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ABSTRACT
Humans are increasingly relying on complex systems that heav-
ily adopts Artificial Intelligence (AI) techniques. Such systems are
employed in a growing number of domains, and making them
explainable is an impelling priority. Recently, the domain of eX-
plainable Artificial Intelligence (XAI) emerged with the aims of
fostering transparency and trustworthiness. Several reviews have
been conducted. Nevertheless, most of them deal with data-driven
XAI to overcome the opaqueness of black-box algorithms. Contri-
butions addressing goal-driven XAI (e.g., explainable agency for
robots and agents) are still missing. This paper aims at filling this
gap, proposing a Systematic Literature Review. The main findings
are (i) a considerable portion of the papers propose conceptual
studies, or lack evaluations or tackle relatively simple scenarios;
(ii) almost all of the studied papers deal with robots/agents ex-
plaining their behaviors to the human users, and very few works
addressed inter-robot (inter-agent) explainability. Finally, (iii) while
providing explanations to non-expert users has been outlined as a
necessity, only a few works addressed the issues of personalization
and context-awareness.
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1 INTRODUCTION
As humans rely more and more on complex artificial intelligence
systems, providing explanations for their decisions to support an ef-
fective human-system interaction becomes increasingly important.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

This direction is confirmed by the ratification of recent General Data
Protection Regulation (GDPR) law which underlines the right to
explanations [12]. Therefore, designing transparent and intelligible
technologies is becoming an impelling necessity.

For these reasons, research on eXplainable Artificial Intelligence
(XAI) [36] gained significant momentum in the last years. Never-
theless, recent studies on the explanation methods mainly focused
on the data-driven algorithms aiming to interpret the results of
“black-box” machine learning mechanisms such as deep neural net-
works (DNN) [108]. This research line, pushed by the intriguing
results of DNNs (e.g., a DNN mistakenly labeling a tomato as a
dog [97]), aims to interpret, or provide a meaning for an obscure
machine learning model whose inner-workings are otherwise un-
known or non-understandable by the human observer. Thus, the
majority of the recent studies and surveys focus on providing an
overview on interpretability and explainability of data-driven algo-
rithms [5, 24, 35, 72, 86]. Despite the fact that agents and robots are
becoming pervasive in the daily-living of users for several appli-
cations such as training, e-health, and ambient intelligence, to the
best of our knowledge, literature reviews on explainable agency (i.e.
explaining the behavior of goal-driven agents and robots) are still
missing. However, when interacting with these systems, humans
have a tendency to suppose that they have “mental states” allowing
to understand the rationale for their actions [47]. Therefore, in case
the behavior of a given agent or robot is not explained, the user
makes up an explanation that does not necessarily reflect the AI’s
internal stance. This increases the risk of self-deception and may
degrade the quality of the interaction. To a certain extent, danger-
ous situations may arise, putting at risk the user safety. According
to the recent literature [5, 76], explanations help users to increase
confidence and trust, whereas misunderstanding the intentions of
the intelligent system creates discomfort and confusion.

Contribution
This paper presents a Systematic Literature Review (SLR) aiming at
providing a comprehensive overview of existing works on explain-
able agency for robots and intelligent agents. This helps understand
how these systems tackled the problem of presenting human un-
derstandable explanations.
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The rest of the paper is organized as follows: Section 2 sets the
scope of the SLR and presents the explanation phases. Section 3
describes the review protocol applied in the present study. Section 4
analyzes the outcomes of the applied methodology and presents its
results. Section 5 discusses a number of future research directions.
Finally, Section 6 concludes the paper.

2 BACKGROUND AND DEFINITIONS
Explainable AI refers to an artificial intelligence whose actions,
recommendations and the underlying causes to its decisions are
understandable by humans.

After a period of relatively low activity, the domain XAI started
to gain more attention in the recent years and a large body of re-
search dealing with explanations and intelligibility was produced.
However, since this research is carried out by researchers from
different backgrounds and disciplines (e.g., machine learning, robot-
ics, multi-agent systems, cognitive sciences), there are no shared
definitions.

By gaining insights on how data-driven XAI (i.e. explaining
black-box algorithms) and goal-driven XAI (i.e. explainable agency)
approach the notions of explainability, this section aims at setting
up the boundaries of this SLR. Furthermore, this section presents
the explanation phases.

2.1 Explainability in Data-Driven Domain
In machine learning, explanations are often related to the concept
of interpretability. Systems are interpretable if their operations can
be understood by a human through introspection or explanation [5].
For instance, Choo and Liu [20] defined the interpretability of a
deep learning model as identifying features in input layer which
are responsible for the prediction result at the output layer. As
its name indicates, data-driven XAI is about understanding of a
decision of a “black-box” machine learning mechanism given the
data used as an input [35]. For this reason, this branch of XAI
is interested in comprehending how the available data led to a
decision, and whether, given the data and specific circumstances,
the machine learning mechanism can be remodeled to output the
same decision [50].

Note that other works (e.g., [24, 66, 71]) in data-driven XAI
relied on supplementary concepts such as justification, transparency,
and comprehensibility to define explainability and interpretability
for machine learning mechanisms. Yet, highlighting the nuances
between these concepts used in data-driven XAI is beyond the scope
of this article.

2.2 Explainable Agency
Explainable Agency refers to the autonomous agents (e.g., robots)
explaining their actions and the reasons leading to their decisions [60].

To understand the actions of robots and intelligent agents, hu-
mans tend to mentalize their behavior. Mentalizing or mindreading
is based on the Theory of Mind (ToM) which postulates that hu-
mans estimate the actions of other humans by observing their
behavior and attributing mental states (e.g., beliefs, desires, emo-
tions, intentions, etc.) thereby attempting to understand their own
perspective [32, 47, 80]. Using this ToM of others, humans are able
to (i) overcome the complexity of the world since the ToM makes

it possible to comprehend the behaviors of other people and avoid
confusion, and (ii) predict the future behavior of others and deal
with it [47, 69]. As it has been confirmed by recent research in the
domain of human-robot interaction [61], humans tend to apply this
ToM not only to other humans but also to non-human objects and
robots. This tendency to anthropomorphize objects is known as the
“intentional stance” [23]. This implies that, with the lack of expla-
nation, the human user may construct an erroneous explanation of
the robot or agent.

We define goal-driven XAI1 as a research domain aiming at
building explainable agents and robots capable of explaining their
behavior to a lay user. These explanations would help the user
to build a ToM of the intelligent agent and would lead to better
human-agent collaboration and incite the user to understand the
capabilities and the limits of the agents, thereby improving the
levels of trust and safety, and avoiding failures, since the lack of
appropriate mental models and knowledge about the agent may
lead to failed interactions [4, 18].

As will be discussed in Section 3, this article reviews existing
works about explainable agency defined above. Note that in the
literature, and within the domain of social robots in particular,
other related terms are also in use, including understandability [47],
explicability2 [16], transparency [105], predictability [26], readabil-
ity [98], and legibility [64]. Defining these terms, comparing them
and highlighting their similarities and differences are beyond the
scope of this article3. Furthermore, surveying data-driven XAI (i.e.,
works aiming to open black-box ML mechanisms) is also beyond
the scope of this article. For this type of surveys, please refer to
[1, 35, 86].

2.3 Explanation Phases
Aiming to integrate the user into the loop, and to address issues
related to explanation communications, the authors in [74] distin-
guish three explanation phases:

(1) Explanation Generation: The aim is to generate an expla-
nation justifying why an action/result was taken/achieved.
The actual implementation of this phase is determined by the
AI model of the agent (e.g. BDI agent [83]). Citing goals [8],
desires [51] and emotions [52] are examples of the explana-
tion generation process of the literature.

(2) ExplanationCommunication: Given the explanation gen-
erated in the previous phase, this phase deals with what
exactly to be provided to the end-user and how to present
it [74].

(3) Explanation Reception: This phase studies how well the
human understands the explanation. To assess this, typi-
cally, research relies on user studies, subjective evaluation.
Furthermore, in order to better understand explanation re-
ception, meaningful metrics should be devised to assess the
explanation and poll the users about it.

1In this article we use the terms Explainable Agency and Goal-Driven XAI
interchangebly.
2In contrast to explainable agent where explicit explanation is required, [94] defines
explicabile system as one that avoid the need to provide explanations by generating
plans that match the human’s expected plan.
3Please refer to [15] for further insights.
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3 REVIEWMETHODOLOGY
This study has been performed as a Systematic Literature Review
(SLR). By doing so, it is possible to rigorously reproduce the retrieval,
selection, and analysis processes of the relevant literature. This
paper adheres to the procedure adopted and adapted by [10] (see
Figure 1).

Planning the Review (a)

Dissemination (c)

Define free form and structured 
research questions

Develop the review protocol
(research strategy)

Validate the review protocol

Data Analysis Final report composition Summarizing evidence

Performing the Review (b)

Disagreement 
resolution

Article Elaboration
[Features collection]

Article Selection
[Inclusion criteria application]Systematic search

• Channel of research • Stop collecting criteria
• Acceptance criteria  • Features and quality criteria
• Set of keywords  • Disagreement resolution
• Inclusion criteria  • Expected output format

Figure 1: Review methodology adapted from [11] and [54].

Following the Goal-Question-Metric (GQM) [53], the generic
free-form question “What does imply having Explainable Agency
(EA) in user- and system-centric domains?” is broken-down in the
following structured research questions (SRQs).
SRQ1: Demographics - How has EA been evolving over the years

in terms of research domains? [e.g., when (year) and where
(the geographical indication of the scientific institute)]

SRQ2: Application scenarios - What kinds of application scenarios
have been addressed by the primary studies? [e.g., e-health,
domestic robots, and training]

SRQ3: Drives (needs) - Which are the main drives demanding ex-
plainability?

SRQ4: Social Science and psychological background - How have the
explanations been grounded onto the social-science back-
ground to provide understandable explanations?

SRQ5: Design - Which platforms and architectures have been used
to design EAs? [e.g., BDI, MDP, POSH, etc.]

SRQ6: Dynamics (Context-aware, user-aware) - What explanatory
granularity has been provided with respect to the user and
its context?

SRQ7: Presentation - How have the explanations been presented for
human-system interaction? [e.g., expressive lights, graphical
user interface, natural language]

SRQ8: Evaluation/ Framework - How have the validity and utility
of the explanations been evaluated by the authors of the
primary studies?

SRQ9: Future challenges - What are the stated future research direc-
tions and challenges identified by the scientific community?

To perform a more accurate semi-automatic research, some key-
words have been contextualized (keeping some keywords fixed
in the performed queries). Based on the reviewers’ rooted back-
grounds on MAS, XAI, and robotics domains, the following key-
words have been defined:ExplainableAI; (Explainable AI + agent),
(Explainable AI + robot), (Explainable AI + Transparency), Agent;

(Intelligent agents + explanation), (Self-explaining agent + AI), (Ex-
plainable multi-agent systems), (Agent teamwork + explanation),
(Understandable + agent), (Agent + explain + transparency), and
Robot; (Human-robot interaction + readability), (Human-robot
interaction + intention + legibility), (Human-robot interaction +
interpretability), (Human-robot + intention recognition + predic-
tion), (Understandable robot), (Explainable planning + robot), (Ro-
bot transparency).

The research of the articles has been conducted using the follow-
ing sources: IEEExplore, Science Direct, ACM, and Google Scholar.
Initially, 303 papers have been collected. On turn, they have been
reduced to 62 papers4 by performing a further coarse-grained, then
a fine-grained examination. To do so, the abstracts and the text of
the collected papers have been verified to comply with following
the inclusion criteria:

A) Recent Paper (2008 or after): Since the aim is to identify
the current trends and understand recent works addressing
explainable agency, we chose to restrain this work to papers
published in the last decade (2008-2018).

B) Relevance: The paper must be relevant for the XAI domain.
For instance, papers addressing explanations in social science
without any relevancy to AI are excluded.

C) Primary Study: Only papers providing a direct contribution
on XAI (e.g., models, architectures, or implementations) are
included, secondary studies (i.e. surveys) are excluded.

D) Accessibility: To be included, the content of the article should
be accessible via one of the portals mentioned above.

E) Explainable Agency: The aim of this SLR is to study the
explainability of goal-driven robots & agents (i.e., cognitive
explainability, c.f. Section 2 and [74]). Data-driven XAI (i.e.,
machine learning interpretability) is beyond the scope of
this article. Note that goal-driven agents/robots who rely on
ML mechanisms (e.g. reinforcement learning) to update their
knowledge about the user or the environment are included.

F) Singularity/Originality: Duplicate papers, or papers which
have been published in an extended or complete version are
not included. Only the complete version is included.

G) Explanation as a Communicative Action: Explanations should
be provided by explicit communicative action. The latter is
defined as an action performed by an agent/robot, with the
intention of increasing another agent’s knowledge of the first
agent/robot [47, 55, 56]. Therefore, papers proposing explica-
ble robots (c.f. Section 2.2) are excluded from this SLR since
in these works, the robot does not communicate an explicit
explanation to its users. Furthermore, note that the com-
municative action defined above can be a natural language
message, images on a graphical user interface, or expressive
lights (e.g., lights used to express the robots behavior [93]).

4 RESULT PRESENTATION
This section presents the results from the qualitative analysis of
the studied papers.

4Table 1 lists the 62 papers retained for the SLR.
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4.1 SRQ1: Demographics
The chronological and geographical distribution of works on ex-
plainable agency are shown in Figure 2 and Figure 3. Although there
has been uneven proportion in the number of studies in early 2010s
and before, there is an increasing growth over the last five years.
This might be due to the effect of general emphasis on explainable
AI and the “right to explanation” by the GDPR [101] and similar
initiatives [12]. The trend may exponentially increase in upcom-
ing years with the results of different research domains working
together on XAI.
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Figure 2: Number of papers per year.

To understand the geographic distributions of the research in-
stitutions working on the EA domain, the number of papers per
country is plotted in Figure 3. The results show that most of the
research institutions are based in the USA, followed by the Nether-
lands and the UK. It is also worth to note that the collaborative
works among institutions have increased the number of papers in
the aforementioned countries. The analysis also shows that the
reviewed papers were written by authors from 26 different institu-
tions. With the exception of the Netherlands, the number of articles
published by European countries is relatively low. The number
of papers published by the US researchers (i.e., 33 publication) is
higher than that of European countries combined. However, in the
near future, the European research on this subject might increase
with the promulgation of the GDPR.
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Figure 3: Number of papers per country.

Figure 4 presents the research domains working on EA. The
Figure shows that the most active research area is the human-agent

interaction, followed by human-robot collaboration, human-robot
interaction, and human-agent collaboration. The difference between
human-robot and human-agent collaboration studies is that the for-
mer one involves embodied robots while the latter concerns virtual
intelligent systems. The results show that providing explanations
were particularly emphasized in mixed autonomy settings where
humans collaborate with autonomous agents or robots.

0 5 10 15 20

Human-agent collaboration

Human-robot interaction

Human-robot collaboration

Human-agent interaction

12

12

16

22

No. of papers

Figure 4: Research domains working on EA.

4.2 SRQ2: Application Scenarios
This section identifies the application scenarios in which explana-
tions have been offered. As presented in Figure 5, the proposed
application scenarios include; Robot collaborative task (29%), Ro-
bot navigation (20%), Game applications (17%), Search and rescue
(10%), Training (9%), Recommender systems (5%), E-health (5%),
and Ubiquitous computing (5%). Robot collaborative tasks such as
working in a factory environment with humans (e.g., [44]) and
teaming for military missions [104] are the particularly preferred
cases of the surveyed articles. In game applications, explanations
were provided for the non-player characters to reduce the frustra-
tion of the human players [73]. The educational explainable agents
were evaluated in virtual a firefighting agent to train the crisis man-
agement team (e.g., [38]). In e-health, explanations were presented
in a personal health assistant to help children to cope with type
1 diabetes (e.g., [52]). The other studies assessed explanations in
ubiquitous computing to allow users to understand the system’s rea-
soning (e.g., [100]), search and rescue scenarios for robot behavior
(e.g., [67]), and movie and music recommender systems (e.g., [59]).

29%20%

17%

10% 9%
5%
5%
5%

Robot collaborative task
Robot navigation
Game applications

Search and rescue
Training
Recommender systems

E-health
Ubiquitous computing

Figure 5: Application scenarios.
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Table 1: The drives of explanations of the primary studies
covered by the review.

Drives Primary studies
Transparency [89] [100] [81] [79] [103] [44] [106] [19]

[95] [73] [41] [51] [107] [88] [14] [65]
[43] [82] [34] [57] [29] [6] [7] [42] [104]
[46] [18] [75]

Trust [102] [58] [49] [100] [59] [29] [67] [6]
[99] [52] [57] [27] [7] [42] [104] [31]
[14] [65] [43] [62] [46] [29] [96]

Collaboration [22] [78] [74] [63] [33] [62] [77] [31]
[92] [102] [62] [14] [25] [44] [19] [37]
[75]

Intent communi-
cation

[3] [98] [85] [13] [70] [25] [92] [93] [31]
[78] [17] [52]

Control [2] [34] [17] [95] [88] [82] [49] [100]
Education [38] [39] [8] [40]
Debugging [48] [91] [103]

4.3 SRQ3: Drive Demanding Explainability
Studies in the literature underlined the importance of considering
the intended purpose when incorporating explanation facilities into
intelligent systems [45]. This SRQ seeks to understand the reasons
why the reviewed studies provided explanations. As a matter of fact,
most of these works stated their motivation or intended purpose
for the explanations one way or another. Table 1 lists the drives of
the 62 papers included in the SLR. Note that some papers may have
more than one drive.

Increasing user’s trust in the system, transparency i.e. explaining
the inner-workings of the systems to the user and informing about
the intents of the agent (intent communication) are among the listed
motivations for the explanations. The table reveals that trust, and
transparency are the most prominent drives of the explanation. The
studies show that transparency and trust are going hand in hand
to increase the user’s confidence in the system by understanding
how its reasoning mechanism works (e.g., [14, 102]). In applications
requiring human-robot interaction, intent communication is one of
the main drives for explanations in order to make the robot’s in-
ternal state (e.g. goals & intentions) understandable to humans [3].
For collaborative tasks, explanations were deemed essential to in-
crease efficiency and team performance [63]. Explanations are also
useful for control purposes. In particular, they were presented to
determine the level of autonomy to grant to an agent (e.g., [2, 49]).
Education and debugging were identified as the motivations of
explanations, the former is referred to as allowing users to learn
something from the system [52] and the latter is considered for
notifying users about the defects in the system [48].

4.4 SRQ4: Social Science and Psychological
Background

This research question explores the literature to find out whether
the studied works were grounded on any social-science or psycho-
logical backgrounds. 39 of the studied papers did not rely on any
theoretical background related to generating explanations. Figure 6

shows the relevant background adopted by the rest of the papers.
As shown in the figure, the most cited social science theory was
the folk psychology (30%) followed by theory of mind (27%), social
psychology (7%), color psychology (7%), the hierarchical task anal-
ysis (HTA) (7%), and others include; proxemics, signal detection
theory and rationalization. Folk psychology [21] refers to explain-
ing human behaviors in terms of its underlying mental states such
as beliefs, desires, and intentions.

While folk psychology can be considered as one type of Theo-
ries of Mind (ToM), papers listed under the ToM [87] category are
those who relied on the general concept of ToM. Color psychology,
used in expressive robots, is about investigating the various aspects
of color, including color vision, color symbolism and association,
and color effects on psychological and biological functioning [28].
HTA is a technique for cognitive task analysis to identify complex
human tasks. This technique has been used in modeling agent’s
goals, beliefs and actions hierarchy [39]. The philosophy of lan-
guage explores the nature of explanations and their relationship
with linguistics [9]. Other workers relied on; proxemics [84], ratio-
nalization [27], and signal detection theory (Psychophysics) [68].

32%

28%

8%
8% 8%

16%

Folk Psychology
Theory of Mind
Color Psychology

HTA
Philosophy of language

Others

Figure 6: Social science and psychological background of the
explanation methods.

4.5 SRQ5: Design of the Explanations
Figure 7 shows the platforms and architectures used to design the
explainable agency. As can be seen from the figure, the majority of
the works has not explicitly expressed their method for generating
explanations. The result also shows that a number of papers relied
on customized methods to address their own explanations problem
(18). Following that, BDI (Belief, Desires, and Intentions) archi-
tecture (9) was widely implemented to generate explanations for
goal-directed agents (e.g., [8, 74]). The rest of the platforms and ar-
chitectures referenced to extract explanations are; Markov Decision
Process (MDP) (3), Neural Networks (NN) (3), Partially Observable
Markov Decision Process (POMDP) (3), Parallel-rooted-ordered
Slip-stack Hierarchical Action Selection (POSH) (2), and Stanford
Research Institute Problem Solver) (STRIPS) (2). While MDP, NN,
and POMDP are employed for generating explanations of agent’s
goal and action, POSH and STRIPS are utilized to understand the
robot behavior.
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Figure 7: The used platforms and architectures.

4.6 SRQ6: Dynamics of the Explanation
Method

This section explores what level of explanations has been provided
with respect to the user and the context. As shown in Figure 8,
while 41% of the studies have not addressed any of the given as-
pects, 43% of them provided context-aware explanations, 10% is
user-aware, and in 6% of studies, explanations are tailored to both
needs. Context-aware explanations generally refer to agents/robots
that consider the context when selecting the best explanation to
provide. Context-aware explanations have been proposed to imple-
ment effective control in ubiquitous systems (e.g., [65]), to facilitate
context-aware explanations in human-robot teaming (e.g., [33]),
and enhance robot navigation (e.g., [29, 43]). User-aware explana-
tions are usually concerned with customizing the explanation based
on the intended user, such as providing explanations depending
on the user age [51], or personalized recommendations based on
the user preferences [82]. The results show that relatively little
research has been conducted for personalized explanations.

43%

10%

6%
41%

Context-aware (C)
User-aware (U)
Both (C+U)

None

Figure 8: Dynamics of the explanation study.

4.7 SRQ7: Presentation of the Explanations
This section studies the types and categories of the explanations.
The details of the analysis are discussed below.

The types of the explanations: As shown in Figure 9, six dif-
ferent presentation types are extracted from the 62 primary studies.
The most frequent type is the text-based explanations (47%) and
followed by visualization (21%), logs (11%), expressive motions
(11%), expressive lights (7%), and speech (3%). Text-based expla-
nations are presented in the form of natural language processing

and traces (e.g., [41, 102]). Visuals such as graphs and images are
integrated into the user interfaces to illustrate the explanatory in-
formation (e.g., [19, 65]). In human-robot interaction, expressive
motion and expressive lights are stated as the most effective way
of communicating the internal state of the robot [3]. While, some
studies proposed speech as an alternative way to express explana-
tion [62], generally the multimodal communication of explanations
is under-represented.

21%

11%
11%

7%

3%

47%

Visualization (GUI)
Logs
Expressive motions
Expressive lights
Speech

Text

Figure 9: Types of explanation presentation.

The categories of the explanations: This analysis shows the
quantification of papers based on the categories of explanations pro-
posed by [90]. This analysis is important to assess the contexts of the
explanations at a more abstract level. As demonstrated in Figure 10,
the most prominent category is the (i) introspective informative ex-
planations (26). This type of explanations is based on the reasoning
process which leads to a decision to improve the interaction qual-
ity in human-agent/robot context. (ii) Teaching explanations (13)
are the second commonly used explanation type which often aims
to teach humans about concepts that agents/robots have learned.
(iii) Introspective tracing explanations (10), similar to informative
explanations, provide information about the underlying cause of
a decision by giving more details about it. This type is often used
to control the agent’s behavior since they allow to discover the
origin of a problem or to clarify misunderstandings between the
system and the user. (iv) Execution explanations (9) report the list
of operations the system undertakes. Finally, (v) post-hoc explana-
tions (4) give explanations without necessarily tracing the actual
reasoning process that led to the decision. Beside these explanation
categories,a number of studies has provided contrastive explanations
(e.g., [17, 74, 96]). These explanations refer to why a certain action
or decision was chosen instead of another.

4.8 SRQ8: Evaluation of the Explanations
To answer this research question, we identify papers containing
evaluations aiming to assess the validity and utility of the expla-
nations. In the studied papers, most of the works either lack evalu-
ations or conduct a user study for relatively simple scenarios. As
presented in Figure 11, while 32% of the studies have not attempted
any type of evaluations, 59% of them evaluated the usefulness and
naturalness of the explanations through a user study. Some research
assessed whether providing explanations has a positive effect on
team performance and increase trust to system [63]. 9% of the
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studies preferred empirical algorithmic evaluation using measures
devised for their explanation problems. This might be due to lim-
itations in time and subject availability to conduct a user study.

59%

32%

9%

User Study

None
Empirical Evaluation

Figure 11: Evaluation of the explanations.

4.9 SRQ9: Future Challenges
To answer this research question, we clustered the future directions
and challenges stated in the studied papers (see Figure 12). The
majority of the papers pointed out the communication of the expla-
nations (29%) as their future work. Other challenges and limitations
mentioned in the literature were; conducting evaluations (20%),
issues related to the core AI running the system (19%), context-
awareness (14%), personalization (8%), emotions (4%), etc.

29%20%

19%

14%
8%

4%
6%

Communication
Evaluations
Core AI
Context-awareness
Personalization
Emotions
Others

Figure 12: Future challenges stated by the primary studies.

5 DISCUSSION
The results presented in Section 4 unveiled the drives for expla-
nations, as well as how they are generated, communicated, and
evaluated. However, assessing the quality of the collected features
enriches the overall picture.

5.1 Quality Criteria Assessment
The use of quality criteria assessment to report the quality of the
primary studies is a well-established approach in SLR [11, 30]. The
list of quality criteria defined in this work are: (i) how well the
authorsmotivated their paper, (ii) details about the context and
the design of the study, (iii) the quality of the statement of the major
results and their analysis, (iv) to the extent to which the authors
identified and discussed the limitations of their study. Figure 13
shows the quality of the 62 papers evaluated based on these criteria.
Reviewers have graded the papers, according to their knowledge in
the field, as three levels: “good”, “arguable” and “poorly presented”.
Each paper was evaluated at least by 2 reviewers and their results
averaged.

Overall, the motivation of the paper and the research gap are
well defined in the studied papers. A number of studies lacked the
clear content description and the presentation of their explanation
methods. As can be seen from Figure 13, the result criteria have
relatively low grade since a considerable portion of the studies has
not reported any evaluation results. Generally, the limitations of
the proposed methods are vaguely described and future research
directions are not well defined in the reviewed papers. The results
of this qualitative assessment confirm that research on explainable
agents and robots is in its early stages of development. The next
section offers a road-map for researches interested in this area.
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Figure 13: The qualitative assessment of the studied papers.

5.2 Phases of Explanation: A Detailed
Representation

Figure 14(a) shows the three classic phases of EA (c.f. Section 2.3
& [74]). Nevertheless, there is a need for a more detailed repre-
sentation to identify and organize the contributions and needed
interventions (see Figure 14(b)). In Figure 14(b), (i) the generation of
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the explanation is composed of the tasks (1-4), (ii) the communica-
tion (5) concerns decisions and technologies about communication
channels and ways of presenting the explanation, and the tasks
(6-9) are about (iii) the reception. Furthermore, according to our
investigations a final loop connecting the reception and the genera-
tion of an explanation must be added. This is due to the evidence
that providing an explanation might require more than a single
one-way interaction. Based on these findings, and according to the
classification proposed in Figure 14(b), we present a road-map for
explainability in the context of autonomous agents/robots, multi-
agent systems and we suggest future strategic application domains.

5.3 Road-Map
This section proposes the envisioned research road-map based on
the representation given in Figure 14(b).

5.3.1 Explanation Generation. This phase is tightly related with
the core AI running the agent/robot. Based on the tasks identified
in Figure 14, the key research directions for this phase are the
following:

(1) Existing works present considerable advances in agent and
robot architectures (e.g., cognitive architecture, and BDI ar-
chitecture). Such architectures have an elaborate decision
loop typically decomposed in several modules. However,
most of them do not support explainability functions. To fur-
ther push the research of EA, linking the agent/robot inner
AI mechanism with the explanation generation module is a
crucial step.

(2-4) While context-awareness and personalization have been out-
lined as key factors for EA [51], according to the results of
this SLR, a few works in the literature address such issues.
Thus, to generate dynamic explanation, there is a need for
new mechanisms allowing the identification of relevant el-
ements for an explanation (2), identifying its rationales (3),
and integrating these elements into a sound explanation (4).

5.3.2 Explanation Communication. In this phase the commu-
nicative act [47, 55, 56] of explanation takes place, thereby sending
the explanations to the user or to another agent. The identified
steps follow.

(5) Explainable agents/robots are likely to be deployed in differ-
ent types of environments. For this reason, the multi-modal
explanation presentation (e.g., visual, audio, expressive) is a
promising explanation communication approach. Although
this approach is almost absent in the literature (as discussed
Section 4.7), it is a promising research direction enabling
an efficient EA communication. Yet, in such settings the
agent/robots must be able to choose the communication
channel and the representation. Note that this does not mean
that all EA requires expensive and multi-modal explanation
communication capacities. In some cases, it is possible to
signal lots of information in cheap and small channels. For
instance, using expressive lights for domestic robots [93].

5.3.3 Explanation Reception. A possible aim of the explanation
is to make the receiver understand the State of Mind (SoM) of the
sender. To ensure an accurate reception, the following points should
be investigated:

(6-7) Metrics should be devised to assess how efficient the expla-
nation is and how the user reacts to it. Such metrics can be
relevancy, clarification, etc.

(8-9) The agent/robot should keep track of a model of the user
knowledge. This model should be updated to reflect the evo-
lution of the user expertise and how the user views the SoM
of the agent/robot.

6 CONCLUSIONS
Driven by a growing need for, and interest in, transparent AI sys-
tems, this paper presented a SLR to clarify, map and analyze the
relevant literature on explainable agents and robots in the last ten
years. Alongside with the results presentation, the quality and the
need for a more detailed representation of the explanation phases
have been discussed. Moreover, a qualitative assessment of the stud-
ied papers has been reported. Finally, connected to the information
elicited by this study, a road-map has been proposed to consolidate
and guide new researchers who would like to tackle this field.
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