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ABSTRACT
Surveillance of graph-represented environments is an application
of autonomous patrolling robots that received remarkable attention
during the last years. In this problem setting, computing a patrolling
strategy is a central task to guarantee an effective protection level.
Literature provides a vast set of methods where the patrolling strate-
gies explicitly consider the presence of a rational adversary and
fully informed attacker, which is characterized by worst-case (for
the patroller) observation capabilities. In this work, we consider
an attacker that does not have any prior knowledge on the envi-
ronment and the patrolling strategy. Instead, we assume that the
attacker can only access local observations on the vertex potentially
under attack. We study the definition of patrolling strategies under
the assumption that the attacker, when planning an attack on a
particular location, tries to forecast the arrivals of the patroller on
that particular location. We model our patrolling strategies with
Markov chains where we seek the generation of arrivals that are
difficult to forecast. To this end we introduce time-variance in the
transition matrix used to determine the patrollers movements on
the graph-represented environment.
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1 INTRODUCTION
Research in multi-agent and multi-robot systems has devoted sig-
nificant effort in devising effective strategies for autonomous pa-
trolling systems based onmobile robots [5]. We study an adversarial
robotic patrolling setting played on a graph where we consider an
attacker model whose capability of collecting strategic knowledge
is restricted. Specifically, we assume an attacker that can access only
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to a local view of the patrolling problem (the environment and its
features) and that, during the execution of the patrolling task by the
robot, can only make local observations. These assumptions might
capture situations where the context in which patrolling missions
take place is hard to acquire. We focus on the problem of ensuring
protection to the environment while, at the same time, hindering
as much as possible the process with which the attacker propagates
a belief from the collected observations with the aim of evaluating
the success probability of a potential attack. The contributions we
introduce extend our previous work [3], where we introduced a
model for patrolling against a local observer and we provided a
first solution based on the idea of strategically injecting delays in
the paths followed by the robot. Here we enrich our model with
observation errors and we propose the use of time-variant Markov
strategies to decrease the level of correlations in the sequence of
observations made by the attacker.

2 PROBLEM SETTING
We consider a classical robotic adversarial patrolling graph [4]
composed by n targets T = {t1, t2, . . . , tn }, where di j ∈ R+0 denotes
the traveling cost between ti , tj , vi ∈ R+ quantifies the value of
that target, and ai ∈ R+ is the time required to complete an attack
on it. Patrolling is carried out by a mobile robot traveling from
target to target. We assume that the robot can detect attacks only
on the currently visited target: if the robot visits target ti at time τ
and an attack on that target has started at a time within the interval
[max{0,τ − ai },τ ), then the attack is neutralized. The status of a
target is protected if the patroller is located in it and it becomes
unprotected when the patroller is absent. The threat we assume to
face is modeled as coming from an attacker agent that, at any time
τ , can start an attack to a target ti . As commonly done in security
games, we assume an underlying constant-sum interaction between
the patroller and the attacker. The patroller’s movements in the
environment are dictated by a Markov chain process where a state
represents the currently visited target. The n × n transition matrix
P, where the entry pi j represents the probability of transitioning
from target ti to target tj , defines the patrolling strategy used to
protect the environment.

With respect to the field’s literature (see, for example, [1, 2, 4,
6, 8, 9] ), we introduce two model enrichments. First, we relax the
customary assumption according to which the temporal traveling
costs of shortest paths should always correspond to the actual times
spent by the patroller for moving between targets. Instead we only
adopt this requirement:
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a) we interpret di j as a lower bound for the time spent travel-
ing between ti and tj allowing for occurrences where the
patroller takes some extra additional time to transfer.

Second, we introduce a limited, but realistic attacker model. Typ-
ically this agent is modeled as rational and fully informed, having
access to the environment topology, the patrolling strategy being
executed by the robot, and its current position. In our model we
instead assume to deal with an attacker that is still rational, but
that is not fully informed. More specifically, our attacker model is
characterized by the following features:

b) the environment topology and, as a consequence, the values
of vi and di j for all ti , tj are not known and not accessible;

c) the patrolling robot cannot be observed while it executes its
task in any location of the environment, meaning that the
current position is, in general, unknown and no observation-
induced belief over the patrolling strategy can bemaintained;

d) the attacker is hidden and ready to attack at an unknown
target where it can gather local observations under the as-
sumptions described below.

When observing a target during a time where it is unprotected,
the collected information will not be affected by errors. In other
words, we assume a null false-positives rate α = P (protected |
unprotected ) = 0. On the contrary, if the attacker is observing a
target whose state is protected, with probability β it will not detect
the presence of the patroller independently of how long the patroller
stays on that target an it will bemislead into believing that the target
has been unprotected for the whole time. In other words, we assume
a non-null false-negative rate β = P (unprotected | protected ) > 0.
With this model we want to capture scenarios in which locally
monitoring a single target might be challenging for the attacker
(for example, if the target is a building with many floors and rooms,
it might be not trivial to understand when guards are checking it
or when, instead, it is unattended).

In general, with the model induced by a)–d), we relax some of
the basic assumptions made in literature according to which the
patrolling setting is fully observable. Instead, the attacker model
we consider does not have any prior knowledge on the patrolling
setting but only relies on locally limited and noisy observations
of the state of a single target. These features can capture those
realistic settings where the planning activities of an attacker take
place locally to the target itself and, at the same time, the context
in which the patroller is operating (its current position, the set of
targets it is in charge of, and the patrolling strategy employed) are
out of reach due to inaccessibility or high intelligence costs.

3 PROPOSED APPROACH
The scenario described above induces a situation where the attacker,
hidden at an unknown target that we denote as tj , observes a
sequence of state changes on that target: from uncovered to protected
as soon as the patroller visits tj and the opposite when it leaves (up
to false negatives). (Notice that we don’t assume that the attacker
can strategically pick which vertex to attack.) Since the success
or failure of an attack depend on the patroller’s visit within an
exposure interval, the attacker is incentivized to log state changes
with a timestamp and to extract a time-series defined as subsequent
realizations of a random variable Rj modeling the patroller’s return

time (or inter-arrival time) to target tj . In the long run, the attacker
will take advantage of such knowledge by deriving a correct belief
on P[Rj > aj ], that is the probability that the target will stay
uncovered for enough time to complete an attack. In short, we
shall call it attack probability. Due to a) and b), no inference on the
environment topology can be exploited. Specifically, notice that a)
also applies to self loops, allowing the patroller to leave tj and then
returning to it after an arbitrarily small time. We aim at finding
a patrolling strategy that, from one side provides the maximum
protection and, at the same time, it makes it difficult for the attacker
to construct a belief from the observations of Rj .

Our first solution, introduced in [3], is based on the idea of
decoupling spatial and temporal decisions when patrolling the
environment. This is achieved by an iterative two-steps decision
process. First the patroller selects the next target to patrol according
to a Markov chain strategy expressed by P, then it computes a
random delay to inject in the execution of the shortest path.

The second solution, introduced in this work, builds on the pre-
vious one and relaxes the stationarity of the transition matrix P
by introducing time-variant patrolling strategies that are obtained
by dynamically changing P during the execution of the patrolling
task. The underlying idea is based on the adoption of a single op-
timal stationary distribution coming from the previous approach
and exploiting the Metropolis-Hastings algorithms [7] to obtain a
sequence of Markov chains all associated to such distribution. The
strategy is changed according to some policy that considers the
number of steps in which such a policy has been used to make a
decision.

Preliminary results indicate how delays and time-variance can
be leveraged to make it difficult for an attacker to learn the pa-
trolling strategy. Figure 1 shows an example where two time-variant
strategies (orange and green lines) are compared with their time-
invariant version. Each point represents, for each target, the prob-
ability (scaled by the target’s value) that an attack is completed
successfully by an attacker that, using a maximum likelihood esti-
mation method, tries to forecast the patroller’s next time of arrival
at that target and that tries to attack if such estimated time is larger
than the target’s attack time. As it can be seen, time-variance is
capable of introducing improvements at the majority of targets.
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Figure 1: An evaluation of time-variant strategies.
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