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ABSTRACT
Expert human drivers perform actions relying on traffic laws and
their previous experience. While traffic laws are easily embedded
into an artificial brain, modeling human complex behaviors which
come from past experience is a more challenging task. One of these
behaviors is the capability of communicating intentions and nego-
tiating the right of way through driving actions, as when a driver is
entering a crowded roundabout and observes other cars movements
to guess the best time to merge in. In addition, each driver has its
own unique driving style, which is conditioned by both its personal
characteristics, such as age and quality of sight, and external fac-
tors, such as being late or in a bad mood. For these reasons, the
interaction between different drivers is not trivial to simulate in a
realistic manner. In this paper, this problem is addressed by devel-
oping a microscopic simulator using a Deep Reinforcement Learning
Algorithm based on a combination of visual frames, representing
the perception around the vehicle, and a vector of numerical param-
eters. In particular, the algorithm called Asynchronous Advantage
Actor-Critic has been extended to a multi-agent scenario in which
every agent needs to learn to interact with other similar agents.
Moreover, the model includes a novel architecture such that the
driving style of each vehicle is adjustable by tuning some of its in-
put parameters, permitting to simulate drivers with different levels
of aggressiveness and desired cruising speeds.
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1 INTRODUCTION
The development of autonomous vehicles is a topic of great inter-
est in recent years, gaining more and more attention both from
academy and industry. An interesting challenge is teaching the
autonomous car to interact and thus implicitly communicate with
human drivers about the execution of particular maneuvers, such
as entering a roundabout or an intersection. This is a mandatory re-
quest since the introduction of self-driving cars onto public roads is
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going to be gradual, hence human- and self-driving vehicles have to
cohabit the same spaces. In addition, it would be desirable that this
communication would resembles the one which takes place every
day on the streets between human beings, so that human drivers
does not need to care if the other vehicles are autonomous or not.
Achieving this goal would improve the efficiency in traffic scenarios
with both artificial and human players, as studied in [9] in case of
vehicle-pedestrian negotiation, as well as increase people’s trust
in autonomous vehicles. We believe that seeing self-driving cars
hesitating and interpreting the situation, as human usually do to
negotiate, would help in breaking the diffidence of the community
and support a seamless integration in regular traffic.

Typical solutions ([28], [4]) for handling those particular maneu-
vers consist on rule-based methods which use some notion of the
time-to-collision ([29]), so that they will be executed only if there is
enough time in the worst case scenario. These solutions lead to ex-
cessively cautious behaviors due to the lack of interpretation of the
situation, and suggested the use of machine learning approaches,
such as Partially Observable Markov Decision Processes ([17]) or
Deep Learning techniques ([12]), in order to infer intentions of
other drivers. However, training machine learning algorithms of
this kind typically requires simulated environments, and so the
behavioral simulation of other drivers plays an important role.

Popular microscopic traffic simulators, such as Vissim [6] and
Sumo [13], use specific hard-coded rules to control vehicles dy-
namic based on common traffic laws. For example, in uncontrolled
intersections where vehicles have to give way to traffic on the right,
each vehicle will wait the freeing of the right lane before entering
the intersection. At the same time, a vehicle will yield to all cars
within a roundabout before entering.

Even if this conduct seems normal, the capability of negotia-
tion between vehicles is missing: an artificial driver will not try to
convince other cars of letting it squeeze in, or it will wait forever
if another vehicle with the right of way is yielding. In a nutshell,
simulated vehicles are not able to break the behavioral rules, a thing
that men and women usually do in normal driving scenarios.

Recent advances in machine learning suggest the use of Deep
Neural Networks ([7]) to achieve complex behaviors, inducing the
agent to learn from representations instead of manually writing
rules. In particular, the use of Reinforcement Learning (RL, [25])
techniques to train such agents appears to be a proficient path ([20]).
RL deals with how an agent should act in a given environment
in order to maximize the expected cumulative sum of rewards it
will receives, with the idea of behaving optimally in the long run
instead of chasing the highest immediate reward. This framework
is appealing because it does not need explicit supervision at every
decision instant, but the agent learns through a scalar reward signal
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that reflects the overall result of the actions taken. This reward can
also be given once it is known if the whole series of actions led to
a good or bad result, like when the car succeed in completing the
maneuver or it collides with another vehicle.

A well-known downside of Deep Learning is that it is data-
hungry ([10]), namely many examples are needed to robustly train
the model. Moreover RL requires both positive and negative experi-
ences, making it unsuitable to be used in real world where negative
experiences are generally very expensive to get. These two limita-
tions make the use of a synthetic environment fundamental when
using Deep Reinforcement Learning (DRL).

The aim of this work is to develop a microscopic traffic simu-
lator in which vehicles are endowed with interaction capabilities.
This simulator has been thought to be used to train modules able
to perform high-level maneuvers with implicit negotiation skills;
however it may turn useful for traffic safety and flow analyses as
well. Longitudinal accelerations of each vehicle are modeled by a
neural network.

Our contributions to reach the goal is twofold: firstly we extend
the Asynchronous Advantage Actor-Critic (A3C, [19]) to operate in
a multi-agent setting; secondly, we propose a novel architecture
which permits to modify the behavior of every agent, even if they
all share parameters of the same network as required by the A3C
scenario. Agents are collectively trained in a multi-agent fashion so
that cooperative behaviors can emerge, gradually inducing agents
to learn to interact with each other.

Each agent receives as input a sequence of images representing
the scene portions that can be seen at different times translated
as top views, taking a cue from the ATARI environment. Using a
visual input makes the system ready to be applicable to different
scenarios without the need of having a situation-dependent input.
However, this kind of input alone does not give the possibility of
differentiate the behavior between different drivers.

Because of that, the introduced architecture permits to incorpo-
rate the visual input with a vector of parameters, which are used to
tune the behavior of the driver. Indeed, every human has its own
peculiar way of driving affected by its temper and external factors
resulting in impatience or calmness depending on the situation:
let’s think for this purpose on how we drive when we are in a hurry
or when we are carrying a baby to the kindergarten. Encapsulating
drivers with different styles inside the simulator makes the simu-
lation more realistic and would lead to the development of more
robust applications. Moreover, the parameter input can be used
to give additional details which are not perceivable from images,
such as the absolute speed of the agent, enriching the incoming
information to the network.

The proposed solution is evaluated on a synthetic single-lane
roundabout scenario shown in Figure 1b, but the same approach
can be adopted in other scenarios as well. The advantage of abstract
representations of this kind is their ease of reproduction with both
synthetic and real data, so that high-level maneuvermodules trained
upon the simulator can be directly used in real world with little
effort. A similar approach has been taken concurrently to this work
in [1].

(a) Real world (b) Synthetic representation

(c) Navigable (d) Obstacles (e) Path

Figure 1: Synthetic representation of a real world scenario.
The top-view of the real scene depicted in (a) is translated
in the synthetic representation shown in (b). (c), (d) and (e)
are the semantic layers of the region inside the green square
used as visual input for the green agent.

2 RELATEDWORKS
Road users simulation is essential to the development of maneu-
ver decision making modules for automated vehicles. In [12] a
system able to enter in an intersection is trained while other vehi-
cles followed a deterministic model called Intelligent Driver Model
(IDM, [27]). In [16] a lane change maneuver module is learned us-
ing DRL in a scenario where other vehicles follow a simple lane
keeping behavior with collision avoidance, while in [14] they are
also able to overtake relying on hard-coded rules. In [22] both high
level (maneuver decision) and low level policies (acceleration and
braking) are learned for addressing an intersection in which other
vehicles behave aggressively following some preprogrammed rules.

In all these cases, vehicles populating the environment have a
similar conduct and their driving styles are undifferentiated, weak-
ening the realism of the environment.

In [11] the driving styles diversity is increased by assigning
randomly generated speed trajectories to the IDM model; in [17]
the behavior variation is enforced by adding a finite number of
motion intentions which can be adopted by the drivers.

However, none of the aforementioned works explicitly consider
agents with complex behaviors such as negotiation, since their
motion depends on some specific features, e.g. the distance from
the vehicle ahead.

Non-trivial vehicles’ motion is obtained in [24] by imitation
learning ([2]) using data collected from human drivers; this solution
is clearly expensive and directed to a specific situation.

Having a visual input enhance the system capability of modeling
complex behaviors and makes it adaptable to a varieties of different
problems and road scenarios without the need of shaping the input
for each situation. This was initially proved in [20], where the
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same algorithm, network architecture and hyperparameters were
used to learn how to play many different ATARI 2600 games. The
difficulty posed by the correlation between subsequent states in RL
was overcome by storing past experiences and updating the agent
with mini-batches of old and new examples, a mechanism called
experience replay.

The system has been improved in [19] increasing its time and
memory efficiency thanks to the parallel execution of multiple
agents in place of experience replay. In particular, we extended the
Asynchronous Advantage Actor Critic (A3C) so that it can operate in
a multi-agent scenarios where many agents are allowed to interact.

In [8] the algorithm called Trust Region Policy Optimization
(TRPO [23]) and A3C are extended to multi-agent systems where
all agents share parameters of a single policy and contribute to its
update simultaneously. In the same work this approach has been
evaluated for other two popular DRL algorithms, DQN and Deep
Deterministic Policy Gradient (DDPG [15]), which both rely on ex-
perience replay; the results were not satisfying, probably due to the
incompatibility between experience replay and the non-stationarity
of the system coming from the constantly changing policies of
agents populating the environment. This suggests that using paral-
lel actor-learners as in A3C has a stabilizing effect which holds in
case of a multi-agent setting, since it removes the dependency on
the experience replay mechanism. A different approach in case of
independent learners with no parameter sharing is taken in [18],
where the environment is made stationary by feeding the critic of
the DDPG algorithm at training time with actions and observations
of all agents.

Parameter sharing is appealing but forces the agents to behave
similarly. For this reason we coupled the visual input with some
parameters whose values influence the agent policy, inducing differ-
ent and tunable behaviors. The idea of mixing a high-dimensional
visual input and a low-dimensional stream was taken from [5], in
which the low-dimensional vector, called measurements, is used
to define the goal for the agent and to drive the setting toward
supervised learning by learning how actions modify future values
of the measurements. However, this solution fits those problems
that have a natural concept of relevant and observable set of mea-
surements (such as video-game playing), but fails on problems in
which only a sparse and delayed feedback is available. Hence, we
used the low-dimensional input just as an additional input, and
followed standard temporal-difference reinforcement learning for
training our agents.

3 BACKGROUND
3.1 Reinforcement Learning
In this work we used Reinforcement Learning methods applied to
the Markov Decision Process framework, in which an agent takes
actions at discrete time steps based on the state of the environment.
At every step the agent receives a reward signal together with the
new state of the updated environment, which is modified by both
its natural progress and the action of the agent itself. The reward
signal is generally a simple scalar value and has a central role in the
learning process, since it is the only way for the agent to evaluate its
actions. This introduces a well-known difficulty of RL: the feedback

is generally the result of many actions, possibly taken several steps
in the past.

Describing the process in mathematical terms, the action at time
t is represented by at and is taken from a discrete or continuous
range of actions referred to as A; the state at time t is represented
as st while the reward as rt . The goal of the agent is to learn
a policy π (a |s ), namely the probability of taking action a given
the state s, in order to maximize the expectation of a function of
future rewards called return. The return is generally defined as
Rt =

∑T
t rt + γrt+1 + ... + γT−t rT−t , where T is the terminal time

step and γ is a discount factor used to modulate the importance of
future rewards.

Useful for the estimation of a policy are the value functions.
The state-value function (1) of a policy π gives the expected return
when, starting from state s, the policy π is followed; the action-value
function (2), similarly, gives the expected return if we follow policy
π after taking action a in state s.

Vπ (st ) = E(Rt |st ) (1)

Qπ (st ,at ) = E(Rt |st ,at ) (2)
If the agent was able to find the optimal action-value function
Q∗ (s,a), namely the action-value function of the best policy, the
problem would be solved since it could pick the best action from a
generic state st simply by choosing a∗ = maxa∈AQ∗ (s,a).

Trying to estimate this function is the goal of those algorithms
which fall under the category of action-value methods such as Q-
learning ([30]). If we approximateQ∗ (s,a) with a function q(s,a;θ )
modeled by the vector of parameters θ , in 1-step Q-learning the
parameters are updated as:

θt+1 = θt + α · K
∂q(st ,at ;θt )
∂θt

(3)

where α is a parameter dependent on the optimization algorithm
while K tells if the approximated action-value function should be
increased or decreased around the pair {st ,at } and is defined as:

K = rt +maxa∗q(st+1,a
∗;θt ) − q(st ,at ;θt ) (4)

It is worth noting that the target value rt +maxa∗q(st+1,a∗;θt ) is an
estimate itself because it uses the estimated action-value function
of the next state as better approximation of the real optimal action-
value. This operation of learning “a guess from a guess” is called
bootstrapping.

A different approach is taken in policy-based methods, which
directly estimate the policy instead of a value function. In this cate-
gory falls the algorithm called Reinforce ([31]) in which parameters
are updated such that probabilities of actions that yielded a bet-
ter cumulative reward at the end of an episode are increased with
respect to the lower-return actions. Approximating the optimal
policy π∗ (a |s ) with a function π (a |s;θ ), the updates are:

θt+1 = θt + α · Rt
∂ logπ (a |s;θ )

∂θ
(5)

In this algorithm the updates can be computed only at the end of
an episode, since the true cumulative reward is needed.

Between action-value and policy-based methods there is an hy-
brid family of algorithms called actor-critic methods.

In this setting the policy is directly optimized as in policy-based
solutions; however, the value function is also estimated, giving two
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benefits: firstly the value of a state is used to reduce the variance of
updates, as explained in [25]; furthermore the estimated state-value
function permits bootstrapping, thus avoiding the need to wait for
the end of an episode before performing a parameters update. The
probability of actions can now be modulated with the following
Advantage Ab instead of the full reward Rt :

Ab = rt + γrt+1 + ... + γ
b−1rt+b−1 +v (st+b ;θv ) −v (st ;θv ) (6)

where b is the number of real rewards used before bootstrapping,
called bootstrapping interval.

Calling the approximated optimal policy π (a |s ;θπ ) and the state-
value function v (s;θv ), the updates of this two functions can now
be defined as:

θπt+1 = θ
π
t + απ · Ab

∂ logπ (a |s;θπ )
∂θπ

(7)

θvt+1 = θ
v
t + αv · Ab

∂v (st ;θv )
∂θv

(8)

If the bootstrapping interval b equals 1, only the reward following
an action is used to directly evaluate that action. This setting is
ideal in scenarios where the complete consequences of an action
are known immediately (e.g. face correctly recognized by a face
detection agent); however, it is not optimal in situation where the
reward is delayed (e.g. agent regulating the water level of a dam).
Increasing b, a longer series of rewards will be accumulated before
estimating the value function; in this way delayed rewards are
propagated faster but their merit is divided among all the actions
performed in the time window.

In the n-step actor critic algorithm used in A3C a mixed approach
is adopted. In this solution both long and short-term bootstrapping
take place: every n time-steps (or if a terminal state is reached) a se-
quence of updates like those in equations (7) and (8) are performed,
one for each time-step. In each update the longest possible series of
rewards is used for estimating the value of the state, ranging from
a 1-step to n-step updates.

3.2 Asynchronous Advantage Actor Critic -
A3C

A problem of using Deep Neural Networks as function approxima-
tors in RL is the correlation between updates that comes from the
sequentiality of data in the process.

This correlation was initially broken by using the so called expe-
rience replay ([20]): tuples {st ,at , st+1, rt } were stored instead of
being used immediately, while the parameters updates were com-
puted using randomly sampled tuples from the replay buffer. In
this setting, updates are not based on sequential data anymore, but
the replay buffer makes the process expensive in terms of memory
occupation and it forces the use of old data.

An improved solution, adopted in [19], consists in running sev-
eral actor-critic agents in parallel, each one with its own copy of
the parameters of a global neural network. Every agent acts in a
different instance of the environment and sends its updates asyn-
chronously from the other agents. Since each agent is seeing a
different environment configuration, their updates are not corre-
lated and contribute in augmenting the stability of the process. A
visual representation of this system is shown in Figure 2a.

4 MICROSCOPIC TRAFFIC SIMULATION
4.1 Multi-agent A3C
In the normal A3C setting, multiple agents act in parallel in in-
dependent instances of the same environment. However, it is not
possible for them to learn the interaction with each other, since
each agent is sensing a state which is independent from that of the
others.

In order to make this interaction possible we let several agents
share the same playground, so that they will be able to sense each
other. For instance, let’s consider agents a and b acting on the same
environment: a, by taking action aat at time step t based on policy
π (aat |s

a
t ), could affect state s

b
t+1 of the agentb. If this happens,b will

react accordingly taking action π (abt+1 |s
b
t+1), potentially affecting

in turn sat+2. Therefore, learning the optimal policy π for an agent
means taking into account not only how the environment is affected
by its actions, but also what behavior they induce to other agents.

In practice, this implies that agents have to wait that the oth-
ers took their actions before receiving the subsequent state. This
affects negatively the performance of the algorithm, since, due to
the asynchronous nature of the process, some of the agents could
be computing their updates, that is executing a time consuming
backpropagation. Moreover, this solution jeopardizes the stability
of the system because parameter updates of agents acting in the
same environment are not independent anymore. For this reason,
in multi-agent A3C we run several environment instances as in
traditional A3C, each one populated with several active agents.

Each agent accumulates updates every n frames, and sends them
to a global copy of the network only at the end of the episode
in order to reduce the synchronization burden, updating at the
same time its local copy with the updates coming from the other
agents. Since some of those agents are accumulating experience in
different environment instances, the correlation between updates is
diminished, making the process more stable. Algorithm 1 shows the
process of multi-agent A3C, which visual representation is given
in Figure 2b.

In our experiment we set n = 20 and γ = 0.99; we used RMSProp
optimizer with a decay factor of α = 0.99 and initial learning rate
of 7e−4.

Depending on how the reward function is shaped, the learning
process may be cooperative or competitive ([26]). The former is the
way we followed to simulate behavior of road vehicles: a positive
reward is given to the artificial driver if it reaches its goal while a
negative reward is given to those drivers involved in a crash. Agents
are stimulated to reach their goals avoiding other agents, leading
to an implicit negotiation when the paths of different vehicles
intersect.

We think that this multi-agent learning setting is captivating
for many applications that require a simulation environment with
intelligent agents, because it learns the joint interactive behavior
eliminating the need for hand-designed behavioral rules.

4.2 Input architecture
Having a visual input organized as images is appealing since it frees
from the need of defining a case-specific design for each different
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Algorithm 1 multi-agent n-step Advantage Actor Critic

1: initialize parameters θдπ of π (a |s;θπ )
2: initialize parameters θдv of V (a |s;θv )
3: get nenv as the number of environment instances
4: get naд as the number of agents for each environment
5: run nenv environment instances concurrently
6: for each environment instance do
7: run naд threads concurrently
8: end for
9: for each aдent a do # executed concurrently
10: t ← 1
11: while traininд is active do
12: copy parameters θaπ = θ

д
π

13: copy parameters θav = θ
д
v

14: ∆aπ = 0, ∆av = 0
15: while st is not terminal do
16: get st
17: tlast_up = t
18: while t − tlast_up < n and st is not terminal do
19: execute action at from π (at |st ;θaπ )
20: wait other agents to finish their actions
21: get reward rt , state st+1
22: t ← t + 1
23: end while

24: R =



0 if st is terminal
V (st ,θ

a
v ) otherwise

25: for each i = t − 1, .., t − tlast_up do
26: R = ri + γr
27: ∆aπ = ∆aπ + ∇θaπ logπ (ai |si ;θaπ ) (R −V (a |si ;θav ))
28: ∆av = ∆av + ∇θav (R −V (a |si ;θav ))2
29: end for
30: end while
31: update θдπ using ∆aπ
32: update θдv using ∆av
33: end while
34: end for

scenario. Moreover, it frees from the need of considering a fixed
amount of vehicles (as in [11]).

However, this kind of input has a drawback: the convolutional
pipeline makes it not suitable for communicating numerical infor-
mation, such as the desired behavior for the agent or its precise
speed. Transferring this type of information is possible using fully-
connected layers, but it becomes inefficient to directly process
visual images by this mean. For this reason, we shaped our system
in order to have a mixed input, made of visual and numerical infor-
mation, which is processed by two different pipelines as elucidated
in Section 4.3.

4.2.1 Visual input. The agent may not be able to sense the whole
environment but just a portion of it, which we call its view. The
visual part of the input consists on a historical sequence of the v
most recent views seen from the agent. We set v = 4 as in [20]
making the estimation of relative speed and acceleration feasible.
Each view is divided in semantic layers separating information with
different origin. As explained in Section 5.1 we included semantic

(a) Single-agent setting

(b) Multi-agent setting

Figure 2: Comparison between single and multi-agent A3C
settings. Red robots are learning agents acting in environ-
ment Ei , while blue robots are passive agents. Each ac-
tive agent owns a copy Lj of the global network, and it
contributes to its evolution by updates Uj . In (a) learning
agents play in an environment populated only by non-active
agents, while in (b) active agents can sense each other, allow-
ing them to learn how to interact.

layers related to the navigable space, the path the agent will follow
and obstacles around the vehicle; however, several other layers
could be added, such as the occluded area or the road markings, in
order to enrich the input information.

4.2.2 Numerical input. The numerical component permits the
augmentation of the input with information which are not directly
perceivable from the sequence of views, such as the absolute speed
of the agent or the exact distance which is still to be traveled to
reach the goal. This allows a better understanding of the scene,
i.e. a better estimation of the states value. More importantly, the
numerical input can be used to shape agents attitude by teaching it
a direct correlation between some of its tunable input and the to-be-
obtained reward. Practically, they can be used to partially perturb
the state of the agent at will. In this work we took advantage of
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Figure 3: Architecture of the network. Visual input V and
numerical input N initially follow two different pipelines,
before being merged in a single vector, which is then used
to compute probabilities of actions and to estimate the value
of the state.

numerical input to the network for tuning the agent aggressiveness
and to suggest a desired cruising speed, as explained in Sections 5.4
and 5.5 respectively.

4.3 Network architecture
Because of the different nature of the two input streams, they are
initially processed by two different pipelines, aimed to produce two
feature vectors.

The image processing pipeline is constituted by two convolu-
tional and one fully connected layers, whereas the numerical input
vector is processed by two fully connected layers. Each pipeline
produces a feature vector as output. The two output vectors are
joined together before being handled by the last fully-connected
hidden layer. After every transformation a ReLU nonlinearity is
applied to the output.

The idea of this hybrid architecture has been inspired from [5], in
which an input made of a single image and two numerical vectors
is processed by a network built in a similar fashion.

The output of the last hidden layer is finally used for the actions
log-probabilities computation and the state-value estimation. The
network architecture is represented in Figure 3.

5 EXPERIMENT
The model explained in Section 4 has been used to simulate the
traffic of cars on a roundabout with three entries (Figure 1b), which
is a representation of an existing roundabout (Figure 1a) made with
the help of the Cairo graphics library ([21]).

Each vehicle populating the roundabout has its own path which
simply depends on a randomly assigned exit; the goal of the agent
is to reach the end of its exit lane. Furthermore, to each agent is
assigned a desired cruising speed consisting to the maximum speed
the agent is aiming for, which it should be reached and maintained
when caution is not needed; this speed will be called from now
on its target speed. A new vehicle with a random target speed is
spawned from an entry lane dependently on the positions of the
other cars, inducing different traffic conditions.

During the experiments the roundabout was populated by a
maximum of six vehicles such that no traffic jams were created,
thus making the effects of the agent’s behavior tuning appreciable.
However, this framework can be used to simulate vehicles’ behavior
even in high traffic conditions.

5.1 State space
As explained in Section 4.2 the input is made of two different
streams, a visual and a numerical one. The visual part is a rep-
resentation of the surrounding of the vehicle within a limited range
of 50x50 square meters converted to a sequence of images with
84x84 pixels. This input is made of several semantic layers, which
in this experiment are:

(1) Navigable space: the part of the space in which vehicles can
drive, generally given from the maps and shown in Figure 1c;

(2) Obstacles: made of all vehicles and obstacles seen from the
agent, including the agent himself; this information can be
obtained from the perception module of the self-driving
vehicle and it is shown in Figure 1d;

(3) Path: that shows to the agent its assigned path, and depends
on the choices of the high-level planner; this layer is shown
in Figure 1e.

The numerical part, on the other hand, consists of several scalar
values which contain both additional information about the scene
and clues to predict future rewards, which are used at test time to
modulate the agent behavior. In our instance the numerical input
is restricted to the following parameters:

(1) Agent speed.
(2) Target speed.
(3) Elapsed time ratio: ratio between the elapsed time from

the beginning of the episode and the time limit to reach the
goal.

(4) Distance to the goal: distance to be traveled before reach-
ing the goal.

The network architecture, together with the hyperparameters
used for the experiment, are shown in Figure 3.

5.2 Action space
The chosen action space is discrete and boils down to three actions:
accelerate, brake or maintain the same speed. We set comfortable
acceleration values, which are 1ms2 in case of positive acceleration
and −2ms2 in case of braking. The acceleration command will have
its effect only if the speed is under a maximum accepted value.

5.3 Reward shaping
The reward obtained from an agent is made of three main terms:

rt = rterminal + rdanдer + rspeed (9)

rterminal depends on how the episode ends, and so differs from
zero only if t is a terminal state; it equals:
• +1: if the agent reaches its goal;
• −1: if the agent crashes against another agent;
• −1: if the available time expires.
• 0: if t is a non-terminal state.
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rdanдer is a soft penalization given in situations which are to be
avoided, either because the agent made a dangerous maneuver or
because it broke some traffic laws. Calling dv the distance traveled
from the vehicle v in one second, rdanдer will be:
• −ky : if the agent fails to yield when entering the roundabout
to an already inserted vehicle v . This happens when the
agent crosses the region in front of v whose length is taken
equal to 3 · dv , as shown from the orange region in the
example of Figure 1b.
• −ks : if the agent a violates the safety distance with the ve-
hicle in front, unless the latter is entering the roundabout
and it is cutting in front of the agent. The safety distance in
this case is taken equal to da , and the associated region is
depicted in yellow in Figure 1b.
• 0: if none of the above occur.

rspeed is a positive reward which is maximized when the ac-
tual speed of the agent (sa ) coincides with the target speed input
parameter (st ):

rspeed =



sa
st · kp if sa ≤ st

kp −
sa−st
st · kn if sa > st

(10)

In our experiment we set ky = ks = 0.05, kp = 0.001, kn = 0.03.

5.4 Aggressiveness tuning
In the training phase, agents learn to increase their speed to reach
the goal within a time limit. This is possible because both time
left and remaining distance to be traveled are provided as input. It
was not possible to achieve this same behavior without using the
distance-to-the-goal input, highlighting the agent inability to realize
from images that increasing its speed the goal will be reached faster.
Nevertheless, things work well when this information is enforced
with the remaining distance, confirming the power of the visual-
numerical coupling.

This experience has been exploited at test time to vary the agent
aggressiveness by tuning its time and distance left at will, since it
is not needed anymore to limit the episode length. Doing this each
agent present in the simulator will have its own unique attitude,
resulting in a more heterogeneous scenario.

We explored scenarios in which the elapsed time ratio was re-
placed by an arbitrary real value in the [0, 1] interval, keeping the
distance to an imaginary goal fixed. Values close to 1 will induce
the agent to drive faster, in order to avoid the predicted negative
return for running out of time. For the same reason, values close
to 0 will tell the driver that it still has much time, and it is not a
problem to yield to other vehicles. This way, the elapsed time ratio
acts as an “aggressiveness level” for the agent.

An experiment has been set up in order to test the validity of this
approach. We populated the roundabout with six vehicles having
random aggressiveness levels, and we tested how an agent with
a fixed known aggressiveness behaves by letting it play several
episodes. We registered two different parameters as feedback of
each driver style: the ratio of positive ending episodes, in which the
agent reaches the goal, and its average speed. Results are shown in
the graph of Figure 4a. It is clearly visible that, by increasing the
aggressiveness level, the driver behavior will shift towards a more
risky configuration, since both average speed and probability of

accidents grow. Moreover, it is interesting to see that values of ag-
gressiveness outside the training interval [0, 1] produce consistent
consequences to the agent conduct, intensifying its behavior even
further.

5.5 Target speed tuning
The rspeed reward term, presented in Section 5.3, increases until
the speed of the agent gets closer to its target speed, and it starts
to diminish for agent speeds above the desired one. At training
time, agents were assigned a random target speed for every episode,
taken from a uniform distribution between [5, 8]ms , inducing them
to learn to not surpass that tunable value and so simulating drivers
with different desired speeds. Agents can still decide to surpass
their target speed if this will bring advantages, such as stopping
the insertion of another vehicle by a particular aggressive driver.

To evaluate how the dedicated input affects the behavior of the
agent we let several agents, having different target speed values
but equal aggressiveness levels of 0.5, to play several runs in sce-
narios similar to the one used to test the aggressiveness tuning in
Section 5.4.

The graph with the results, given in Figure 4b, shows that an
increment on the agent target speed leads to an higher average
speed, without affecting negatively the positive ending ratio. Even
in this case, values of the target speed outside the training range
[5, 8] induce consistent agent behaviors.

5.6 Environment settings comparisons
We compared agents trained with 1 and 4 environment instances
in a simplified case in which the target speed given to the agent
cannot be exceeded (once reached the target speed the accelerate
command has no effect), in order to speed up learning for compari-
son purposes. We tested both with and without action repeat of 4
([20]), that is repeating the last action for the following 4 frames
(repeated actions are not used for computing the updates). It has
been proved that in some cases action repeat improves learning
([3]) by increasing the capability to learn associations between tem-
porally distant state-action pairs, giving to actions more time to
affect the state.

The learning curves, shown in Figure 5, tell that, when using the
action repeat technique, training the systemwith multiple instances
stabilizes learning and leads to a better overall performance, even if
in both cases the model converges. This confirms that reducing the
correlation between updates brings a positive effect. It is interesting
to note that in the multi-instance scenario agents start to improve
their ability to reach the goal at a later stage but with a faster pace.
Our explanation for this behavior is that, when running several
environment instances, a higher rate of asynchronous updates com-
ing from pseudo-random policies makes learning more problematic.
Indeed, during the length of an episode, the local policy of the agent
for which the updates are computed remains fixed, while the global
policy receives asynchronous updates from several other agents
whose behavior is still infant. However, when the policies of agents
start to gain sense, their updates will be directed strongly toward a
common goal due to a reduced search space.

Nonetheless, things change when action are not repeated. Indeed,
while the model still converges when using a single environment
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Figure 4: Effect of aggressiveness (a) and target speed (b)
levels variation on the agent behavior. Blue plots show the
agent positive-ending episodes ratio while the red plots its
average speed. Dashed lines refer to an agent whose action
are repeated for 4 times while solid lines to an agent free to
choose actions at every time step. Each data point is obtained
averaging over 5000 episodes.

instance, agents are not able to learn successfully when adopting
the multi-instance setting, making the stabilizing effect of action
repetition necessary.

However, the use of repeated actions brings a drawback, that is
to diminish the rate at which agents interact with the environment.
Indeed our empirical results, given in the graphs of Figure 4, show
that the positive episode ratio at test time increases if actions are
not repeated, even if the model was trained with action repetition.
In this way it is possible to take advantage of the stabilizing effect
of action repetition, without loosing the chance of a finer action
selection resolution.

6 CONCLUSION
We presented an architecture able to model the longitudinal behav-
ior of vehicles on a synthetic road scenario by using a multi-agent
version of the A3C algorithm. This solution allows simulating road
traffic without the need of specifying hand crafted behaviors for
vehicles or collecting real data.

Agents populating the simulator sense the surrounding by a
visual input made of a sequence of images representing different
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Figure 5: Learning comparison between systems trained
with single ormultiple environment instances, with orwith-
out action repeat.

semantic information across the last time steps. The proposed ar-
chitecture gives also the possibility to simulate the uniqueness of
each real human driver by coupling a series of scalar parameters to
the visual one. We exploited this feature so that aggressiveness and
desired cruising speed of each driver can be regulated.

Even if our framework is able to deal with generic junction
shapes, we focused our tests on a specific scenario consisting of a
single-lane roundabout with three entries: it would be interesting
to see how well the system is able to generalize to different junction
topologies for application inwhich these information are not known
a priori. Moreover, it would be intriguing to extend the architecture
in order to include lateral behaviors of vehicles in the simulation.

It is worth to mention, as can be seen in the previous graphs, that
the proposed simulator is not collision free, but it reaches success
ratios close to 1 when a safe driving is set. Even though a collision-
free simulator could be desirable for some applications, the aim of
this work was to simulate real driving scenarios in which errors
and accidents happen: modeling them in the simulator may lead to
the development of more robust high-level maneuver modules.

The time needed to train the model is not negligible and can
reach several days in a desktop computer. The main issue is that
before proceeding to the subsequent time step, all the agents acting
in the same environment instance need to have taken their actions:
since some of them might be computing gradients, the overall per-
formance decreases. Future works can be directed toward the design
of a more efficient network architecture, as well as the development
of a learning setting in which the gradient computations of all the
agents in the same instance are executed simultaneously.
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