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ABSTRACT
Predictive approaches to modelling the environment have seen re-
cent successes in robotics and other long-lived applications. These
predictive knowledge architectures are learned incrementally and
online, through interaction with the environment. One challenge
for applications of predictive knowledge is the necessity of tuning
feature representations and parameter values: no single step size
will be appropriate for every prediction. Furthermore, as sensor
signals might be subject to change in a non-stationary world, pre-
defined step sizes cannot be sufficient for an autonomous agent. In
this paper, we explore Temporal-Difference Incremental Delta-Bar-
Delta (TIDBD)—a meta-learning method for temporal-difference
(TD) learning which adapts a vector of many step sizes, allowing
for simultaneous step size tuning and representation learning. We
demonstrate that, for a predictive knowledge application, TIDBD
is a viable alternative to tuning step-size parameters, by showing
that the performance of TIDBD is comparable to that of TD with
an exhaustive parameter search. Performance here is measured in
terms of root mean squared difference from the true value, calcu-
lated offline. Moreover, TIDBD can perform representation learning,
potentially supporting robust learning in the face of failing sensors.
The ability for an autonomous agent to adapt its own learning and
adjust its representation based on interactions with its environ-
ment is a key capability. With its potential to fulfill these desiderata,
meta-learning is a promising component for future systems.
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Introduction: The real world is non-stationary and complex, so
many of the challenges facing an autonomous agent cannot be
completely foreseen. An agent should therefore be empowered to
adapt to its environment without human assistance. General value
functions (GVFs) [16, 18] allow agents to incrementally construct
knowledge of the environment purely through interaction [2, 11].
With a GVF architecture, the environment is modelled as a set of
forecasts—GVFs—about how signals of interest will behave. An
agent’s actions affect its world, so these forecasts are made with
consideration to a policy of agent behaviour. In this way, these
predictions can capture forward-looking aspects of the environment
such as, “If I continue moving my arm to the right, how hot do I
expect my elbow servo to get?” Many GVFs can be simultaneously
made and learned online, in real time [8], using methods such as
temporal-difference (TD) learning [15] and other standard learning
algorithms from the field of reinforcement learning. GVFs have
already shown their potential in multiple real-world domains [e.g.,
1, 4, 5, 10, 13]. Many simultaneous GVFs can be learned using
a single, shared representation [8], but no single step size will be
appropriate for all predictions, and no representation will be equally
suitable for all predictions. Therefore, it is desirable to tune both the
step size and the representations for each individual prediction. One
tuning method is Temporal-Difference Incremental Delta-Bar-Delta
(TIDBD) [6], a step-size adaptation method for TD learning.

TIDBD adjusts a vector of many step sizes—one step size for each
feature. By adapting step sizes on a per-feature basis, we are able
to tune them based on their relevance; features which are highly
correlated to the prediction problem should be given large step
sizes, while irrelevant features should be given smaller step sizes.

In this work, we use experiments to investigate the effect that
TIDBD has on predictions about real sensor signals provided by
a sensor-rich robotic arm—the Modular Prosthetic Limb (MPL),
shown in Figure 1. The sensor data was recorded during alter-
nating patterns of rest and movement, which can be viewed at
https://blinclab.ca/mpl_teleop_video/.
Experiment 1: Our primary experiment compared TIDBD, which
assigns individual step sizes to features, to classic TD, which uses a
fixed step size for all features. For both learning algorithms (TD and
TIDBD), we used selective Kanerva coding [17] to choose features
to represent the 108-dimensional sensor space for linear function
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Figure 1: The top pane shows the root mean squared error (RMSE) for classic TD and TIDBD for each time periods. Themiddle
and bottom panes show violin plots for the RMSE, for TIDBD and classic TD. All plots are averages over 30 independent runs.

Figure 2: Step-size distribution at termination.

approximation. For each learning algorithm, we performed an ex-
tensive (full-factorial) parameter sweep to set the feature represen-
tation, and, additionally for TD only, the fixed step size. We did
not tune the initial step size for TIDBD, to better demonstrate its
performance using a generic value.

We compared the root mean squared error obtained with TIDBD
and classic TD. As shown in Figure 1, the two algorithms perform
comparably, given careful choice of step size for classic TD. For
both TD and TIDBD, the error (shown as violin plots in the lower
panes of Figure 1) is primarily due to a small number of GVFs—the
majority of the predictions are learned quickly. The most notice-
able difference in performance between the two algorithms is that
TIDBD shows better early learning (during ‘rest 1’).We therefore
suggest that roboticists should consider using a step-size adaptation
method like TIDBD for prediction learning with general value func-
tions, rather than performing an extensive sweep over step sizes
for classic TD.

We tuned parameters offline and chose a step size for TD that pro-
vided the best performance over the total duration of the data. This
advantage is not available for designers of truly online, autonomous

agents, so any fixed step size would offer worse performance—
which would worsen with wear-and-tear or unexpected changes
in the environment. Parameter tuning is computationally expen-
sive and time intensive. It is often skipped and substituted with
a general-use parameter value—to the detriment of performance.
With this experiment, we demonstrated that a step size adaptation
method can replace hand-tuning, and compare well to even the
best-case fixed step size. In our experiments, the time to update all
step sizes remained within real-time requirements (0.28s).
Experiment 2: As a second series of experiments, we modified the
original sensor data to simulate four broken sensors [9], and then
to simulate four stuck sensors [7]. We found that TIDBD gradually
and automatically excluded the broken sensor signals from the
representation by decreasing the associated step sizes.While TIDBD
did not automatically resolve the issues created by stuck sensors,
the resulting changes in step sizes were clearly distinguishable
from those seen during normal functioning of the arm. These results
suggest that it may be possible to automatically identify certain sensor
failures by monitoring changes to a group of step sizes.
Conclusions: These three results—the observation that TIDBD
appropriately updates step sizes to accommodate non-stationarity,
the distinct reaction of a group of step sizes to stuck sensors, and the
automatic feature selection performed by TIDBD for uninformative
sensors—are promising key findings for long-term autonomous
agents. They empower an agent to not only adapt its learning based
on interactions with its environment, but to evaluate and improve
its own perception of said environment. As the step sizes provided
by TIDBD contain information about the history of each feature,
step sizes could also provide an important source of information
for the agent itself to learn from. Such introspective signals have
already been argued to be a helpful source of information for an
agent to better understand its environment and its own functioning
within its environment [3, 12, 14]. The insights provided by this
work therefore offer a deeper understanding and intuition about
TIDBD, aiming to help other designers in creating agents that are
capable of autonomous learning and adaptation through interaction
with their environment.
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