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ABSTRACT
Many everyday tasks require individuals to work together as a team
to achieve a task goal. For many complex or high-stakes multi-agent
activities, team members are required to participate in simulated
training exercises to develop the task- and team-work (coordination)
skills needed tomaximize task performance. Such training, however,
can be both time- and labor-intensive, requiring the participation of
full teams and expert instructors. One way to minimize these costs
is to augment team training scenarios with interactive artificial
agents (AAs) capable of robust, ‘human-like’ behavioral interaction.
With regard to perceptual-motor tasks specifically, recent research
suggests that this can be achieved using task dynamical models
derived from the dynamical primitives of human motor behavior.
To investigate the degree to which such models can be employed
for human team training, we examined whether a task dynamical
model of human herding behavior could be embedded in the control
architecture of an AA to train novice human-actors to learn vari-
ous simulated multi-agent herding tasks. Three experiments were
conducted that (i) first modeled human team performance during a
set of novel herding tasks adapted from [19, 21], (ii) tested an AA
utilizing this model to complete the tasks with human novices, and
(iii) demonstrated how this AA could effectively train novices in a
manner comparable to a human-expert trainer.
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1 INTRODUCTION
A wide range of activities require that individuals work together to
achieve a shared task goal. Such multi-agent activity occurs when a
team of doctors perform an emergency surgery or a military unit is
engaged in a tactical action. In these and many other cases, a break-
down in coordination can have severe consequences. Thus, it is
essential for team members to undergo training to ensure that they
not only have the appropriate skills for effective task performance,
but can perform these skills in a manner that facilities and ensures
coordinated co-action. Indeed, key to effective team training is
creating training scenarios that provide the opportunity for those
individuals to learn both task- and team-work skills simultaneously
[6, 31]. This requires that team training scenarios include intact
teams and promote self-guided learning through the simulation
of task contexts [7, 25, 26]. Combined with the fact that expert
instructors are also required to complete team training exercises,
the cost of conducting team training, both in terms of time and
money, can be incredibly high.

One way to reduce the logistic and financial hurdles associated
with team training is to incorporate artificial agents (AA) within
team training contexts. Indeed, human-AA team training systems
not only have the potential to reduce the costs of team training, but
can also provide individuals with the opportunity to engage in more
frequent and individualized skills training. Accordingly, there is
now a growing body of research directed towards investigating the
degree to which human team members and even human trainers
could be replaced or enhanced by interactive AAs [16, 17, 34].

A central focus of this latter research is what kinds of AAs lead
to better training performance outcomes (e.g., [36]). For example,
certain tasks might be best enhanced by including a highly rigid
AA [3], while other more stochastic tasks might be better enhanced
using AAs that are more readily adaptive to changing task contexts
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[1, 2]. In either case, the effectiveness of human-AA training often
depends on the ability of AAs to respond to human co-actors in
a seamless and effective manner. It has therefore been hypothe-
sized that achieving optimal human-user experience and learning
depends on AA technologies incorporating natural, human-like
patterns of behavior, as more human-like AAs tend to result in a
better transition from AA training to human co-action [35, 39].

1.1 Dynamical Motor Primitives
To develop AAs capable of human-like behavioral coordination
requires first modelling the fundamental behavioral processes that
define effective human behavior within a given task context. Of
particular relevance here, is that despite the assumed complexity of
humanmulti-agent activity, there is now a growing body of research
demonstrating how the spatio-temporal patterning of many hu-
man perceptual-motor behaviors is typically low-dimensional and
synergistic, and can be explained and modelled using a small, fun-
damental set of simple dynamical rules (e.g., [11, 23, 24, 28, 30, 37]),
or dynamical motor primitives (DMPs; e.g., [8, 9, 29]). Specifically,
this research has revealed that human actions are generally com-
posed of two movement types: (i) discrete movements, such as
reaching or throwing an object; and (ii) rhythmic movements, such
as walking or hammering a nail. Moreover, these primitives can
be modeled using fundamental behaviors of nonlinear dynamical
systems, namely: point-attractive and limit cycle behaviors.

With regard to the specific formulation of these dynamical motor
primitives (DMPs), several related approaches have been proposed
(e.g., [9–11, 22, 27–29, 37]). In principle, they all capture discrete
movements using a point-goal directed damped-mass spring sys-
tem, and rhythmic movements using a forced (driven) damped-
mass spring system or a nonlinear self-sustained oscillator (e.g., a
Rayleigh or van der Pol oscillator). For instance, [28] have demon-
strated how a wide range of reaching, rhythmic wiping, and crank-
ing tasks can be modelled using simple task-specific systems of
fixed-point and limit cycle attractors acting on corresponding end-
effectors (e.g., hands for reaching). Similarly, [5, 37] have demon-
strated how human goal-directed navigation within an obstacle-
ridden environment can be modelled using a simple, elementary
set of DMPs. Modelling by [29] and [33] has demonstrated similar
possibilities with regard to drumming and racket ball bouncing.

With regard to multi-agent behavior, recent research has demon-
strated how dynamical models composed of DMPs can effectively
capture the end-effector trajectories of co-actors’ hands when com-
pleting cooperative object sorting and passing tasks [13, 14], as
well as the behavioral dynamics of effective interpersonal collision
avoidance [22] and social rhythmic coordination tasks [4, 12, 38].
However, perhaps the best example of how complex multi-agent
activity can be modeled using systems of fixed-point and limit cycle
dynamical primitives stems from the recent work of [19, 21], in
which the authors demonstrated how a relatively simple model
composed of DMPs is able to capture the behavior of human-actors
performing complex multi-agent herding tasks.

1.2 Multi-agent Herding Task
The multi-agent herding task [19, 21] is a game that requires two
players to control the movements of herding agents (HAs) in order

Figure 1: (a) The herding task and setup employed for
human-human and human-artificial agent testing. (b-d) The
behaviors expected to be observed in the current study: (b)
Search and Recover (S&R); (c) Coupled Oscillatory Contain-
ment (COC); and (d) Circling Containment (CIR). The black
trajectories represent approximately 10 s of behavior by the
blue and orange herding agents (HAs). The white dots are
the target agents (TAs) being herded. (e) Illustration of the
task space employed for the [19, 21] herding model (see text
for more details).

to corral and contain a herd of target agents (TAs) within a defined
containment area. The task is typically played on a large table-top
display, with players standing on opposite sides of the display and
controlling the movements of the HAs using a motion tracking
device or pen (see Figure 1); although the task has also been investi-
gated in a fully immersive, 3D virtual environment [20]. When left
undisturbed, the TAs roam randomly around the game field. When
an HA comes within a specified distance, TAs will move away from
the HA. The goal of the task is for players to corral and contain the
TAs within a specified time (e.g, 120 s), with containment deemed
successful if the TAs are contained within the containment area for
a certain proportion of time (e.g, 70% of a trial).

Initially, all human players adopt a behavioral mode termed
search and recover (S&R), in which players discretely herd the TA
furthest from the containment area on their side of the game field.
While this strategy is useful for corralling TAs towards the con-
tainment area, it is difficult to keep a herd of TAs contained using
S&R behavior alone (see Figure 1b). Accordingly, a subset of players
spontaneously discover and adopt a less obvious, yet far superior
mode of TA containment termed coupled oscillatory containment
(COC). As illustrated in Figure 1c, COC corresponds to players
encircling the TAs by moving in a rhythmic, semicircular manner
around the herd. Discovering COC reflects a moment of sudden
insight, with those players that use COC achieving nearly 100%
containment success after its discovery. Moreover, the key realiza-
tion for players that discover COC, is not the performance benefits
of COC itself, but the understanding that oscillatory movements
provide the most effective way of containing TAs together as a herd.
Indeed, [19] revealed how players who realize the effectiveness of
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employing oscillatory behavior to contain a TA-herd, also appear
to simultaneously realize that a single HA can contain a TA-herd
by moving in a circle around the herd (see Figure 1e).

1.3 Task Dynamic Herding Model
Of particular relevance here, is that [19, 21] demonstrated how
human S&R and COC reflect task-specific realizations of environ-
mentally coupled point-attractor and limit cycle dynamics. Using a
task-dynamic approach [27, 28, 37], the behaviour of each HA-i’s
(where i = 1 or 2) can be defined in polar task-space coordinates,
where (𝑟𝑝𝑜𝑙𝑒 , 𝜃𝑝𝑜𝑙𝑒 ) = (0, 0) is the (x, z) center of the containment
area (see Figure 1e). Given this task space and the data-driven as-
sumption that at each time step (t), the TA that HA-i selects to
pursue (i.e, 𝑇𝐴(𝑡), 𝑖) is (i) furthest from the specified containment
location and (ii) closer to HA-i’s current field position. The dynam-
ics of each HA-i’s radial distance was defined as,

¥𝑟𝑖 + 𝑏𝑟 ¤𝑟𝑖 + 𝜀𝑟

(
𝑟𝑖 −

(
𝑟𝑇𝐴(𝑡 ),𝑖 + 𝑟𝑝𝑟𝑒 𝑓

))
= 0 (1)

where ¤𝑟𝑖 , and ¥𝑟𝑖 represent the velocity and acceleration, respec-
tively, of HA-i’s radial distance with respect to the center of the
containment area; 𝑟𝑇𝐴(𝑡 ),𝑖 is the radial coordinate of the TA that
HA-i is currently pursuing; 𝑟𝑝𝑟𝑒 𝑓 is a fixed parameter that specifies
HA-i’s minimum preferred radial distance from TAs; 𝑏𝑟 is a damp-
ing term; and 𝜀𝑟 scales the strength of the centrally-directed radial
force attracting HA-i’s to𝑇𝐴(𝑡), 𝑖 . Essentially, Eq. (1) exhibits fixed-
point attractor dynamics and operates to minimize the difference
between HA-i’s current radial distance, 𝑟𝑖 , and the radial distance,
𝑟𝑇𝐴(𝑡 ),𝑖 , of the TA currently being pursued.

With regard to the dynamics of each HA-i’s radial angle (𝜃𝑖 ),
this was defined using a hybrid non-linear oscillator [10] capable
of exhibiting both point-attractor and limit cycle dynamics. More
specifically, the angular dynamics (𝜃𝑖 ) of each HA-i was defined
using the equation

¥𝜃𝑖 + 𝑏𝜃𝑖 ¤𝜃𝑖 + 𝛽 ¤𝜃3𝑖 + 𝛾𝜃2𝑖 ¤𝜃𝑖 + 𝜀𝜃 (𝜃𝑖 − 𝜃𝑇𝐴(𝑡 ),𝑖 )

=

(
¤𝜃𝑖 − ¤𝜃 𝑗

) (
𝐴 + 𝐵

(
𝜃𝑖 − 𝜃 𝑗

)2) (2)

where ¤𝜃𝑖 and ¥𝜃𝑖 represent the velocity and acceleration, respectively,
of HA-i’s radial angle with respect to the center of the containment
area; 𝑏𝜃𝑖 and 𝜀𝜃 are linear damping and stiffness terms; and (𝛽 ¤𝜃3

𝑖
)

and (𝛾𝜃2𝑖 ¤𝜃𝑖 ) are Rayleigh van der Pol nonlinear escapement terms,
respectively.

Ignoring the right side of (2) for the moment, (2) results in fixed-
point like dynamics when 𝑏𝜃𝑖 ≥ 0 and limit cycle dynamics when
𝑏𝜃𝑖 < 0. That is, when𝑏𝜃𝑖 ≥ 0, (2) minimizes the difference between
HA-i’s current radial angle, 𝜃𝑖 and the radial angle, 𝜃𝑇𝐴(𝑡 ) , 𝑖 of
𝑇𝐴(𝑡), 𝑖 . However, when 𝑏𝜃𝑖 < 0, (2) results in HA-i oscillating
back and forth about 𝜃𝑇𝐴(𝑡 ),𝑖 .

Key to the realization of S&R versus oscillatory (OC) and COC
behavior at any time step (t) is the value of 𝑏𝜃 . Based on the assump-
tion that individuals begin to adopt oscillatory behaviour when the
furthest TA, 𝑇𝐴(𝑡), 𝑖 , is sufficiently close to the containment area,
[19, 21] defined the parameters dynamics of 𝑏𝜃 as

¤𝑏𝜃𝑖 + 𝛿

(
𝑏𝜃𝑖 − 𝛼

(
𝑟𝑇𝐴(𝑡 ),𝑖 − 𝑟Δ

))
= 0 (3)

where ¤𝑏𝜃𝑖 is the rate of change of 𝑏𝜃𝑖 , and 𝛾 and 𝛼 are fixed param-
eters that determine the rate at which 𝑏𝜃𝑖 changes as a function
of the radial distance of 𝑇𝐴(𝑡), 𝑖 relative to the radial distance, 𝑟Δ,
that an HA considers close enough to the containment location for
𝑇𝐴(𝑡), 𝑖 to be considered ’sufficiently’ corralled. When considered
in conjunctionwith (1) and (2), (3) results in S&R like behavior when
𝑇𝐴(𝑡), 𝑖 is far from the containment area (i.e., when 𝑟𝑇𝐴(𝑡 ),𝑖 ≥ 𝑟Δ),
and OC behavior when 𝑇𝐴(𝑡), 𝑖 , and thus all TAs close to HA-i,
are also very close to or within the containment area (i.e., when
𝑟𝑇𝐴(𝑡 ),𝑖 < 𝑟Δ).

Returning to the right side of (2), this function couples the angu-
lar movements of HA-i to partner HA-j, with the coupling strength
parameters 𝐴 and 𝐵 determining whether HAs exhibit stable in-
phase or anti-phase rhythmic coordination during COC behaviour.
Note that this latter coupling function was included by [21] because
human actors tend to produce stable in-phase and anti-phase COC
behaviour. However, such behavioural synchrony is not required
for effective herd containment1.

Finally, although [19, 21] never attempted to model the kind
of Circling containment (CIR) behavior illustrated in Figure 1d,
this behaviour is akin to end-effector "cranking", which [28] have
previously demonstrated can be modeled using a reduced version
of (2). Specifically,

¥𝜃𝑖 + 𝑏𝜃 ¤𝜃𝑖 + 𝛽 ¤𝜃3𝑖 = 0 (4)

where the frequency of, ¤𝜃𝑖 , is equal to ±
√

𝑏𝜃
𝛽
, and direction is

dependent on the initial sign of ¤𝜃𝑖 . Hence, a Heaviside function can
be employed to transition the model between potential OC and CIR
behaviour (see subsection 3.1.1 for details).

1.4 Current Study
The current study aimed to demonstrate how task dynamical mod-
els of human behavior (composed of DMPs) can be employed to
develop interactive AAs capable of training novice human-actors in
a manner comparable to expert human trainers. To achieve this aim,
three experiments were conducted to investigate whether an HA
controlled by the above multi-agent herding model could be em-
ployed to train novice human-actors for different herding task sce-
narios. Experiment 1 (Novice Human-Human Performance)
explored the behavioral dynamics exhibited by human-human pairs
when learning to perform several new versions of the multi-agent
herding task. Experiment 2 (Novice Human-Artificial Agent
Performance) then explored the degree to which a task specific
variant of the herding model proposed in [21] was able to effectively
capture the behavior of human players across these new tasks by
comparing human-(model)AA performance to human-human per-
formance. Finally, Experiment 3 (Human-Artificial Agent to
Human-Human Transfer) tested whether novice human-actors
could not only learn the fundamental modes of behavior required
for successful herding performance (i.e., OC, COC, circling [CIR]
behavior) from a model controlled AA trainer, but were also able

1Parameter settings employed in the current study: 𝑏𝑟 = 45; 𝜀𝑟 = 45; 𝑟𝑝𝑟𝑒𝑓 = 0.03𝑚.

𝛽 = 0.161641; 𝛾 = 7.22282; 𝜀𝜃 = 𝜔2; 𝜔 = 6.364866716 𝑟𝑎𝑑
𝑠

during COC behavior.
𝜔 = 12.729733432 𝑟𝑎𝑑

𝑠
during S&R behavior; 𝐴 = −0.2; 𝐵 = 0.2; 𝛿 = 23.08993;

𝛼 = 138.262
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Figure 2: Illustration of the three herding task levels. The or-
ange and blue discs are the herding agents (HAs), the white
dots are the targets (TAs), and the containment area is spec-
ified in red. See text for more details.

to transfer and adapt these behavioral skills to human-human task
performance.

1.4.1 General Method and Apparatus. As illustrated in Figure
1a, the herding task employed here was an extension of the herding
task developed by [19, 21] and required two HAs, represented on
the game field by blue or orange discs, to corral and contain a herd
of autonomous TAs, in this case, a herd of ‘cow’ textured spheres.
HAs were tasked to contain the TAs within a 19.2 cm diameter red
containment area positioned at various locations around a 45 cm x
155 cm game field. The herding task was displayed to participants
on a 75 inch tabletop touch screen (Model SBID-MX075; SMART
Technologies Inc, Calgary, Canada), such that human players could
control the position/motion of HAs using a stylus pen. When not
within the vicinity of an HA, the TAs’ movements were defined by
Brownian motion dynamics, such that the TAs moved randomly
around the play field with a maximum force of 0.12 N (TAs had a
mass of 1 kg) per time step (0.02 s). When a TA came within 12
cm of an HA, however, a TA’s Brownian motion dynamics was
replaced by a repulsive force, 𝑓 , that moved the TA directly away
from the HA’s position at a force proportional to the distance of
the HA. More specifically, at any time point, 𝑡 , if a 𝑇𝐴 𝑗 (where
𝑗 = 1, 2, ..7) was within 𝑅 = 12 cm of a HA, 𝐻𝐴𝑖 (where 𝑖 = 1, 2),
𝑇𝐴 𝑗 was repelled directly away from 𝐻𝐴𝑖 at a force equal to

|𝑓𝑇𝐴 𝑗
| = 𝑅

|𝐷𝐻𝐴𝑖
| (5)

where 𝐷 is the current distance of 𝐻𝐴𝑖 and𝑚𝑎𝑥 (𝑓 ) = 0.36, which
equates to a maximum acceleration of 36 𝑐𝑚

𝑠2
(see [19, 21] for more

details).
Three herding task levels were developed for the current study

(see Figure 2). Level 1 was almost identical to the herding task

developed by [19] and was considered the Standard Task. This
level required two HAs to corral a herd of four TAs inside a red
containment area (located either centrally [𝑥, 𝑧] = [0, 0], or slightly
to the left [−0.3, 0] or right [0.3, 0]) of the game field and contain
the TA-herd within this area for 20 consecutive seconds. If at any
time any TA moved outside the containment area, the containment
timer would reset and restart once all TAs were re-contained. HAs
had a maximum of 2 minutes to achieve this goal.

Level 2 Perturbation Task started with the containment area
centrally located (at [𝑥, 𝑧] = [0, 0]) and had a 15-second contain-
ment timer. Once the first herd of 4 TAs were successfully corralled
and contained, an additional TA would randomly appear outside
the containment area. Once this new TA had been corralled, and
the new 5-TA herd contained for another 15 seconds, a second and
then a third TA appeared, requiring HAs to complete a total of four
15-second containments (for the 4-, 5-, 6- and 7-TA herds). A trial
was considered successful only when HAs were able to corral and
contain all three additional TAs, including containing the final 7-TA
herd for 15 consecutive seconds. HAs had 3 minutes to reach task
success.

For Level 3 Driving Task, the first containment area was biased
towards either the left or right (𝑥 = ±0.6) of the game field with
respect to the initial HA positions (𝑧 = ±0.3), and had a 15-second
containment timer. After the first successful containment period,
the containment area moved to a second random (𝑧 = ±0.3) location
on the opposite (𝑥 ) side of the game field. HAs were then required
to transport the TAs to this new containment area and contain
the herd there for an additional 15 seconds. Players were given 3
minutes to reach task success.

The tasks were developed using Unity 2018.2.21f (Exp. 1 and 2)
and 2018.4.11f (Exp. 3) (Unity Technologies Ltd, San Francisco, CA).
All relevant game data was sampled at 50 Hz (e.g., [𝑥, 𝑧] position
and velocity of the HAs and TAs). For Exp. 3 (see subsection 4.1),
two touchscreens were connected via LAN using the Mirror high-
level networking API (source: https://mirror-networking.com/). As
illustrated in Figure 1a, human co-actors were required to stay on
opposite sides of the game field (touchscreen) during game play, but
were free to move along their side of the game field (touchscreen)
area. Similarly, during human-AA game play, human-actors were
assigned to one of the two sides, with the AA "assigned" to the
other side of the game area.

At the start of each trial, only the blue and orange HAs were
displayed on the screen and were positioned on opposite sides of
the field, 10 cm from the edge of the field (see Figure 2a). A trial
started when the participant(s) touched their assigned HA with
their pen, which triggered the appearance of the the TAs and the
red containment area. A trial ended automatically after the trial
time had expired or the success criteria was achieved. At that time,
the TAs and target containment area would disappear and either
‘FAILURE’ or ‘SUCCESS’ was displayed on the screen. A level was
successfully ’completed’ after four successful trials.

Importantly, participants were only informed about the basic
success criteria for each level. All participants were students and
staff from Macquarie University. At the end of all experimental
sessions, participants were debriefed about the study’s purpose and
received course credit or monetary compensation. All participants
were unfamiliar with the herding tasks for all experiments. Finally,
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all of the methods and procedures employed for this study were
approved by the Macquarie University’s Human Sciences Ethics
board.

1.4.2 Behavioral Mode Classification. Based on the previous
findings of [19, 21] we expected (and observed) three possible modes
of behavior across the different task. First, we expected that all par-
ticipants would exhibit S&R behavior when corralling or driving
the TAs to the containment location. We also expected that some
pairs would adopt this mode of behavior when containing the TAs
within the containment area. Second, we expected that a subset of
pairs would discover and employ OC and COC behaviour when con-
taining the TAs within the containment area. Finally, we expected
that some participants in a pair might adopt circling (CIR) behavior
in order to keep the TAs contained while their co-participant re-
trieved/corralled the new TA(s) that appear during the Perturbation
Task (Level 2).

To classify these different modes of behavior, a two-step classifi-
cation procedure was employed. The first step involved determining
if and when either HA exhibited CIR behavior. This was achieved
by extracting the (𝑥, 𝑧) planar movements of the two HAs from the
trial recordings, filtering these movement time-series using a 10 Hz
low-pass Butterworth filter and then transforming them into polar
coordinates centered about the TA-herd’s mean position. For each
HA, the unwrapped angular position time-series was obtained and
rotated so that the first sample 𝜃𝑡=0 = 0. Rotations were counted as
the number of 2𝜋 rotations (in either direction) from 𝜃𝑡=0.

Once the periods of CIR behavior had been identified, a similar
procedure employed by [19, 21] was used to classify OC from S&R
behavior. Ignoring the periods of time already classified as CIR, a
windowed frequency analysis was conducted to determine when
each HA in a pair was exhibiting OC behavior, and in turn, when
HA pairs were exhibiting COC. A window length of 5 s was em-
ployed, with a HA deemed to be exhibiting OC behavior during a 5
s window when they exhibited a dominant peak frequency above
0.5 Hz (consistent with [19, 21]). From this windowed analysis, two
measures of oscillatory performance were then extracted for each
trial. First, the average proportion of time that each HA in a pair
exhibited OC during a trial (𝑃𝑟𝑜𝑝𝑂𝐶) and second, the proportion
of time that COC was exhibited by HAs during a trial (𝑃𝑟𝑜𝑝𝐶𝑂𝐶)
(i.e., periods where both HAs were adopting OC simultaneously).
Finally, note that the proportion of S&R behavior exhibited by an
HA during a trial is equal to 1 − (𝐶𝑖𝑟𝑐 + 𝑃𝑟𝑜𝑝𝑂𝐶).

1.4.3 Herding Performance Measures. Across all three levels we
employed two measures of general task performance: completion
time or the time (s) to complete a trial goal as a proportion of the
maximum trial time; and corral time, which was equal to the amount
of time (s) from the beginning of the trial to the beginning of the first
successful containment. We also employed two measures of herd
containment performance, all of which were calculated during the
periods of successful containment: herd-spread, which equaled the
average herd spread (in 𝑐𝑚2) measured by computing the convex
hull formed with respect to all the TAs in the herd (i.e., the smallest
convex polygon that encompasses the entirety of an entire herd);
and herd-travel, which was the cumulative distance (cm) that the
herd’s mean position (i.e., center-of-mass (COM)) moved during
containment.

With regard to the performance of HAs when new TAs appeared
in the Perturbation Task, herd-spread and herd-travel were also
calculated for the period between when a new TA appeared and
when the next successful containment period began. To assess TA
retrieval performance, we also calculated new TA retrieval time,
which was the time (s) from when a new TA appeared to the begin-
ning of the next successful containment period.

Finally, in the Driving Task the performance of HAs when mov-
ing the TAs from the first target containment area to the second
target containment area was also assessed by means of herd-spread
and herd-travel during this driving phase. We also calculated driv-
ing time, which was the time (s) from when the new containment
area appeared to the beginning of the next successful containment
period.

2 EXPERIMENT 1
Before we could test whether the AA model proposed by [21] could
be employed to train novice human (NH) players to perform these
novel herding tasks, we first needed to determine whether the same
behavioral dynamics exhibited by human-actors in [19, 21] were
observed. Of particular interest was the behaviors exhibited by
human-actors during TA retrieval in the Perturbation Task and
while driving the herds between containment areas in the Driving
Task.

2.1 Method
2.1.1 Participants and Procedure. Sixteen pairs participated in

Exp.1. All pairs completed the Standard Task first, then the Per-
turbation Task, followed by the Driving Task. Participant pairs
could only move on to the next level once they had completed four
successful trials in the previous level. There was no restriction on
the number of trials that participant pairs could attempt in each
level. However, participants were given a maximum of 1.5 hours to
complete all three levels.

2.1.2 Data Reduction and Analysis. Only 10 of the 16 pairs were
able to complete all three task levels. Given that the aim of Exp.1
was to identify the performance of successful human-human behav-
ior, only the following data from successful pairs was retained for
analyses: (i) successful trials in the Standard Herding Task, (ii) trials
where pairs successfully completed the first herd containment dur-
ing the Perturbation and Driving Task (i.e., the containment before
TA perturbation or containment area change, respectively), (iii) any
instances of successful re-containment following TA perturbations
in the Perturbation Task, and (iv) only successful trials were used
as candidates to investigate driving behavior during the Driving
Task.

2.2 Results
As can be discerned from an inspection of Table 1, successful NH-
NH pairs discovered and adopted both OC and COC behaviour by
the end of the Standard Task. Consistent with [19, 21], the more
OC and COC behaviour exhibited by pairs, the better they were
at containing the TA-herd within the specified containment area.
This is illustrated in Figure 3a, where the proportion of oscillatory
behaviour (PropOC) exhibited by a pair for each of the successful
containments achieved in the Standard Task is plotted as a function
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Table 1 Mean performances measures for Experiments 1 and 2.

Standard Task
Comp.
Time

Corral
Time

Prop OC Prop
COC

Herd
Spread

Herd
Travel

NH-NH 0.54 44.53 0.38 0.22 14.32 48.06
AA-NH 0.39 27.12 0.80 0.63 11.25 42.29

Perturbation Task Initial Containment Phase TA Retrieval
Comp.
Time

Corral
Time

Prop OC Prop
COC

Herd
Spread

Herd
Travel

Retrieval
Time

Prop OC Prop
COC

Prop
CIR

Herd
Spread

Herd
Travel

NH-NH 0.72 25.10 0.51 0.33 15.16 33.28 10.73 0.11 0.01 0.22 42.42 25.06
AA-NH 0.64 24.89 0.57 0.55 12.69 31.98 8.35 0.18 0.01 0.55 26.11 12.80

Driving Task Initial Containment Phase Herd Driving
Comp.
Time

Corral
Time

Prop OC Prop
COC

Herd
Spread

Herd
Travel

Driving
Time

Prop OC Prop
COC

Herd
Spread

Herd
Travel

NH-NH 0.46 28.59 0.46 0.31 13.49 31.19 32.53 0.08 0.01 44.11 128.17
AA-NH 0.53 33.98 0.70 0.67 11.34 27.41 31.72 0.08 0.00 87.76 128.86

NH = Novice Human; AA = Artificial Agent. Completion (Comp.) time is reported as a proportion of max trial time.
For AA-NH, propOC and PropCIR only correspond to NH behavior. Corral and Retrieval time in seconds. Herd Travel in cm. Herd Spread in cm2.

of herd-spread and herd-travel. Indeed, a mixed effects regression
analysis (with a random intercept for pair) revealed that the rela-
tionship between PropOC and Herd Spread (𝛽 = -5.93, z = -3.65, p <
0.001) and PropOC and Herd Time (𝛽 = -33.24, z = -4.79, p < 0.001)
illustrated in Figure 3b were significant, with more oscillatory be-
havior resulting in smaller herd-spread and less herd-travel during
containment.

NH-NH pairs also employed OC and COC behaviour to contain
TAs in the Perturbation and Driving Tasks. With regard to TA
retrieval, 60% of the successful NH-NH pairs employed circling
(CIR) behaviour (at least once). Interestingly, although most pairs
continued to transition back to OC and COC behaviour during
each containment period, those participants that didn’t discover or
employ CIR tended to employ S&R containment during TA retrieval,
despite the fact the CIR resulted in better herd containment (see
Figure 3b). For the Driving Task, pairs adopted S&R behavior to
transport the TA-herd towards the new containment area, moving
in a way that prioritized driving the TA-Herd’s COM towards the
new containment area.

3 EXPERIMENT 2
This experiment was designed to provide a preliminary test of
whether an HA whose movements and actions were controlled
by the adapted version of the DMP-based herding model, detailed
in subsection 1.3, could (i) help train a NH to complete the three
herding tasks and (ii) result in human-AA performance at or above
human-human performance. This was achieved by having NH par-
ticipants play the herding tasks together with the model-controlled
AA and then assessing the performance of these NH-AA teams
with respect to NH-NH performance.

3.1 Method
3.1.1 Artificial Herding Agent Control. Given the behaviors in

Exp. 1, the following modifications were made to the model de-
scribed in subsection 1.3 to enable the AA to complete the herding
tasks introduced in this study.

Target Agent Selection. At each fixed time step, the TA the AA
pursued was updated. The AA selected the TA that was (i) closer
to it than the other HA and (ii) was furthest from the containment
area. If all the TAs were closer to the AA’s partner, then the AA
selected the TA that was closest to it. Compared to previous work
which fixed candidate TAs to pursue to either side of the game field
[21], this selection criteria allowed for the AA to behave adaptively
regardless of the location of the containment area, or the workload
taken on by the AA’s partner.

Circling Behavior. A key insight from Experiment 1 was that
the emergence of CIR behavior was an effective control strategy
for keeping the TA-herd contained during new TA retrieval. To
account for this, the model included a conditional term to specify
whether the AA implemented (2) or (4) when computing ¥𝜃𝑖 . Here,
if the AA’s partner HA-j’s 𝑟 𝑗 > 𝑟𝑚𝑎𝑥 (where 𝑟𝑚𝑎𝑥 = 0.288 m), the
AA solved for ¥𝜃𝑖 using (4) - otherwise (2) was implemented. See
Algorithm 1 for pseudocode summarizing AA behavior.

Miscellaneous. The AA control architecture was adapted to (i)
account for features of natural human behavior and (ii) ensure the
AA was robust to differences between task conditions. These adjust-
ments were tied to whether all TAs were contained (𝑟𝑇𝐴(𝑡 ),𝑖 < 𝑟Δ).
Specifically, when 𝑟𝑇𝐴(𝑡 ),𝑖 < 𝑟Δ (i.e., during oscillatory behavior),
oscillatory movements were centered at 𝜃𝑇𝐴(𝑡 ),𝑖 = 0, which was
centered on the sagittal plane in the direction of the AA’s starting
position. During oscillatory behavior, the AA kept a minimum dis-
tance from the TA herd (𝑟𝑚𝑖𝑛 = 0.096𝑚). These changes reflected
behaviours observed in previous work [19, 21] and Exp 1.

Finally, the polar task axis was linearly interpolated at each time-
step to prevent abrupt changes to the AA’s behavior (due to a change
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Figure 3: (a) Left: Relationship between PropOC and Herd Containment Performance. (b) Middle: Effects of circling (CIR)
behavior on herd-spread and herd-travel during successful TA retrieval in the Perturbation Task. (c) Right: The average mag-
nitude of PropOC behaviour exhibited by i) novice human participant pairs (NH-NH) in Exp.1, and ii) NH-AA: participants
playing with the artificial agent in Exp 2. Error bars represent standard error.

in the number of TAs as in the Perturbation Task or a change in the
containment location (i.e, during the Driving Task). Additionally,
random acceleration noise (¥𝑟𝑛𝑜𝑖𝑠𝑒 = ±1𝑚

𝑠2
and ¥𝜃𝑛𝑜𝑖𝑠𝑒 = ±1 𝑟𝑎𝑑

𝑠2
) was

added to the AA’s control to produce more human-like behavior.

Algorithm 1: Artificial Herding Agent Control
Initialize variables;
while While task active do

Select targeted agent (TA), return (𝑟 𝑓 (𝑡 ),𝑖 , 𝜃 𝑓 (𝑡 ),𝑖 );
if 𝑟𝑇𝐴(𝑡 ),𝑖 < 𝑟Δ then

(𝑟𝑝𝑜𝑙𝑒 , 𝜃𝑝𝑜𝑙𝑒 ) = (0, 0) at containment location;
(𝑟𝑇𝐴(𝑡 ),𝑖 , 𝜃𝑇𝐴(𝑡 ),𝑖 ) = (𝑟𝑚𝑖𝑛, 0);
if 𝑟 𝑗 > 𝑟𝑚𝑎𝑥 then

Implement (4);
else

Implement (2);
end

else
(𝑟𝑝𝑜𝑙𝑒 , 𝜃𝑝𝑜𝑙𝑒 ) = (0, 0) at TA-herd position;

end
Linearly interpolate pole towards (𝑟𝑝𝑜𝑙𝑒 , 𝜃𝑝𝑜𝑙𝑒 );
Solve for ¤𝑏𝜃 , ¥𝑟𝑖 , ¥𝜃𝑖 . Update 𝑏, 𝑟 , ¤𝑟 , 𝜃 , ¤𝜃 ;

end

3.1.2 Participants and Procedure. Ten participants participated
in Exp. 2. The experimental procedure was the same as in Exp.1
with the following exceptions: NH participants completed the task
with the AA as their partner. The AA controlled one of the colored
disc HAs. The maximum number of attempts to complete the Stan-
dard task was limited to ten attempts, with a total of six attempts
allowed for the other two tasks. If participants could not success-
fully complete a level within the maximum number of attempts,
they proceeded to the next level. Following completion of the Stan-
dard Task, the order of the Perturbation and Driving Tasks was
counterbalanced.

3.2 Results
The modified AA described in subsection 3.1.1 was successful in
helping NH participants complete the herding tasks. Indeed, 90%

of NH participants completed all 3 levels with the AA (compared
to only 60% in Exp. 1) (see Table 1 and Figure 3c). Again, the more
participants utilized OC behavior, the better they contained the
TA-Herd. More importantly, participants in the current experiment
learned to utilize OC and COC solutions to contain the TA-herd to
a greater extent than NH participants in Exp. 1. Indeed, between-
subjects t-tests revealed that during the Standard Task, NH partic-
ipants working with the AA exhibited significantly greater mag-
nitudes of PropOC (t(17) = 5.42, p < 0.001) and PropCOC (t(17) =
3.75, p < 0.002) compared to NH participants in Exp. 1, implying
that the AA did in-fact help NHs learn to employ OC and COC
behaviour. The positive effects of the AA on NH learning was fur-
ther highlighted by finding that during the Perturbation Task, NH
participants in the current experiment exhibited significantly more
instances of CIR behaviour compared to NH participants in Exp. 1
(t(17) = 2.15, p < 0.05).

Additionally, AA-NH pairs were significantly faster at retrieving
TAs than NH-NH pairs (t(17) = 3.57, p < 0.01). AA-NH pairs were
also better at containing the herd during TA retrieval compared to
NH-NH pairs, with the difference in herd-travel between AA-NH
and NH-NH pairs being significant (t(17) = 3.14, p < 0.01). There
were, however, no significant differences between AA-NH and NH-
NH pairs with respect to driving performance (both t(17) < 1.80,
p > 0.09). This was likely due to the fact that in Exp. 1. all NH
participants completed the Driving Task after completing both the
Standard and Perturbation Tasks, whereas half of NH pairs in the
current study completed the Driving task before the Perturbation
task (due to counterbalancing) and thus had less task practice.

4 EXPERIMENT 3
This experiment sought to explicitly test whether the AA controlled
by the herding model detailed in subsections 1.3 and 3.1.1 could
provide training equivalent to an expert human (EH), both in terms
of task performance and the ability of NH participants to transfer
learning to novel human-human task scenarios. Accordingly, Exp.
3 first had novice human (NH) participants learn to perform the
Standard Task with either an AA or one of two EH trainers. Fol-
lowing training, pairs of similarly-trained NH participants then
completed the Perturbation and Driving Tasks together as a new
NH-NH team.
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Table 2 Mean performances measures for Experiment 3.

Standard Task
NH
Trainer

# At-
tempts

Comp.
Time

Corral
Time

Prop OC Prop
COC

Herd
Spread

Herd
Travel

AA 5.2 0.49 38.64 0.62 0.60 10.16 42.76
EH 4.4 0.44 32.61 0.59 0.54 12.80 43.85

Perturbation Task Initial Containment Phase TA Retrieval
NH
Trainer

# At-
tempts

Comp.
Time

Corral
Time

Prop OC Prop
COC

Herd
Spread

Herd
Travel

# Re-
trieved

Retrieval
Time

Prop
CIR

Herd
Spread

Herd
Travel

AA 5.6 0.89 40.47 0.56 0.42 12.85 33.65 1.83 12.19 0.34 45.93 30.93
EH 5.0 0.81 28.47 0.61 0.42 12.34 28.93 2.26 13.29 0.21 53.98 32.30

Driving Task Initial Containment Phase Herd Driving
NH
Trainer

# At-
tempts

Comp.
Time

Corral
Time

Prop OC Prop
COC

Herd
Spread

Herd
Travel

Driving
Time

Herd
Spread

Herd
Travel

AA 4.7 0.61 41.32 0.56 0.39 13.34 36.93 34.83 52.36 134.43
EH 5.2 0.63 47.42 0.58 0.42 12.17 37.69 35.13 44.61 132.92

For the Stadrard Task, PropOC and PropCIR values only correspond to the behavior of NH. Herd Travel in cm. Herd Spread in cm2.
Completion (Comp.) time is reported as a proportion of max trial time. Corral and Retrieval time in seconds.

4.1 Method
4.1.1 Participants and Procedure. Twenty pairs participated in

Exp. 3. Prior to arrival, participant pairs were randomly assigned to
either the AA or EH training condition. In both conditions, partici-
pants in a pair were taken to separate laboratory rooms to complete
AA or EH training in the Standard task. Following training, partici-
pants completed Levels 2 and 3 together, but remotely (in separate
rooms). The trial limits were the same as those employed in Exp. 2,
and level order following training in Level 1 was counterbalanced.

4.2 Results
A summary of the results of Experiment 3 can be found in Table 2.
Participants in both the AA and EH training conditions completed
the Standard Task within the maximum allowed 10 attempts, con-
firming that both the AA and EH were equally effective in training
NH participants. Moreover, analysis of the different classification
and performance measures revealed no differences in performance
between AA and EH trained NH participants, other than a signifi-
cant difference in herd-spread during containment, t(18) = -4.46, p
< .001, such that herd-spread was lower for AA-NH pairs than for
EH-NH.With regard to how the pairs of NH participants performed
the Perturbation and Driving Task following training, there were no
significant differences in performance between AA and EH trained
participants. That is, NH participants trained by the AA demon-
strated equal performance to NH pairs trained by an EH, indicating
that NH participants were able to transfer the skills learned during
both AA and EH training to novel NH-NH task contexts. Note also,
that despite never seeing CIR behaviour performed during training,
NH participants in both training groups realized that CIR behaviour
could be employed to contain a herd during TA retrieval, with 60%
of pairs in both the AA and EH training conditions employing CIR
during TA retrieval.

5 CONCLUSIONS
The current study employed a multi-agent herding task to demon-
strate that task dynamical models of human behaviour (comprised
of environmentally coupled DMPs) can be employed to develop
AAs that are not only capable of robust, ‘human-like’ behavioural
interaction, but can also provide adaptive training comparable to an
expert human trainer. Such AAs could play a critical role in enhanc-
ing the effectiveness of team training across a range of industrial,
medical, sport and military contexts by reducing the costs of such
training, and providing individuals with the opportunity to engage
in more frequent and targeted training. It is also likely that AAs
embodying human models of perceptual-motor behavior will lead
to higher levels of trust between humans and interactive AAs [18].

Future research could employ machine learning approaches
(such as imitation and reinforcement learning) to further enhance
the capabilities of DMP based AAs by parameterizing DMP-based
control architectures [9] to adopt different play-styles or "person-
alities" [7, 15, 32]. Finally, although the current study investigated
team transfer training using the smallest team size possible (N =
2), the current modeling methodology can be employed to capture
the behaviour of human actors engaged in larger team contexts, in-
cluding competitive multi-agent tasks. Thus, future research should
investigate the efficacy of utilizing DMP-based models in activi-
ties involving larger teams, where there is a greater potential for
complex patterns of behavior to emerge.
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