses all remaining matches, it ends

up in a leaf z with score ŝ + 1. One can prove that node z is always
preferable, from the point of view of n+1, to nodey, but the specific
reason depends on the final score of agent j in y and z. In some

cases, agents n + 1 and j are tied in y, whereas n + 1 is above j in z.
In other cases, agent j is above agent n + 1 in y, whereas they are

tied in z. Notice that all other agents (except n + 1) have the same

score in y and z, except for a single agent which has one less point

in z (another more reason for n + 1 to prefer z).
In the following, we denote by s

y
k (resp., szk ) the score of agent

k in node y (resp., z). For all agents k , n + 1, it holds s
y
k ≥ szk . It

follows that bn+1 (y) ≥ bn+1 (z). If bn+1 (y) > bn+1 (z), by definition
agent n + 1 prefers z over y. Otherwise, it holds bn+1 (y) = bn+1 (z)

and we distinguish three sub-cases, based on the final score of agent

j in y and z.
First sub-case: s

y
j = szj = sj + 1. Then, s

y
n+1 = ŝ = sj whereas

szn+1 = ŝ + 1 = sj + 1. Hence, j >y n + 1 and j ∼y n + 1, which

contradicts the assumption bn+1 (y) = bn+1 (z).
Second sub-case: s

y
j = szj = sj . Then, j ∼

y n + 1 and j <z n + 1.

So, sn+1 (z) < sn+1 (y) and we are done.

Third sub-case: s
y
j = sj + 1 > szj = sj . Then, j >

y n + 1 and

j <z n + 1, which again contradicts bn+1 (y) = bn+1 (z).
We are left to examine the case ŝ > sj . Let k = sj+1 + 1− ŝ . Under

our assumptions, we have

k = sj+1 + 1 − ŝ ≤ sj+1 + 1 − (sj + 1) = sj+1 − sj ≤ δmax ≤ n − i .

If k = 0, the argument is similar to the case ŝ = sj , and compares

the path where n + 1 wins only the first match and the path where

n + 1 loses all matches.

If instead k > 0, we consider a path from x in which n + 1

loses the first match and then wins exactly k − 1 of the remaining

matches, leading to a leaf y. As second path, consider the one in

which n + 1 wins the first match and then proceeds analogously to

the first path, ending in a leaf z. In nodey, agent n+1 achieves score
s
y
n+1 = ŝ+k−1 = sj+1, whereas in z we have s

z
n+1 = ŝ+k = sj+1+1.

We prove that agent n + 1 prefers z over y. As before, for all agents
k , n + 1, it holds s

y
k ≥ szk . If s

y
j+1 = sj+1, then in y agents n + 1 and

j + 1 have the same score sj+1, whereas in z agent n + 1 has one
more point than j + 1. Hence, z is preferable to y.

If instead s
y
j+1 = sj+1 + 1, in y agent j + 1 has one more point

than n + 1, whereas in z agent j + 1 is either at the same score

than n + 1 (if szj+1 = s
y
j+1), or it has one less point than n + 1 (if

szj+1 = sj+1 = s
y
j+1 − 1). □

The following lemma states that, whenever a score difference δi
is higher than one, δi other score differences must be zero (a.k.a.

plateaus).

Lemma 4.6. For all score vectors and score difference vectors, for
all i s.t. δi > 1 it holds |∆0 | ≥ δi .

Proof. Let Sj,k =
∑k
l=j sl . We have S1,n = S1,i + Si+1,n =

(n
2

)
.

We can write Si+1,n as si (n−i )+h. By Landau’s theorem, S1,i ≥
(i
2

)
.

It follows that

h ≤

(
n

2

)
−

(
i

2

)
− si (n − i ). (2)

We distinguish two cases.

First, assume that si ≥ i − 1 (see Figure 4 for an illustration).

By (2), h ≤
(n
2

)
−

(i
2

)
− (i − 1) (n − i ) =

(n−i+1
2

)
=

∑n−i
j=1 j. On the

other hand, h ≤ (n − i ) + (n − i − 1) + . . . + 1 and hence

(δi − 1) (n − i ) +
n−1∑
j=i+1

(δj − 1) (n − j ) ≤ 0. (3)
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j

sj

S1,4

s4 (n − 4)

h

1 4 5 10

Figure 4: Case 1 of Lemma 4.6: si ≥ i − 1. The score vector
is (0, 1, 2, 4, 6, 6, 6, 6, 7, 7), with i = 4. We have δi = 2 and four
plateaus, all occurring after position i.

j

sj

S1,6

(s6 + α ) (n − 6)

h

α

β

1 6 7 10

Figure 5: Case 2 of Lemma 4.6: si < i − 1. The score vector is
(0, 3, 3, 3, 3, 3, 7, 7, 8, 8), with i = 6.We have δi = 4, four plateaus
before position i and two more plateaus after it.

Assume by contradiction that |∆0 | < δi , and let ∆′
0
be the intersec-

tion between ∆0 and the range {i + 1, . . . ,n − 1}. Then,

(δi − 1) (n − i ) +
n−1∑
j=i+1

(δj − 1) (n − j )

≥(δi − 1) (n − i ) −
∑
j ∈∆′

0

(n − i − 1)

≥(δi − 1) (n − i ) − (δi − 1) (n − i − 1)

=δi − 1.

From the above and (3), it follows δi − 1 ≤ 0, which contradicts the

assumption δi > 1.

As second case, assume that si < i − 1 and let α = i − 1 − si > 0

(see Figure 5 for an illustration). First, we show that there are at

least α plateaus before index i . Since si = s1 +
∑i−1
j=1 δj , and both s1

and the δj ’s are non-negative integers, at most si different δj ’s are
positive. The remaining (i − 1) − si must be zero, hence |∆0 | ≥ α .
If δi ≤ α , we are done. Otherwise, let β = δi − α > 0. We can write

Si+1,n as (si +α ) (n−i )+h. As in the previous case, h ≤
(n−i+1

2

)
. On

the other hand, h = β (n − i ) + δi+1 (n − i − 1) + . . . + δn−1. With an

argument similar to the previous case, we obtain that the number

of plateaus between i + 1 and n is at least β . In conclusion, the total

number of plateaus is at least α + β = δi . □

We can now prove the main result of this section.

Theorem 4.7. The recursive tournament schemeT (n+1) is weakly
relevant, for all n ≥ 1.

Proof. Assume by induction that the sub-tournament T (n) is
weakly relevant.

First, we prove that the nodes in T (n) are still weakly relevant

when considered as nodes in the first phase of T (n + 1). Consider a
node x in T (n) labeled with (a,b) and assume that x is t-relevant
in T (n), for t ∈ {a,b}. By Theorem 3.5, x is t-important in T (n).
Hence, there is a path πw from xw in T (n) whose ranking is not

t-equivalent to the ranking of the homologous path πl starting from
xl. Now, both πw and πl can be prolonged assuming that agent n+ 1
wins all matches in the second phase of T (n + 1). Notice that the
two prolonged paths are homologous. Moreover, at the end of the

two prolonged paths, all agents except n + 1 have the same points

that they had at the end of πw and πl, respectively. Therefore, x is

t-important and weakly relevant in T (n + 1).
Next, we prove that the matches in the second phase are also

weakly relevant. Assume that the sub-tournament T (n) ends with
score vector (s1, . . . , sn ) and score differences (δ0, . . . ,δn−1). Par-
tition the agents into ∆0 and ∆+, as explained earlier. The second

phase first performs all matches between agent n+1 and each agent
in ∆+.

Let î be the maximum i satisfying Lemma 4.5, we have that the

first î + 1 matches in the second phase are relevant for agent n + 1.
Let r = î + 1 = 1 +min{sn ,n − δ

max}. Let u = |∆+ | be the number

of unsafe agents, we prove that r ≥ u.
First case: r = sn + 1. Write sn as s1 +

∑n−1
i=1 δi . Notice that each

agent j in ∆+ has δj ≥ 1, so

u ≤
∑
j ∈∆+

δj ≤
n−1∑
i=1

δi ≤ sn < r .

Second case: r = n−δmax + 1. By Lemma 4.6 applied to δmax
, we

have that |∆0 | ≥ δmax − 1. Hence, u = n − |∆0 | ≤ n − δmax + 1 = r
and we are done. It follows that all matches between n + 1 and one

of the agents in ∆+ are relevant for n + 1.
It remains to evaluate the matches between agent n + 1 and

the agents in ∆0. Let x be a node corresponding to such a match,

involving agentsn+1 and j ∈ ∆0. Let xl be the child of x where j has
lost the match, and xw the other child. Consider any path from xl to
a leaf y and consider its homologous path from xw, leading to the

leaf z. We prove that agent j prefers z overy. We have s
y
j = sj = sj+1

and szj = sj + 1 = sj+1 + 1. Moreover, agent j + 1 has the same score

in y and z.
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First, assume s
y
j+1 = sj+1 (i.e., agent j+1 lost against n+1). Then,

agent j has the same ranking as j + 1 in y, whereas j’s ranking is
above j + 1 in z. Next, assume s

y
j+1 = sj+1 + 1 (i.e., agent j + 1 won

against n + 1). Then, agent j’s ranking is below j + 1 in y, whereas
it is at the same level in z. In both cases, agent j prefers z to y. By
definition, node x is j-important and by Theorem 3.5 it is j-relevant.
In conclusion, the whole tournament is weakly relevant. □

It is an open problemwhether there exist strongly relevant round-

robin point-based tournaments for arbitrarily large n.

4.3 Balanced Tournaments
The tournament described in Section 4.2 is poorly balanced, in the

sense that an agent may be put on hold for a long time, and then be

asked to play all of its matches in a row. Clearly, this is undesirable

for a real-world round-robin tournament, in which we would like

all agents to play equally often, or at least approximately so.

Recall from Section 2 that a round-robin balanced tournament

with n agents is organized into n − 1 rounds, during which each

agent plays a single match. This structure is reminiscent of tourna-

ments that follow a regular, often weekly, schedule, with each agent

playing against another every week. Unfortunately, the following

result states that being balanced in this sense is incompatible with

being strongly relevant.

Theorem 4.8. For all even n ≥ 6, there is no round-robin point-
based balanced tournament that is strongly relevant.

Proof. Let u be the score vector (0, n
2
, n
2
, . . . , n

2
). It is easy to

prove that this is a valid score vector according to Theorem 2.3.

Consider an arbitrary round-robin point-based balanced tourna-

ment T . By Lemma 2.4, there is a full path π in T such that u
is its score vector. Let i be the agent having score 0 at the end of

π . Consider the last event involving agent i in π , and let x be the

corresponding node. We know that i loses the match at x , because
it will end up with score 0. We prove that the score vector at x is

of the type (0, n
2
− 1, . . .). Clearly, agent i has score 0 at x because

scores are non-decreasing in time. Then, by definition of balanced

tournament, x is one the last
n
2
nodes in π . Consequently, between

x and the end of π each agent plays at most one match. So, the

score of each agent at x is either equal to its final score, or to its

final score minus one. In particular, the agent that plays against i
at x is one of the agents whose score increases by one. This implies

that the lowest non-zero score at x is
n
2
− 1.

To prove that x is not i-relevant, it is sufficient to observe that,

no matter whether i wins or loses at x , in all leaves i ends up with

score at most 1, corresponding to minimum rank, with no ties. □

5 CONCLUSIONS
This paper introduces the notion of (ir)relevant match and provides

some positive and negative results on certain classes of tournaments.

In principle, positive results may be used in practice, to devise

improved tournaments in which no irrelevant matches occur. Even

in the scope of negative results, future refined analyses may be able

to quantify the amount of irrelevant matches, and suggest ways to

minimize them.

A number of open problems remain to be solved. On the presently

studied class of round-robin tournaments, we do not know whether

there exist strongly relevant dynamic tournaments for arbitrarily

large numbers of agents, although we know that, if they exist, they

cannot be balanced (Theorem 4.8).

Moreover, the present model can be extended in various direc-

tions. For instance, it would be interesting to accommodate more

than two possible outcomes for each match, as sport matches often

have multiple outcomes. The simplest addition would be the “tie”

outcome. In that case, negative results based on the irrelevance of

the last match, such as Theorem 4.1, should easily carry over to the

extended model.

An orthogonal extension is to tournaments with simultaneous
matches. In particular, a common occurrence in practice is the type

of tournaments where every week all agents play against each other

simultaneously. Interestingly, simultaneity induces two opposing

consequences on match relevance. On the one hand, it restricts

the number and type of schedules available, compared to a plain

dynamic tournament. This effect can in principle hinder relevance,

as it brings the model closer to a static tournament. On the other

hand, in order to prove the relevance of a given match, we seek

a future scenario in which the outcome of that match makes the

difference. If two matches x and y are played simultaneously, when

proving the relevance of x we can freely choose the outcome of y,
and vice versa. This ability may facilitate relevance and does not

apply to plain dynamic tournaments.

We did not specifically consider the class of double round-robin
tournaments, in which every agent challenges each other twice.

This class has special practical relevance, as it is employed in a

vast majority of team sports. Some results can easily be extended

to this class. For instance, it is easy to prove, along the lines of

Theorem 4.1, that for at least three agents no static double round-

robin tournament is strongly relevant.
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