
Latency-Aware Local Search for Distributed Constraint
Optimization∗

Ben Rachmut
Ben-Gurion University of the Negev

Beer Sheva, Israel
rachmut@post.bgu.ac.il

Roie Zivan
Ben-Gurion University of the Negev

Beer Sheva, Israel
zivanr@bgu.ac.il

William Yeoh
Washington University in St. Louis

St. Louis, MO, USA
wyeoh@wustl.edu

ABSTRACT
Most studies investigating models and algorithms for distributed
constraint optimization problems (DCOPs) assume messages ar-
rive instantaneously or within a (short) bounded delay. Specifi-
cally, distributed local searchDCOP algorithms have been designed
as synchronous algorithms, performing in an asynchronous envi-
ronment, i.e., algorithms that perform in synchronous iterations in
which each agent exchanges messages with all its neighbors. This
is true also for an anytimemechanism that reports the best solution
explored during the run of synchronous distributed local search al-
gorithms. Thus, when the assumptions on instantaneous message
arrival are relaxed, the state of the art local search algorithms and
mechanism do not apply.

In this work, we address this limitation by: (1) Investigating the
performance of existing local search DCOP algorithms in the pres-
ence of message latency; (2) Proposing an asynchronous mono-
tonic distributed local search DCOP algorithm; and (3) Proposing
an asynchronous anytime framework for reporting the best solu-
tion explored by non-monotonic asynchronous local search DCOP
algorithms. Our empirical results demonstrate that, up to some
extent, message delays have a positive effect on distributed local
search algorithms due to increased exploration. The asynchronous
anytime framework proposed, allows a maximal benefit from such
latency based explorative heuristics.
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1 INTRODUCTION
Recent advances in computation and communication have resulted
in realistic distributed applications, in which humans and technol-
ogy interact and aim to optimize mutual goals (e.g., IoT applica-
tions). A promising multi-agent approach to solve these types of
problems is to model them as Distributed Constraint Optimization
Problems (DCOPs) [7, 12, 15], where decision makers are modeled
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as agents that assign values to their variables. The goal in a DCOP
is to optimize a global objective in a decentralized manner. Unfor-
tunately, the communication assumptions of the DCOP model are
overly simplistic and often unrealistic: (1) All messages arrive in-
stantaneously or have very small and bounded delays; and (2) Mes-
sages sent arrive in the order that they were sent. These assumptions
do not reflect real-world characteristics, where messages may be
disproportionally delayed due to different bandwidths in different
communication channels.

Because solving DCOPs optimally is NP-hard [12], considerable
research effort has been devoted to developing incomplete algo-
rithms for finding good solutions quickly [2, 5, 9, 10, 13, 16, 21, 22].
Distributed local search algorithms (e.g., Distributed Stochastic Al-
gorithm (DSA) [22] and Maximum Gain Messages (MGM) [10]) are
simple incomplete algorithms with a naturally distributed struc-
ture. Although they commonly offer no (or little) quality guaran-
tees, they were empirically found to produce high quality solu-
tions [10, 21, 22]. An anytime mechanism allows one to report the
best solution explored by such algorithms, even when they per-
form rapid exploration [14, 24].

Unfortunately, these simple distributed local search algorithms
and the anytime framework take advantage of the common sim-
plistic communication assumptions discussed above. To make mat-
ters worse, they even depend on them for achieving some de-
sired properties (e.g., monotonicity, convergence, etc.). As a result,
the guarantees for achieving these properties may no longer hold
when communication is unreliable.

In this paper, we make the following contributions:

(1) We analyze the performance and properties of standard lo-
cal search algorithms, after they are adjusted to perform in
scenarios including message latency.

(2) We propose an asynchronous local search algorithm that is
monotonic and its convergence is guaranteed to a 1-opt so-
lution (similar to the properties of the MGM algorithm [10]).
We demonstrate empirically that the proposed algorithm
converges faster than synchronous MGM in the presence
of message latency.

(3) We propose an asynchronous anytime mechanism that al-
lows any local search algorithm performing in an environ-
ment with imperfect communication, to report the best so-
lution it has explored during its run.

(4) We show that, up to some extent, message latency can have
a positive effect on local search algorithms. The reason is
that it increases the amount of exploration, albeit unin-
tended, and, consequently, local search algorithms can tra-
verse better solutions, which will be reported via the any-
time mechanism we proposed.
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2 RELATEDWORK
We present in this section existing work on message latency in
distributed constraint reasoning studies. There is a very limited
amount of work on the study of communication times in the con-
text of DCOPs. Researchers have investigated the importance of
communication times in evaluations of DCOP algorithms [4, 17,
18]. For example, Cruz et al. conducted experiments where agents
are located physically apart in different machines connected by
LAN [4]. They observed that communication times are orders of
magnitude larger than what is typically assumed in the DCOP
community, thereby issuing a call of action to better investigate
this area. Our research, in a large part, is in response to this call.
Another thread of relevant research is the work done by Tabakhi
et al. [17, 18]. In their work, they used realistic network simulators,
such as ns-2 [11], to simulate the wireless communication times
between agents. There are three key differences between these re-
lated works and ours: (1) Our empirical evaluations systematically
varied the different degrees of message delays while evaluations
of Cruz et al. were for a fixed setting only; the reason is that their
evaluations are on actual physical hardware while ours are on sim-
ulations; (2) We focus on incomplete local search DCOP search al-
gorithms in this paper while both Cruz et al. and Tabakhi et al.
focused on complete DCOP search algorithms; (3) Finally, we pro-
posed new variants of DCOP algorithms that are more robust to
message delays in this paper while they focused only on evaluat-
ing existing algorithms.

In the neighboring area of Distributed Constraint Satisfaction
Problems (DisCSPs), researchers have investigated the impact of
message delays as well. For example, Zivan and Meisels [23] pro-
posed amethod for simulating any type ofmessage delays inwhich
all messages sent by agents are first delivered to an additional mail-
ing agent. This agent decides on the delay of each message and de-
livers the messages only after the selected delay time has passed.
Time was counted in terms of logical steps of the algorithm (e.g.,
constraint checks or iterations of the algorithm). Our simulator for
DCOPs can be seen as an extension of their simulator for DisCSPs
(see Section 5).

The impact of communication delays on DisCSP algorithms was
also studied by Fernàndez et al. [6]. Similar to our findings, they
found that random delays can actually improve the performance
and robustness of AWC (an asynchronous complete algorithm for
DisCSPs). Wahbi and Brown [19] decoupled the communication
graph from the underlying constraint graph of the problem and
studied the effect of different communication graph topologies on
ABT and AFC-ng. In this work, the communication load was mea-
sured by the number of transmission messages during the algo-
rithm execution (#transmission) and the computation effort that
takes the message delay into account, which was measured by
the average of the equivalent non-concurrent constraint checks
(#ncccs) [3]. The main difference with our work is that they fo-
cused on complete DisCSP algorithms while we focused on incom-
plete DCOP algorithms in this paper. Nevertheless, we are encour-
aged by the fact that in different scenarios and for different algo-
rithms, it has been shown that message latency can improve a dis-
tributed search algorithm’s performance.

3 BACKGROUND
In this section, we present background on DCOPs, distributed local
search algorithms for DCOPs, and the anytimemechanism that can
be used in conjunction with distributed local search algorithms to
keep track of the best solution found.

3.1 Distributed Constraint Optimization
Problems (DCOPs)

Without loss of generality, in the rest of this paper, we will as-
sume that all problems are minimization problems as is commonly
assumed in the DCOP literature [7]. Thus, we assume that all
constraints define costs and not utilities. Our description of a
DCOP is also consistent with the definitions in many DCOP stud-
ies [8, 12, 15].

ADCOP is a tuple ⟨A,X,D,R⟩, whereA is a finite set of agents
{𝐴1, 𝐴2, . . . , 𝐴𝑛}; X is a finite set of variables {𝑋1,𝑋2,…,𝑋𝑚},
where each variable is held by a single agent (an agent may hold
more than one variable); D is a set of domains {𝐷1, 𝐷2,…,𝐷𝑚},
where each domain 𝐷𝑖 contains the finite set of values that can
be assigned to variable 𝑋𝑖 and we denote an assignment of value
𝑑 ∈ 𝐷𝑖 to 𝑋𝑖 by an ordered pair ⟨𝑋𝑖 , 𝑑⟩; and R is a set of relations
(constraints), where each constraint 𝑅 𝑗 ∈ R defines a non-negative
cost for every possible value combination of a set of variables and
is of the form 𝑅 𝑗 : 𝐷 𝑗1 × 𝐷 𝑗2 × . . . × 𝐷 𝑗𝑘 → R+ ∪ {0}. A bi-
nary constraint refers to exactly two variables and is of the form
𝑅𝑖 𝑗 : 𝐷𝑖 × 𝐷 𝑗 → R+ ∪ {0}.1 A binary DCOP is a DCOP in which
all constraints are binary. Agents are neighbors if there is a con-
straint that they are both involved in. A partial assignment (PA) is
a set of value assignments to variables, in which each variable ap-
pears at most once. vars(PA) is the set of all variables that appear
in 𝑃𝐴, 𝑣𝑎𝑟𝑠 (𝑃𝐴) = {𝑋𝑖 | ∃𝑑 ∈ 𝐷𝑖 ∧ ⟨𝑋𝑖 , 𝑑⟩ ∈ 𝑃𝐴}. A constraint
𝑅 𝑗 ∈ R of the form 𝑅 𝑗 : 𝐷 𝑗1 × 𝐷 𝑗2 × . . . × 𝐷 𝑗𝑘 → R+ ∪ {0}
is applicable to 𝑃𝐴 if each of the variables 𝑋 𝑗1 , 𝑋 𝑗2 , . . . , 𝑋 𝑗𝑘 is in-
cluded in 𝑣𝑎𝑟𝑠 (𝑃𝐴). The cost of a partial assignment 𝑃𝐴 is the sum
of all applicable constraints to 𝑃𝐴 over the value assignments in
𝑃𝐴. A complete assignment (or a solution) is a partial assignment
that includes all the DCOP’s variables (𝑣𝑎𝑟𝑠 (𝑃𝐴) = X). An optimal
solution is a complete assignment with minimal cost.

For simplicity, we make the common assumption that each
agent holds exactly one variable (i.e., 𝑛 = 𝑚) and we focus on bi-
nary DCOPs. These assumptions are common in DCOP literature
(e.g., [15, 20]). We also assume that all agents are aware of the costs
incurred by the constraints they are involved in (i.e., that the prob-
lems are symmetric).

3.2 Distributed Local Search for DCOPs
The general design of most state-of-the-art local search algorithms
for DCOPs is synchronous. Since the environment in which they
perform in is distributed and asynchronous (no mutual clock), the
synchronization is achieved by the exchange ofmessages in each it-
eration of the algorithm. Thus, in each iteration, an agent receives
the messages sent to it from its neighbors in the previous itera-
tion, performs computation and sends messages to all its neigh-
bors [22, 24]. All local search algorithms include in each step of the
1We say that a variable is involved in a constraint if it is one of the variables the
constraint refers to.
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algorithm an iteration in which agents share with their neighbors
their value assignments. In some algorithms, e.g., MGM, a step of
the algorithm includes more than one iteration [10, 14].

Two of the most well known algorithms that use this general
framework are the Distributed Stochastic Algorithm (DSA) [22] and
the Maximum Gain Messages (MGM) algorithm [10]. In both algo-
rithms, after an initial step in which agents select a value assign-
ment for their variable (randomly according to Zhang et al. [22]),
agents perform a sequence of steps until some termination condi-
tion is met. In each step, an agent sends its value assignment to
its neighbors in the constraint graph and receives the value assign-
ments of its neighbors. The algorithms differ in the way that the
agents decide on whether to replace their value assignments. In
DSA, this decision is made stochastically and has a large effect on
the performance of the algorithm. According to Zhang et al. [22],
if an agent in DSA cannot improve its current state by replacing
its current value assignment, it does not replace it. If it can im-
prove (or keep the same cost, depending on the version used), it
decides whether to replace the value assignment using a stochastic
strategy (see the work by Zhang et al. [22] for details on the possi-
ble strategies and the differences in the resulting performance). In
MGM, a second iteration is performed in which agents share with
their neighbors the maximal possible gain they can achieve by re-
placing their value assignment. An agent replaces its assignment,
only if its gain is larger than all its neighbors (ties are broken de-
terministically using agents’ indexes). As a result, in MGM, neigh-
boring agents cannot replace assignments concurrently and, thus,
its improvement of the general cost is (weakly) monotonic when
applied to symmetric DCOPs. This is in contrast to DSA where,
when neighboring agents change assignments concurrently, the
result may be an increase in the overall cost of the current solu-
tion. Moreover, when MGM converges, each agent has a chance to
replace its assignment, but cannot find an alternative assignment
that reduces its local cost (and with it the overall cost). Thus, it con-
verges to a 1-opt solution (a solution that cannot be improved by
the actions of a single agent) [10].

3.3 Anytime Distributed Local Search (ALS)
During the execution of a distributed local search algorithm, each
agent is aware of the cost of its current assignment, but no agent
is aware of the global cost of the current solution. Thus, in order
to report the best solution that was explored by the algorithm, Zi-
van et al. [24] proposed a mechanism (or framework) that can be
used with any local search algorithm, which guarantees that it will
report the best solution found by the local search algorithm. The
framework includes a Breadth-First Search (BFS) spanning tree of
the constraint graph, which the agents use in order to aggregate
the costs they incur in each iteration, such that a single agent (the
root of the BFS tree) can decide which solution was best. Zivan
et al. [24] proved that the overhead in time, memory, communica-
tion and privacy is relatively small.

In more detail, following every iteration 𝑘 , a leaf agent in the
spanning tree includes in the message it sends to its parent in the
tree its local cost. In the following iteration 𝑘 + 1 the parent will
sum the costs received from its children, add its own cost and send
the resulting sum of costs to its parent. Thus, after a number of

iterations equal to the height of the tree (ℎ), the root agent will be
able to compare the cost of the solution that agents held in itera-
tion 𝑘 , with the cost of the best solution found so far. If indeed the
solution in iteration 𝑘 was better (i.e., its cost was lower), it sends
this information down the tree. Hence, following iteration 𝑘 + 2ℎ,
all agents are aware that the current best solution is the one they
held in iteration 𝑘 . Each agent must use a memory of size at most
2ℎ, to store the relevant costs and assignments that will allow this
process. In terms of runtime, in order to report the best among𝑚
iterations, the mechanism must run for 𝑚 + 4ℎ iterations, includ-
ing the generation of the BFS tree.The communication overhead is
negligible, since all that is required is a constant addition of infor-
mation to messages, which are sent by the algorithm on tree edges.
The height ℎ is expected to be small, since the mechanism uses a
BFS tree (see analysis by Zivan et al. [24]).

4 LOCAL SEARCH IN THE PRESENCE OF
MESSAGE LATENCY

The first relevant observation one must make when analyzing the
effect of latency on distributed local search algorithms is the fol-
lowing: The general setting that agents are expected to perform in
is asynchronous (no mutual clock between the agents). However,
the algorithms are by design synchronous since each agent sends
messages to all its neighbors and waits to receive messages from
all of them in each iteration [10, 22, 24]. Thus, message latency has
a major effect on the performance of such algorithms since every
synchronous iteration is completed only after all the messages sent
in the previous iteration arrive.

In order to overcome this limitation, agents can perform asyn-
chronously (i.e., avoid waiting for all the messages from neighbor-
ing agents to arrive before performing the computation phase of
the iteration). Instead, in the asynchronous versions of the algo-
rithms, agents perform computation whenever they receive a mes-
sage. Then, following each computation, they read the messages
that were received during the computation and compute again. If
an agent does not receive any message during computation, it re-
turns to a waiting mode. In any computation phase, agents con-
sider the information received in the message that was last re-
ceived from each of their neighbors.2

However, when messages can be delayed, this approach is ex-
pected to have consequences on the quality of solutions the algo-
rithm explores:

(1) An agent may take into consideration, when selecting alter-
native value assignments, obsolete assignments of its neigh-
bors, since the information regarding their replacement was
sent but not yet received.

(2) The last message received from a neighbor may not have
been the one that was last sent among the messages that
were received from this neighbor (i.e., amessage sent at time
𝑡 from an agent𝐴𝑖 to𝐴 𝑗 can arrive before a message sent at
time 𝑡 ′ > 𝑡 from 𝐴𝑖 to 𝐴 𝑗 ).

(3) Algorithms such as MGM, which are weakly monotonic
when performing synchronously, will not maintain this

2The use of the asynchronous version of DSA and MGM is not a novel contribution
of this paper; however, the analysis of their performance in the presence of message
latency is novel.
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property. An agent may perform actions that indeed dete-
riorate the overall solution because it is not aware of the
current assignment of its neighbors.

(4) The anytime mechanism proposed by Zivan et al. [24] is not
applicable in such settings since it is dependent on the abil-
ity of agents to evaluate the cost of their state (their value
assignments and the value assignments of their neighbors)
in each iteration.

We address the first weakness in our empirical evaluation,
where we present the quality of the solution as a function of the
latency magnitude. The second weakness among the ones listed
above can be handled if every agent 𝐴𝑖 sending a message to its
neighbor 𝐴 𝑗 , would add the number of previous messages it sent
to 𝐴 𝑗 to the message (a timestamp). Thus, 𝐴 𝑗 could ignore mes-
sages, which arrive later than messages sent after them.

In order to overcome the third and fourth weaknesses, we
present, in the rest of this section, an Asynchronous Monotonic
Distributed Local Search (AMDLS) algorithm and an Asynchronous
Anytime Mechanism (AAM) that agents can use in an asynchro-
nous environment in which messages may be delayed and can be
received not order in which they were sent.

4.1 Asynchronous Monotonic Distributed
Local Search (AMDLS)

The basic idea behind the design of the AMDLS algorithm is that
neighboring agents will not be allowed to concurrently perform
calculations and decide whether to replace their value assignments.
To this end, we use an ordered graph coloring structure, in which
agents are divided into subsets. Agents that belong to the same sub-
set hold the same color while agents from different subsets hold
different colors. The set of subsets is ordered (i.e., there is a map-
ping from colors to the smallest natural numbers – from 1 to 𝑁𝐶
where 𝑁𝐶 is the number of colors). The neighbors of each agent
must hold a different color than its own, and the agent must know
which of them are ordered before it and which after. In order to
generate this structure, the agents perform a Distributed Ordered
Color Selection (DOCS) algorithm, a simple distributed algorithm,
inspired by Barenboim and Elkin [1]:3

(1) Every agent that its index4 is smaller than all its neighbors,
selects the color 1 and sends it to its neighbors.

(2) An agent that received the colors of all its lower indexed
neighbors, selects a color with the smallest number, which
was not selected by one of its smaller index neighbors, and
sends it to all its neighbors.

(3) An agent that received a color from its neighbor, stores it.
We demonstrate the performance of DOCS by considering the

constraint graph depicted in Figure 1 (nodes represent agents and
depicted beneath each node, is the color it selected). Agents𝐴1 and
𝐴2 have no neighbors with smaller indexes, therefore they select
the color 1 (blue) and send messages to their neighbors. Among
these neighbors, agents𝐴3,𝐴4 and𝐴7 have no other neighborwith
smaller index, thus, they select the color 2 (red). Finally, agent 𝐴5

selects 1 and agent 𝐴6 selects the color 3 (green).
3We do not present this simple algorithm in algorithm format because of its simplicity
and since it is not a novel contribution.
4We assume that each agent has a unique index.

Algorithm 1 AMDLS
input: 𝑁 (𝑖) , 𝑃𝐶 (𝑖) , 𝐹𝐶 (𝑖)

1. 𝑠𝑐𝑖 ← 1;
2. 𝑣𝑁 (𝑖 ) ← {0, 0, . . . , 0}
3. 𝑣𝑎𝑙𝑢𝑒𝑖 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑣𝑎𝑙𝑢𝑒 ;
4. send(𝑣𝑎𝑙𝑢𝑒𝑖 , 𝑠𝑐𝑖 ) to 𝑁 (𝑖) ;
5. while stop condition not met do
6. when received (𝑣𝑎𝑙𝑢𝑒 𝑗 ,𝑠𝑐 𝑗 ) from 𝐴𝑗

7. update 𝑙𝑜𝑐𝑎𝑙_𝑣𝑖𝑒𝑤 and 𝑣𝑁 (𝑖 )

8. if consistent(𝑣𝑁 (𝑖 ) , 𝑠𝑐𝑖 , 𝑃𝐶 (𝑖), 𝐹𝐶 (𝑖))
9. 𝑣𝑎𝑙𝑢𝑒𝑖 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑣𝑎𝑙𝑢𝑒 ;
10. 𝑠𝑐𝑖 ← 𝑠𝑐𝑖 + 1;
11. send(𝑣𝑎𝑙𝑢𝑒 ,𝑠𝑐𝑖 ) to 𝑁 (𝑖) ;

The properties of this algorithm are as follows: Let Δ denote the
maximal number of neighbors an agent can have, 𝛿 denote themax-
imal time a message is delayed, and 𝑡 denote the maximal iteration
time, which is 𝑜 (Δ).

Lemma 1. When DOCS converges, each agent has selected a color
and stored the colors of all its neighbors.

Lemma 2. DOCS will converge after at most 𝑛 iterations. Thus, the
time for convergence will be at most 𝑛𝑡 + 𝛿 (𝑛 − 1).

It is important to mention that in practice, as we demonstrate
empirically, the convergence is much faster.

Lemma 3. The maximal number of colors selected after the con-
vergence of DOCS is Δ + 1.

The ordered coloring division achieved by this DOCS is used as
follows by AMDLS: Each agent holds a designated data structure
in which it counts the number of computation steps performed
by its neighbors. After each computation step, in which the agent
considers to replace its value assignment, it informs its neighbors,
which update their local data structure. An agent performs the𝑘-th
iteration, when the number of iterations performed by each of its
neighbors with a smaller color index than its own, is equal to 𝑘 and
all its neighbors with larger indexes than its own have performed
𝑘 − 1 iterations.

In more detail, each agent 𝐴𝑖 holds a vector of natural numbers
𝑣𝑁 (𝑖) , one number for each of its neighbors. In addition, it holds a
step counter 𝑠𝑐𝑖 for counting the steps of computation it performs.
At the beginning, all numbers in 𝑣𝑁 (𝑖) and 𝑠𝑐𝑖 are initialized to
zero. After each computation step in which the agent considers to
replace its value assignment, it increments 𝑠𝑐𝑖 by one. Further, the
agent includes its counter 𝑆𝑐𝑖 in each message that it sends. When
an agent receives a message from a neighbor 𝐴 𝑗 , it updates the
relevant entry in 𝑣𝑁 (𝑖) .

Algorithm 1 presents the pseudo-code of AMDLS, which it ex-
ecutes after each agent selected its numerated color. In AMDLS,
each agent 𝐴𝑖 holds its set of neighbors 𝑁 (𝑖), divided into two dis-
joint sets, one holding its the colors with smaller indexes than its
own 𝑃𝐶 (𝑖) and one holding the colors with larger indexes 𝐹𝐶 (𝑖),
such that 𝑃𝐶 (𝑖) ∪ 𝐹𝐶 (𝑖) = 𝑁 (𝑖) and 𝑃𝐶 (𝑖) ∩ 𝐹𝐶 (𝑖) = ∅. After initi-
ating the local counter 𝑠𝑐𝑖 and the vector of numbers 𝑣𝑁 (𝑖) (lines
1 – 2), the agent selects a value for its variable and sends it along
with 𝑠𝑐𝑖 to all its neighbors (lines 3 – 4). Then, as long as the algo-
rithm has not terminated, the agent reacts to messages it receives.
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Figure 1: A numerical graph color partition.

Eachmessage from a neighbor𝐴 𝑗 , includes a value assignment and
the neighbor’s counter 𝑆𝐶 𝑗 (line 5). After storing both, if 𝑠𝑐𝑖 and
𝑣𝑁 (𝑖) are consistent, the agent increments 𝑠𝑐𝑖 by one, selects its
value assignment, and sends a message including both to all of its
neighbors (lines 6 – 11).

The value assignment selected is always the one minimizing the
local constraint costs. In addition, 𝑠𝑐𝑖 is consistent with 𝑣𝑁 (𝑖) if and
only if, for each agent 𝐴 𝑗 ∈ 𝑁 (𝑖), if 𝐴 𝑗 ∈ 𝑃𝐶 (𝑖), then 𝑠𝑐 𝑗 = 𝑠𝑐𝑖 + 1
and, if 𝐴 𝑗 ∈ 𝐹𝐶 (𝑖), then 𝑠𝑐 𝑗 = 𝑠𝑐𝑖 . Notice that while 𝑃𝐶 (𝑖) and
𝐹𝐶 (𝑖) are not used in the pseudo-code, they are used for the consis-
tency check.This is also true for the counters 𝑠𝑐𝑖 , exchanged by the
agents. Intuitively, this consistency check ensures that (1) neigh-
boring agents do not replace assignments concurrently and (2) fol-
lowing each computation step of an agent, all its neighbors will
have an opportunity to perform a computation step before it per-
forms its next computation step. Formally, we prove the following
two propositions:

Proposition 1. AMDLS is weakly monotonic (i.e., each assign-
ment replacement improves the global cost of the complete assign-
ment held by the agents).

Proof: For each pair of neighboring agents, the order on which
they can replace their assignments is well defined. Thus, neighbor-
ing agents cannot replace assignments concurrently and, since the
problem is symmetric, the overall sum of constraints must not in-
crease when the local cost following an assignment replacement
does not increase. □

Proposition 2. AMDLS converges to a 1-opt solution.

Proof:Upon convergence, each agent will get a chance to consider
a replacement for its assignment. Thus, convergence implies that
even after all messages arrive, no agent can improve its local state
by replacing its value assignment. □

We now describe the start of a high-level trace for AMDLS op-
erating on the constraint graph presented in Figure 1. After the
agents have selected their colors, the algorithm is initialized. At
this time, the counters of all agents are equal to zero and this is also
true for the content of their vector holding the counters of their
neighbors. For example, 𝐴1 has one neighbor, hence 𝑣 [𝑁 (1) ] =
{⟨𝐴4:0⟩}. On the other hand, agent 𝐴4 has three neighbors and
𝑣 [𝑁 (4) ] = {⟨𝐴1:0⟩, ⟨𝐴5:0⟩, ⟨𝐴6:0⟩}. Moreover, 𝑃𝐶 (1) = ∅ and
𝐹𝐶 (1) = {𝐴4}. Similarly, 𝑃𝐶 (4) = {𝐴1, 𝐴5} and 𝐹𝐶 (4) = {𝐴6}.

After exchanging random assignments (that can be included in
the colors selectionmessages) the agents wait for their state to indi-
cate that it is their turn to perform steps of computation. Agents𝐴1,
𝐴2, and 𝐴5 can perform their first computation step concurrently,
since their 𝑃𝐶 set is empty and the counters of the neighbors in
their 𝐹𝐶 sets are equal to their own. Agent𝐴7 can perform its step
of computation when it receives themessage from𝐴1. At that time,
its own counter will be zero, while the counter it holds for 𝐴1 is
equal to 1. Agent 𝐴5 on the other hand must wait for a message
from both agents 𝐴3 and 𝐴4 before it can perform its second com-
putation step. At that time, 𝑣 [𝑁 (5) ] = {⟨𝐴3:1⟩, ⟨𝐴4:1⟩}. In order to
perform the second computation step, 𝐴2 must wait for messages
indicating that agents𝐴3,𝐴6, and𝐴7 performed their first compu-
tation step. Agent 𝐴1, on the other hand, has to wait only for the
message from 𝐴4 in order to perform its second computation step.

4.2 Asynchronous Anytime Mechanism (AAM)
The anytime framework for distributed local search algorithms
(ALS) [24] enables the agents to report the best solution traversed
by any synchronous algorithm (i.e., an algorithm where, at each
iteration, agents receive messages sent to them by all their neigh-
bors in the previous iteration, and send messages to all their neigh-
bors, which will be received in the next iteration). The framework
proposed requires a very low overhead in terms of runtime, mem-
ory, communication, and privacy. However, its dependency on the
synchronous structure is inherent and, therefore, it is not applica-
ble for asynchronous algorithms performing in an asynchronous
environment with message latency. In more detail, each anytime
message in ALS carries the iteration number, used to identify the
costs related to the same state of the algorithm, to generate solu-
tion costs and to notify agents of the best solution found.These are
not available when performing asynchronous algorithms.

The standard motivation for enhancing local search algorithms
with an anytime framework is the ability to perform exploration
heuristics that will improve the anytime global solution without
the risk of reporting a low-quality solution as might happen if such
explorative heuristics are used when the solution held by agents
at the end of the run is reported. However, in the presence of mes-
sage latency, as we demonstrate in our experimental study (see
Section 5), the latency itself generates exploration that improves
the global anytime solution. Thus, there is extra motivation to cap-
ture and report the best anytime solution.

We propose an Asynchronous Anytime Mechanism (AAM),
which uses a spanning tree as used in the synchronous anytime
framework proposed by Zivan et al. [24]. Algorithm 2 presents the
pseudo-code for the actions of agents within AAM. It is important
to notice that, unlike the pseudo-code presented in Algorithm 1,
which describes all actions of agents within an asynchronous dis-
tributed algorithm, here we are only describing the actions related
to the anytime mechanism, which are interleaved with any asyn-
chronous local search algorithm. Each agentmaintains a data struc-
ture, which we call 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 in which it stores its own value assign-
ment, the value assignments received from its neighbors, and the
value assignments of all the agents in the sub-tree that it is the root
of. For a leaf agent, the context includes only its own assignment
and the assignment of its neighbors. A change in 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 can be
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Algorithm 2 Asynchronous Anytime Mechanism (AAM)
input: 𝑃 (𝑖) ,𝐶 (𝑖) .

1. 𝑖𝑠_𝑙𝑒𝑎𝑓𝑖 ← 𝐶 (𝑖) is empty;
2.𝐶𝑆 (𝑖) ← ∅;
3. 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← ∅;
6. 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ←∞;
7. when is updated (𝑐𝑜𝑡𝑛𝑒𝑥𝑡𝑖 )
8. if 𝑖𝑠_𝑙𝑒𝑎𝑓𝑖 & cost(𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ) < 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡
9. send (𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 , cost(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 )) to 𝑃 (𝑖)
10. else
11. 𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = get_context(𝐶𝑆 (𝑖) ,𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 );
12. if 𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is not empty & cost(𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ) < 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡
13. send (𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , cost(𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 )) to 𝑃 (𝑖)
14. when receive 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑗 from 𝐴𝑗 ∈ 𝐶𝑖

15. add 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑗 to𝐶𝑆 (𝑖) ;
16. 𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = get_context(𝐶𝑆 (𝑖) ,𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑗 );
17. if 𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is not empty
18. if 𝑃 (𝑖) is not empty
19. send (𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , cost(𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 )) to 𝑃 (𝑖)
20. else
21. if cost(𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ) < 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡
22. 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡
23. 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ← cost(𝑛𝑒𝑤_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 )
24. send (𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ) to𝐶 (𝑖) ;
25. when receive 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑃 (𝑖 ) ,𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡𝑃 (𝑖 ) from 𝑃 (𝑖)
26. 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑃 (𝑖 ) ;
27. 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ← 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡𝑃 (𝑖 ) ;
28. remove contexts with cost ≥ 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ;
29. send (𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ) to𝐶 (𝑖) ;

generated either by actions of the algorithm or by the reception
of a context message from one of the children in the tree, and the
anytime mechanism reacts to such changes.

A leaf in the tree sends to its parent 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 and its local cost for
this context, 𝑐𝑖 with each change of 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑖 under the condition
that the cost of the context generated does not exceed the best cost
found for a solution so far (line 7 – 9 of Algorithm 2). When a non-
leaf agent receives a message from a child in the tree, it stores the
context included in the message in its context storage 𝐶𝑆 (𝑖) (line
15). Following any such message and after each context change,
the non-leaf agent seeks to generate a consistent context with all
contexts it received from all members of 𝐶 (𝑖) (its children in the
tree). If it is able to generate a consistent context, including assign-
ments to all variables in the contexts sent to it by its children, if
its cost is lower than the best cost found for a solution, it sends it
along with the corresponding cost to its parent (lines 11 – 13 and
16 – 19). When the root agent generates a consistent context of all
the variables in the problem, it checks whether its cost is the low-
est found so far. If so, it stores it as the current best solution and
sends it down the tree along with its cost (lines 21 – 24). Non-root
agents, which receive a best solution message including the best
cost, store them, filter out contexts with higher cost than the best
cost, and pass the message on to their children in the tree (lines 25
and 29).

Proposition 3. The solution reported by AAM will be a solution
with the minimal cost that can be composed of all contexts that were
sent to parents in the tree during the algorithm execution.

Proof: Since all contexts received by agents from their children in
the spanning tree are stored and all the consistent combinations
(which do not exceed the cost of the best solution found) and their
costs are sent up the tree, the root agent will consider all possible
solutions that have a chance to have a lower cost than the current
solution it is holding. Thus, a solution with the minimal cost must
be considered as well. □

Proposition 4. There can be a solution held by agents at some
time during the algorithm that is not considered by AAM.

Proof: Consider a problem including two neighboring agents, 𝐴1

and 𝐴2, each holding a single variable with two values in its do-
main 𝑎 and𝑏. In the beginning, both agents assign 𝑎 to their respec-
tive variables. At some iteration during the algorithm,𝐴1 replaces
its assignment to 𝑏 and sends a message to 𝐴2. Before 𝐴2 receives
the message from 𝐴1, indicating that it replaced its assignment, it
also replaces its assignment to 𝑏. Thus, one of the contexts that𝐴1

held included an assignment ⟨𝐴1, 𝑏⟩, ⟨𝐴2, 𝑎⟩, which indeed was the
state after 𝐴1 replaced its assignment and before 𝐴2 replaced his.
Nevertheless, 𝐴2 did not hold such a context, and therefore it will
not report a cost for it to its parent. □

We demonstrate in our empirical results that, indeed, a global
view anytimemechanism reports better solutions thanAAM.How-
ever, AAM’s results are better than the results of the assignments
agents hold in the final iteration of the algorithm.

Let 𝛾𝑖 denote the maximum between Δ𝑖 and the size of each
context received from 𝐶 (𝑖) and 𝜃𝑖 denote the largest number of
stored contexts received from a child in𝐶𝑖 or produced and stored
by 𝐴𝑖 .

Proposition 5. The maximal time (number of NCLOs) for an
agent 𝐴𝑖 to check if a new context can be generated is (𝜃𝑖𝛾𝑖 ) |𝐶 (𝑖) |+1.

Proof: This is the exhaustive result of checking the compatibility
of each context received from a child with each other and the con-
texts produced and stored by the agent. □

A corollary from Proposition 5 is that we prefer a tree with a
small branching factor, in contrast to ALS, where a BFS tree with
the smallest height is preferred.

5 EXPERIMENTAL EVALUATION
In order to evaluate the success of the proposed adjustments of lo-
cal search distributed algorithms and the asynchronous anytime
mechanism for environments including message latency, we used
an asynchronous simulator, in which agents are implemented by
Java threads. It included a mailing agent, which simulated the de-
lays of messages, as suggested by Zivan and Meisels [23]. For each
message, a delay in terms of the number of Non-Concurrent Logic
Operations (NCLO) was selected (the atomic logic operations in
these algorithms is the evaluation of the cost of a combination of
two assignments, i.e., a constraint check), and the message was
delivered to the agent it was sent to, after that agent had the op-
portunity to perform this number of logic operations.

We evaluated the algorithms on problems including 50 agents.
These included random uniform minimization DCOPs with den-
sity 𝑝1 = {0.2, 0.7} and on structured problems (i.e., graph col-
oring problems and scale-free networks). In each experiment, we
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Figure 2: Costs of solutions of asynchronous DSA with dif-
ferent lengths of message delays.

randomly generated 100 different problem instances. The results
presented in the graphs are an average of those 100 runs. In or-
der to demonstrate the convergence of the algorithms, we present
the sum of costs of the constraints involved in the assignment
that would have been selected by each algorithm every 10 NCLOs.
We performed t-tests to evaluate the significance of differences be-
tween all presented results.

Figure 2 includes the results of an asynchronous version of
DSA5 in which an agent initiates a computation step whenever it
receives a message. Each message sent was delayed for a number
of NCLOs that is selected uniformly between 0 and𝑈𝐵. The results
presented are the average global cost after each agent completed
the number of NCLOs specified on the 𝑥-axis. The version with
𝑈𝐵 = 0 is actually standard DSA since messages arrive instanta-
neously. It is clear from the results that, in most cases, message de-
lays have a positive exploration effect on the performance of DSA.
As expected, exploration and exploitation need to be balanced and,
in some cases, long delays (𝑈𝐵 = 1500) cause a deterioration in
the global cost.

In order to explain the relationship between message latency
and exploration, we present in Figure 3 the local cost of a single
agent during the run of the asynchronous DSA algorithm. We de-
pict both the agents view, which takes into consideration the as-
signments included in the messages it received, and a global view,
considering the actual assignments of the neighboring agents at
that time. It is apparent that the larger the latency, the larger the
difference between the two different views and, thus, the agents
perform actions that exploit obsolete information, which results in
an increase of the cost (i.e., exploration). This temporary increase
in utility is apparent for 𝑈𝐵 > 0. Notice that in the beginning of
the run (on the left), before the agents receive the assignments of
their neighbors for the first time, they think that they are not vio-
lating any constraints.Their views change dramatically with every
message received from a neighbor.
5DSA-B with 𝑝 = 0.7.
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Figure 3: Local costs of a single agent, solving sparse prob-
lems, from a local and global view, with message latency.
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Figure 4: Costs of solutions of asynchronous MGM with dif-
ferent lengths of message delays.

Similar results, to the results presented in Figure 2 for asynchro-
nous DSA, are presented in Figure 4 for the asynchronous MGM al-
gorithm.The results reveal that when messages are delayed, the al-
gorithm does not maintain its monotonic property. This is because
agents can perform calculation and select value assignments while
considering assignments of their neighbors that were replaced.
Nevertheless, losing monotonicity has a positive explorative effect
(i.e., the algorithms converge to solutions with higher quality, that
is, to solutions with lower cost). Once again, the length of delays
that cause the best explorative effect is problem dependent.

Figure 5 presents the results of the proposed AMDLS algorithm
compared to synchronous MGM, the only two monotonic algo-
rithms presented, solving the four types of problems with differ-
ent message latency. The lines in AMDLS start later since they are
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Figure 5: Costs of solutions of AMDLS andMGMwith differ-
ent lengths of message delays.
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Figure 6: Number of messages sent by the algorithms, per-
forming in environments with 𝑈𝐵 = 1000.

depicted only after the colors are selected by the agents and they
all select the first assignment. As expected, regardless of the mes-
sage delay, each algorithm converges to the same result in terms
of solution quality for each problem. The differences in solution
quality between the two algorithms were not significant, except in
scale-free networks. However, the significant difference between
the algorithms was in the time for convergence. In environments
with message latency, AMDLS converged faster and the differ-
ences grew relatively to the length of the delays.

Figure 6 presents the number of messages sent by the different
algorithms in scenarios with𝑈𝐵 = 1000. It is clear that in terms of
communication, the asynchronous versions of DSA and MGM are
most wasteful and, thus, their advantage in solution quality comes
with a cost in communication. On the other hand, AMDLS is most
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Figure 7: Comparison between DSA_SDP when combined
with AAM solving sparse random problems (𝑝1 = 0.2).

economic in its use of the communication network than the other
algorithms.

Figure 7 presents a comparison between the results reported for
an asynchronous version of DSA_SDP, which is an explorative ver-
sion of DSA that was reported to be successful when combined
with the synchronous anytime mechanism (ALS) [24]. In each
graph, we present the cost per iteration from a global view, the
anytime cost from a global view, and the cost of the solutions re-
ported by AAM. In the two upper graphs, there was no message
latency, while in the two bottom graphs, 𝑈𝐵 = 1500. In the ex-
periments where their results are depicted on the two left graphs,
agents performing AAM had no memory limit. In the experiments
that their results are depicted in the right graphs, each agent was
limited in memory to a size that is sufficient to store only 100 con-
texts. The agents discarded the contexts that were least similar to
their current context (last generated).

As expected, following Proposition 5 and its corollary, the re-
sults reported by AAM are with higher costs than the global view
anytime results, but they improve on the results per iteration. Sur-
prisingly, the results there was not much different in the quality of
the results between the unlimited- and limited-memory versions.

6 CONCLUSIONS
We investigated the implications of message latency on the perfor-
mance of distributed local search algorithms for solving DCOPs.
Our analysis identified major limitations to the empirical and the-
oretical properties of local search DCOP algorithms in the pres-
ence of message latency. We addressed those limitations through
approaches that are robust to latency. Therefore, these findings
increase the applicability of DCOP algorithms in the real world
where latency are always present.

In future work, we intend to investigate the effect of latency on
incomplete inference algorithms such as Max-sum [5].
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