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ABSTRACT
In multi-agent systems the main process responsible for obtaining
information about the environment is perception, generally this pro-
cess is performed passively regardless the agent’s intentional state.
However, especially when inserted in the real world, a frequent
problem is that agents have partial perception of the environment,
failing to perceive some relevant information. To circumvent this
problem, a solution is to actively take actions to perceive what is
of interest to the agent, for example, in a computer vision system,
the camera can be repositioned to have a better view of an object.
This work aims to develop an active perception model integrated
with the reasoning cycle of BDI agents. Experiments are performed
using BDI agents with ROS to command unmanned aerial vehicles
to analyze the benefits and impacts of using cognitive agents with
active perception to program robot intelligence.
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1 INTRODUCTION
One of the mechanisms that agents have to gather information
about the state of the environment is the perception, which is re-
sponsible for sensing the world and translating these information
into high-level abstractions suitable for agent deliberation. As pro-
posed in [9], perception can be classified into two different types,
the bottom-up (passive) or top-down (active) approach. Passive per-
ception is described as a process that does not require the agent
to deliberate about its sensing needs, it perceives the environment
in the same way independently of its own internal state. Active
perception was characterized by being goal-driven, which means
that the goals of the agent determine what needs to be sensed and
then a proper action is taken in order to perceive what is needed.

In the usual BDI agent model passive perception is taken into
account [7, 12]. The regular BDI architecture assumes that the agent
knowledge is updated. However, it is possible that agents have
partial or outdated information about the environment, specially
when they are inserted in the real world. Therefore, it would be
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advantageous for the agents to update or acquire knowledge about
the world before deciding their actions.

This work proposes a model for active perception integrated
with the BDI architecture. Since the advantages of active percep-
tion are highlighted in complex real world scenarios, the proposed
model is evaluated in real applications. Therefore, the active percep-
tion mechanism developed is evaluated using simulated unmanned
aerial vehicles (UAVs) as testbed.

The reminder parts of this paper are organized as follows. Sec-
tion 2 provides the literature review for what is discussed in this
work; Section 3 describes the proposed active perception model;
Section 4 details some design aspects; Section 5 describes a possible
implementation for the active perception mechanism; Section 6
reports the result of our experiments; and Section 7 outlines the
conclusions and future works.

2 RELATEDWORK
In this work, active perception is reviewed in the context of intelli-
gent agents. Firstly, the review will address works that have a more
theoretical point of view, such as [9, 11], then it will concentrate
on practical works, like [1, 2, 5, 6, 10].

In [11] the authors point out the lack of theories and general
models for perception in MAS, despite its importance, highlight-
ing that most MAS adopt a simplistic model for perception or ad
hoc solutions. Therefore, they proposed a generic model for active
perception in situated MAS, which is composed of three functional
modules: sensing, interpreting, and filtering.

Sensing is the process of mapping the state of the environment
to a representation, which depends on two factors: foci, and per-
ceptual laws. The latter is the set of environmental constraints of
the representation, e.g. something behind an obstacle can not be
perceived, in the physical world the perceptual laws are intrinsic to
the environment. The former, foci, is the direction of perception,
which allows the agent to choose what type of information it wishes
to perceive, e.g. an agent can select to smell or see. Following, in-
terpreting is the translation of a representation into a perception,
which is an expression that is understandable by the machinery
of the agent. Lastly, filtering is the process of selecting only the
perceptions that match a specific criteria. The authors make the
following comparison to biological systems: “Focus selection can be
viewed as choosing a particular sense to observe the environment,
while filter selection is comparable to the direction of attention,
both driven by the current interests”.

This model of active perception is interesting since it allows the
agent to direct its focus to relevant aspects of the environment.
However, it considers that what the agents want to perceive is
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directly available, which in physical systems may not be true, e.g.
using a visual focus the object of interest may be out of range. One
solution for this problem would be to include a mechanism in the
foci step to ensure that the agent is able to perceive what it wishes,
e.g. the visual system could be repositioned in order to be in range
of the object of interest.

In [9], the authors emphasize the importance of the perception
process for intelligent agents, since it is the main mechanism used
by agents to gather knowledge about the environment, and most
of the decisions taken by the agents are based on what it knows
about the environment. Then, it is pointed out that the definition
of an agent’s perception (sensing) behaviour usually consists on
defining the strategies for two factors: dynamism, frequency of
sensing, and selectivity, choosing what to sense. The authors argue
that the answer for the sensing behaviour lies in active (goal-driven)
perception, and that situational awareness (SA) is an appropriate
approach for solving active perception. Therefore, they proposed
a SA mechanism that enables the agent to switch between goal-
driven and data-driven behaviour, where the top-down goal-driven
process works by projecting what is known about the environment
into the near future revealing what must be sensed, in the case of
BDI which beliefs must be updated. One missing point of this work
is that it does not address the problem of integrating it within any
agent’s architecture.

In [10], an active perception framework was developed in order
to enable an autonomous car to redirect its sensors to focus on
relevant surrounding area, in urban traffic scenarios. To accomplish
this, three main criteria are taken into account, the importance of
other vehicles, the available information about different vehicles,
and the sensor coverage of the vehicle’s relevant surrounding area.
However, the proposed solution solves only the active perception
problem specific to its respective use case.

Despite the existence of some work exploring the concept of
active perception, there are almost none that addresses the problem
of integrating active perception within agents reasoning cycle in a
more general way. One exception is [6] where the authors proposed
a solution to integrate active perception at the architecture level of
a BDI agent. The architecture was modified in order to apply active
perception plans to reveal missing beliefs, unknown or outdated,
that are used as preconditions for plans. The authors [6] proposed
four algorithms: IAP, ITAP, SAP, and DSAP. The first one, IAP, re-
veals all the missing beliefs of the agent, thereby, it guarantees that
the optimal plan is selected. However, since it is likely to perform
unnecessary active perception plans its performance is not ideal,
except when executing active perception plans that have no cost.
The second one, ITAP, allows the agent to choose between perform-
ing an active perception plan or a feasible plan, then if perception
plans have cost it may choose, at any time, to perform a feasible
plan instead of performing all the perception plans. With this, the
algorithm is able to reduce the cost of the active perception, but it is
not guaranteed that the optimal plan will be selected. The third one,
SAP, demands that the agent commits to a plan before performing
the active perception plans that reveals it, and then if it becomes
feasible that the agent can choose to execute it or select another
plan to reveal. Lastly, DSAP, also demands the agent to commit to
a plan to be revealed and additionally allows the selection of the or-
der of execution of the active perception plans that reveal it. These

algorithms seem to be a suitable approach to solve the problem of
integrating active perception with the BDI architecture. However,
the paper lacks information related with how the active perception
mechanism was developed and properly integrated within the BDI
reasoning cycle. Besides, there is no implementation available or
experimental results showing its effectiveness.

3 ACTIVE PERCEPTION MODEL
This section describes the model of active perception that is being
proposed in this work. It starts with some definitions and is followed
by a modified BDI reasoning cycle that considers active perception.

3.1 Definitions
Beliefs are the representation of the information that the agent
has about the world or itself. They can be acquired via perception,
messages from other agents, or reasoning. In addition to this defini-
tion, beliefs can be further distinguished into: timed beliefs, their
difference is that they have a lifetime, when they are not updated
for longer than its lifetime they are considered outdated and, there-
fore, it can no longer be trusted; active perception beliefs (APB)
are subject of active perception; APBs can be further differentiated
in timed active perception beliefs (TAPB), which are subject
to active perception and have a lifetime; and missing beliefs are
outdated beliefs or those not included in the agent’s belief base yet;

Desires are the states of the world the agent wants to achieve
but is not committed to yet. A particular type is active perception
desires (APD): the desire to change the state of a missing belief
into an updated belief.

Intentions are desires the agent is committed to accomplish.
A particular type is active perception intentions (API): the in-
tention to change the state of a missing belief into an updated
belief.

Plans represent a behaviour strategy (e.g. a sequence of actions)
to achieve some intention. A particular type is active perception
plans (APP): a plan to achieve an API. Revealing is the process
of executing an APP to change the state of missing beliefs into
updated beliefs [6].

Active perception selection pressure Two important aspects
when designing the active perception mechanism are the resulting
frequency at which APPs are performed and the credibility of each
active perception belief. The former is important because applying
APP constantly results in more computational resources being used,
and less time being spent in performing regular plans. In real world
scenarios this is aggravated, since performing an APP implies in
consuming resources.

The credibility of APB is the probability of an APB being cor-
rect, and it is directly related to the frequency at which APPs are
performed and the dynamism of the environment. Suppose that an
agent has the APB that it is daytime and it has no information about
its location and current season, if it executes an APP to verify if it
is daytime at 1:00 pm and then only performs an APP again at 7:00
pm, it could not be sure if it was still daytime at 6:30 pm, since the
sunset depends on the region of the world and the current season,
therefore, in this situation the credibility of this APB would be low.
However, if an APP is performed within an interval of 5 minutes
or if the agent knew in which region of the world it is located and
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what is the current season, it would be more sure if it is daytime
at 6:30 pm, thus, in this new scenario the credibility of this active
perception belief would be high.

It is important to find the right balance between the active per-
ception plans frequency and active perception beliefs credibility.
However, there is no right answer for this trade off, since it is di-
rectly tied to the dynamism of the environment, and each specific
use case. For future reference this trade off will be called active per-
ception selection pressure, when the APP frequency and the APB
credibility is high the active perception selection pressure is also
high, and when they are both low the active perception selection
pressure is also low.

3.2 Modified reasoning cycle
The traditional BDI architecture proposed by Wooldridge [12] con-
sider that the agent has all the necessary beliefs required to de-
liberate which intentions it should commit to achieve. However,
especially in real world scenarios, this assumption is not reasonable
since beliefs may be unknown or outdated, and if this is not taken
into account, the agent deliberation process may lead to the selec-
tion of suboptimal actions. One approach for solving this problem
is to drop the assumption that all beliefs are known and updated,
and based on the agent internal state (beliefs, desires, and inten-
tions) try to actively perceive what is required for the deliberation
process.

As an example of the process of active perception, lets analyze
a scenario of a search and rescue mission using unmanned aerial
vehicles (UAVs). In this context, the agent is an UAV that carries a
buoy and a camera facing down. Suppose that the agent receives a
message informing the location of several drowning victims, when
this happens it immediately takes off to deliver a buoy to the nearest
victim. However, when it reaches the location of the first victim it
does not assume that the belief of the victim’s location is always
known and updated, in other words, consider that the victim’s
location is an timed active perception belief. This is because the
victim may have already drowned, moved or has already been
rescued and, in these cases, it would not be wise to drop the buoy
for a victim that is not there, if this happens the agent should fly to
the next nearest victim and try to rescue it instead. Thus, before
dropping the buoy, the agent actively tries to perceive if the victim
is in the informed position.

With the process of practical reasoning proposed by Wooldridge
[12] as the starting point, the active perception can be included as an
intermediary process between the options generating function and
filter function, this can be seen in listing 1 (lines 6–10 are included
for active perception).

Listing 1: BDI reasoning cycle with Active Perception
f u n c t i o n a c t i o n ( p : P ) : A
beg in

B = b r f ( B , p ) # b e l i e f r e v i s i o n f un c t i o n
D = op t i on s ( B , I ) # p o s s i b l e d e s i r e s

APD = opt ionsAP (D , APB )
i f ( has APD)

API = f i l t e r A P (APB , APD , I )
APB = exe cu t e ( API )
r e t u r n a c t i o n ( p e r c e i v e ( ) )

e l s e
I = f i l t e r ( B ,D , I ) # commitment to a d e s i r e
r e t u r n exe cu t e ( I ) # a c t i o n s to a ch i e v e I

end

Based on the new desires and active perception beliefs (APB), an
active perception options generating function (optionsAP) is applied
to verify if any of the APB that are related to the agents desires are
missing beliefs, if there are any missing beliefs the agent acquire an
active perception desire (APD) to reveal them. In the context of the
UAV example, lets assume that the belief of the victim’s location has
a lifetime of 1 minute, in case the agent reach the victim’s position
after 1 minute or more of receiving the information, that belief can
be considered a missing belief, thus it would generate an APD to
verify if the victim is in the indicated position.

If there are any APD, an active perception filter function (filterAP)
generates an active perception intention (API) to reveal the missing
beliefs. In the example of the UAV, since there is only one APD,
the filterAP function would commit to the desire of verifying if the
victim is in the indicated location or in a small area around it.

Lastly, based only on the API, the execute function select the ac-
tions that tries to reveal the missing beliefs. For the UAV, this would
represent turning on the camera, running recognition algorithms,
tracing a flight path, and actually flying. In the case where AP is
triggered, the algorithm starts again (line 10) to perceive the new
environment and properly decide what to do based on that.

As pointed out, our proposal maintains all the steps of the tra-
ditional BDI reasoning cycle, resulting on a model that contains
a mix of passive and active perception. The advantages of both
approaches are leveraged, and the disadvantages of each method
are mitigated by the other.

4 DESIGN OPTIONS
The concrete implementation of the proposed abstract model can
be done in several different ways. This section discusses some of
these alternatives.

4.1 Plans representation
Plans play a major role when programming BDI agents since they
contain instructions to fulfill an intention. Moreover, they are in-
trinsically related to the active perception mechanism. In this work,
plans are composed of a name, an associated desire it is a candidate
to fulfill, a sequence of instructions (plan body), and the context
where it is suitable. A single desire may have multiple different
plans (called relevant plans), those that are suitable in a particu-
lar context are called applicable plans. When a particular plan is
chosen for execution, we say that the agent is committed to the
corresponding desire, and the agent now intends it. In this section,
plans are written as follows to help us to exemplify the proposal
and its alternatives:
<plan name> for <desire>:

preconditions = <belief> and <belief> and ...
plan body = <action> and <action> and ...

4.2 Distinction of Beliefs
The first aspect that is taken into account is how to differentiate reg-
ular beliefs from active perception beliefs (APB). Two approaches
are considered: annotated plans and annotated beliefs. The anno-
tated plans approach (1) consists of marking plans as requiring
active perception and considering all beliefs in their preconditions
as APB. Therefore, before selecting a plan for execution, it must be
checked whether the precondition beliefs are missing beliefs, for
those that are considered as missing, an APP must be carried out
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if one is available, and if not, it is treated as a regular belief. The
following plan illustrates this case, where plan1 is marked with
[ap] indicating that belief1 and belief2 are both APB.
plan1[ap] for desire1:

preconditions = belief1 and belief2
plan body = action1 and action2

The annotated beliefs approach (2) consists in marking, individ-
ually, the beliefs in the preconditions as being APB, thus for the
marked ones an active perception plan is performed if they can
be considered missing. This alternative is illustrated below, where
only belief1 is marked with [ap], indicating that just this belief
is subjected to active perception.
plan1 for desire1:

preconditions = belief1[ap] and belief2
plan body = action1 and action2

Among these two alternatives, marking of beliefs (2) seems to be
a more natural and practical approach since the necessity of active
perception is based on the characteristics of beliefs, and not plans.
Besides, when marking the whole plan (1) the ability to distinguish
regular beliefs and active perception beliefs is lost.

4.3 Analysis of relevant plans
Another designing choice that has to be made is (1) if all the active
perception plans referring to all the available relevant plans should
be performed beforehand, and only then check if the preconditions
are satisfied (grouped mode), or (2) to start by checking the context
of the relevant plans one by one and only perform active perception
when it is needed (individual mode).

Taking listing 2 as an example, suppose the agent has the desire1
which has two relevant plans: plan1 and plan2. The grouped mode
approach consists to perform the active perception plans for belief1,
belief3, and belief4 and only then verify if the contexts ( belief1[ap]
and belief2 ) and ( belief3[ap] and belief4[ap] ) are satisfied. The
individual mode consists to first execute the active perception plan
just for belief1 and check if the context ( belief1[ap] and belief2 ) is
fulfilled and only if it fails proceed to perform the active perceptions
plans for belief3 and belief4.

Applying active perception for all relevant plans grouped is
similar to the algorithm IAP proposed in [6], where the authors
concluded that IAP guarantees that the best plan is selected, but
it is only optimal when all the missing beliefs must be revealed in
order to choose the most advantageous plan, or when the active
perception plans have no cost. This conclusion has the assumption
that the BDI reasoning cycle algorithm for selecting a relevant plan
to commit guarantees that the best plan is selected, however, it is
not uncommon for BDI architectures to have strategies that can not
assure that the best plan is selected. Thereby, the grouped mode
can only be considered the best choice when all these conditions
are met, otherwise it may perform unnecessary active perception
plans.

Listing 2: Plans example
p lan1 f o r d e s i r e 1 :

p r e c o n d i t i o n s = b e l i e f 1 [ ap ] and b e l i e f 2
p lan body = a c t i o n 1 and a c t i o n 2

p l an2 f o r d e s i r e 1 :
p r e c o n d i t i o n s = b e l i e f 3 [ ap ] and b e l i e f 4 [ ap ]
p lan body = a c t i o n 3 and a c t i o n 4

4.4 Context verification
Another important aspect to consider is the context verification,
this can be done with two distinct methods. The first method (1)
is to reveal all the missing beliefs and only then check whether
the context is true or false. Using listing 2 as an example, in plan2
the beliefs belief3 and belief4 would be revealed and only then the
whole context would be checked, in the case that belief3 is false it
is unnecessary to perform an active perception plan for belief4.

This problem is mitigated with the second method (2), in the case
the relevant plans are being analyzed in the individual mode, which
consists in verifying one-by-one each missing belief after they are
revealed whether the context can still be true. With listing 2 as an
example, when belief3 is revealed it is verified if it is true or false
and if it is false no AP plans would be performed for belief4.

Thus, method (2) is advantageous because it might avoid per-
forming unnecessary active perception plans. However, the process
of verifying the context more frequently could increase the compu-
tational complexity or the required processing power.

4.5 Timed active perception belief lifetime
An important characteristic of the proposed model is the possibility
of a belief being outdated. It is thus essential to consider how a
belief would change its state from updated to outdated.

A first method (1) to out-date beliefs is to add amark into the plan
or belief to indicate for how long the belief should be considered
updated once revealed. In the case of annotated plans, such as in
listing 3, the whole context should be revealed and verified within
the time limit, in this case 1000𝑚𝑠 . For annotated beliefs, like in
listing 4, each belief has a lifetime, i.e., how long it is updated after
revealed. In the example, belief1 is considered outdated after 1000𝑚𝑠

and belief2 is considered outdated after 3000𝑚𝑠 .
Some variations can be considered for the notion of being out-

dated. Another method (2) is to consider beliefs updated from the
revealing moment until a plan is selected, once used (to select a
plan) it becomes outdated. In the case that the relevant plans are
being checked in the individual mode (section 4.3), an alternative (3)
is to consider beliefs as updated while the context is being verified.

All three alternatives seem reasonable, but the period a belief is
updated impacts on the active perception selection pressure and
consequently the AP belief credibility.

Listing 3: Annotated plans with lifetime
p lan1 [ ap , 1 000 ] f o r d e s i r e 1 :

p r e c o n d i t i o n s = b e l i e f 1 and b e l i e f 2
p lan body = a c t i o n 1 and a c t i o n 2

Listing 4: Annotated beliefs with lifetime
p lan1 f o r d e s i r e 1 :

p r e c o n d i t i o n s = b e l i e f 1 [ ap , 1 0 0 0 ] and b e l i e f 2 [ ap , 3 0 0 0 ]
p lan body = a c t i o n 1 and a c t i o n 2

4.6 Revealing order
Another aspect to take into account is the execution order of the
active perception plans. A possibility (1) is to follow the order in
which the active perception beliefs appear, another method (2) is to
perform the active perception plans for the AP beliefs with greater
lifetime first.
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Using listing 4 as example, for the first approach the active per-
ception plan for belief1 would be performed before the AP plan for
belief2. For the second method, since belief2 has a greater lifetime
it would be revealed before belief1.

The second method may increase the chances of the context
being valid until all beliefs are revealed. Other than this, there is
no clear advantages or disadvantages between both methods.

4.7 Selected Options
The design options we have so far are: three different approaches
for defining the active perception beliefs lifetime, two distinct ways
to indicate beliefs subjected to AP, two analysis of relevant plans,
two context verification, and two revealing orders. If all the options
were combined it results in 48 possibilities. However, there are
two combination of options that can not be together: revealing
the relevant plans in grouped mode with beliefs lifetime being
valid until the end of context, and relevant plans in grouped mode
with context verification being done one by one. Hence, there are
28 valid combinations of design options, therefore, it would be
exhaustive to analyze all possible combinations. Thus, considering
the advantages and disadvantages of each design option presented
in the previous sections, Table 1 contains the combinations that
look most promising.

Approach 1 uses annotated beliefs, it reveals all the relevant
plans beforehand, it only checks the context after all the revealing
is completed, the beliefs do not expire until all the relevant plans
are analyzed, and the active perception plans are applied in the
order they appear. This makes this approach the one with less active
perception selection pressure out of the five, since all AP beliefs are
revealed beforehand and they last until all relevant plans context
are analyzed or one is selected. As a result, active perception plans
are performed less frequently, all of them are executed exactly once
at the beginning of the process. This method is advantageous when
all active perception beliefs would need to be revealed anyway,
otherwise, it would execute unnecessary AP plans, which can be
really costly in real world scenarios, and when the environment is
not very dynamic, since its AP beliefs credibility is low.

Approach 5 uses annotated beliefs, it reveals the relevant plans
individually, the context is verified after revealing each missing be-
lief, the beliefs expire with time, and the active perception plans are
applied for the AP beliefs with greater lifetime first. This results in
this approach being the one with more active perception selection
pressure out of the five. With this, active perception plans are per-
formed more frequently, since active perception beliefs can expire
between checking the relevant plans. This method is advantageous
when it is not required that all AP plans are executed. And it proves
to be advantageous in more dynamic environments, since its AP
beliefs credibility is high.

Approaches 2, 3, and 4 are in between 1 and 5 in relation to the
active perception selection pressure. In any case, it is difficult to
assess objectively which method is better, since each approach can
prove to be more efficient in different situations. It is possible to
notice that designing an active perception mechanism does not
have an obvious answer and it is not a trivial task.

5 IMPLEMENTATION
The proposed model for active perception is implemented and inte-
grated with Jason programming language [3] in order to evaluate
the proposal in practical scenarios.

The implementation of our 5 selected approaches by re-implementing
the Jason interpreter would involve a lot of steps and it would not
be a trivial task. Since it is not yet clear that the proposed model
is satisfactory and which of the approaches presented in section 4
is the better, we opted for a simpler and faster implementation
method based on plan transformation. Once different approaches
are tested and evaluated, it would be interesting to use the Jason
architecture modification as a definitive solution.

The proposed transformation algorithm can be seen in listing 5.
In summary, before executing the agent logic, the syntactic substi-
tution algorithm checks which plans have active perception beliefs
as precondition and, based on that, new plans are created using
Jason directives [4]: “directives are used to pass some instructions
to the interpreter that are not related to the language semantics,
but are merely syntactical.”

Listing 5: Syntactic substitution algorithm
procedure S y n t a t i c S u b s t i t u t i o n ( P l a nL i b r a r y ) :

l e t PlansWithAp be a l i s t

for a l l P l an s in P l a nL i b r a r y :
i f Plan has ap b e l i e f in c on t e x t :

PlansWithAp . add ( P lan )

P l a nL i b r a r y = D i r e c t i v e ( P l anL i b r a ry , PlansWithAp )
return P l a nL i b r a r y

The application of the syntactic substitution algorithm in the
Jason program represented in listing 6 would identify that one
of the relevant plans for the desire !g contains active perception
beliefs as precondition. We have different transformations for each
approach discussed in the last section. We also assume that the
original program has APP for APB as shown in listing 7.

Listing 6: Jason program before syntactical changes
! g .
+ ! g : b [ ap ( 1 0 0 0 ) ] & d [ ap ( 3 0 0 0 ) ] <− . print ( "GOAL1" ) .
+ ! g <− . print ( "GOAL2" ) .

Listing 7: Active perception plans
+?b [ ap ] <− . . . / / some code to r e v e a l b
+?d [ ap ] <− . . . / / some code to r e v e a l d

By applying the syntactical substitution algorithm with Direc-
tive2 (approach 2 in Table 1) in the Jason program shown in listing 6,
we have the program of listing 8. The triggers +!g are replaced by
+!g[rp]. A new plan with trigger +!g[ap] is added, it calls the plan
update for each belief marked as requiring active perception, and
then sets up the intention !g. The update plan is added and it is
responsible for initiating the active perception plan, this takes place
by triggering an event like +?b[ap] for the belief used as argument.
However, this only occurs when the belief is missing. To check
whether a belief is outdated, the internal action ap.updated is used,
it is true when the AP belief is updated and false otherwise.

When applying the syntactic algorithm with the Directive3 in
the program illustrated in listing 6, it results in listing 9. The event
!g is replaced by !g[ap, l_1], the plans +!g[ap, l_x] are added in
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Table 1: Active perception mechanism options

Approach Annotation Mode Context
Verification

Belief
Expiration

Revealing
Order

AP Selection
Pressure

1 Beliefs (2) Grouped (1) All (1) Relevant Plans (2) Natural (1) +
2 Beliefs (2) Grouped (1) All (1) Time (1) Natural (1) ++
3 Beliefs (2) Individual (2) All (1) Time (1) Natural (1) ++
4 Beliefs (2) Individual (2) One by One (2) End of Context (3) Greater lifetime (2) ++
5 Beliefs (2) Individual (2) One by One (2) Time (1) Greater lifetime (2) +++

Listing 8: Jason program after syntactical changes (Ap-
proach 2)
! g [ ap ] .

+ ! g [ ap ]
<− ! update ( b [ ap ( 1 0 0 0 ) ] ) [ ap ] ;

! update ( d [ ap ( 3 0 0 0 ) ] ) [ ap ] ;
! g [ rp ] .

+ ! g [ rp ] : b [ ap ( 1 0 0 0 ) ] & d [ ap ( 3 0 0 0 ) ] <− . print ( "GOAL1" ) .

+ ! g [ rp ] <− . print ( "GOAL2" ) .

+ ! update (X[ ap ( T ) ] ) [ ap ] : not ap . updated (X , T ) <− ?X[ ap ] .
+ ! update ( _ ) [ ap ] .

order to call the update plan for the active perception beliefs used
as precondition of the respective +!g, the plan’s triggers +!g are
changed to +!g[rp, l_x], with 𝑥 being the number of the plan, and
an additional +!g[rp, l_x] is added for each existing +!g[rp, l_x] in
order to call +!g[rp, l_x+1]. The update plan is the same used by
Directive2.

Listing 9: Jason program after syntactical changes (Ap-
proach 3)
! g [ ap , l _ 1 ] .

+ ! g [ ap , l _ 1 ]
<− ! update ( b [ ap ( 1 0 0 0 ) ] ) [ ap ] ;

! update ( d [ ap ( 3 0 0 0 ) ] ) [ ap ] ;
! g [ rp , l _ 1 ] .

+ ! g [ ap , l _ 2 ] <− ! g [ rp , l _ 2 ] .

+ ! g [ rp , l _ 1 ] : b [ ap ( 1 0 0 0 ) ] & d [ ap ( 3 0 0 0 ) ] <−. print ( "GOAL1" ) .

+ ! g [ rp , l _ 1 ] <− ! g [ ap , l _ 2 ] .

+ ! g [ rp , l _ 2 ] <− . print ( "GOAL2" ) .

+ ! update (X[ ap ( T ) ] ) [ ap ] : not ap . updated (X , T ) <− ?X[ ap ] .
+ ! update ( _ ) [ ap ] .

By applying syntactic substitution in Jason it is possible to imitate
the behavior of the proposed reasoning cycle to include active
perception. This approach advantage is that it does not require that
all the details of Jason’s reasoning cycle implementation are known
to experiment the alternatives of active perception. However, since
syntactic substitution is not exactly equivalent to modifying the
reasoning cycle, the active perception mechanism is not guaranteed
to work correctly for all situations.

All the implementations related to the active perception model
discussed in this chapter can be found at ommittedbyblindreview.

6 EXPERIMENTS
To evaluate the proposed active perception mechanism, a MAS
composed of UAVs is used to simulate a search and rescue scenario
for drowning victims, similar to the example described in section
3.2. Three experiments are performed. The first consists of adding
active perception to the action of dropping a buoy. In the second ex-
periment we add active perception to the communication between
UAVs. The third is a combination of the other two. The code of the
experiments and more details to reproduce it can be found at x.

In the experiments, Gazebo is used to simulate a virtual world
with victims, where the scouts cover an area looking for victims in
a boustrophedon path, and the rescuers drop buoys for the victims
(figure 1). PX4 is used as flight controller emulator. Mavros is used
to interface PX4 with ROS, and the Jason-ROS package [8] is used
to integrate Jason agents with ROS.

Figure 1: Gazebo search-and-rescue world

6.1 First scenario
The first scenario is almost the same as the search-and-rescue mis-
sion described in section 3.2. The difference is that victims are
guaranteed to drown after a predetermined time.

Active perception is used in the plan to drop buoys, in the plan
precondition we have a timed active perception belief (TAPB) of the
victim’s position. Before dropping a buoy, the agent checks whether
the belief of the victims position is a missing belief and, if it is, an
active perception plan is executed to reveal it. In this scenario, the
AP plan consists in turning the camera on and checking whether
the victim is still in the informed position.

To understand how the dynamism of the environment influences
the importance of active perception, the missions are performed for
the two different victims drowning times as shown in table 2. The
drowning time of the first configuration were chosen in order to
leave the environment dynamic enough for some victims to drown
during the execution of the mission, while the times in the second
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configuration were chosen so that the mission is completed before
any victims drown. The first configuration is thus more dynamic
and the second less dynamic.

Table 2: Victims drowning times

Setup Drowning Time [ms]
Victim 1 Victim 2 Victim 3 Victim 4 Victim 5 Victim 6

1 70000 45000 48000 80000 60000 85000
2 100000 100000 100000 100000 100000 100000

To assess the results of the missions, the main aspect taken
into account is the number of victims rescued and, subsequently,
the efficiency of the system, which is calculated by dividing the
number of victims rescued by the number of buoys dropped. Since
the simulation is non deterministic, the results may vary for each
run, thus each experiment setup is repeated five times and the
statistical results are presented.

For the active perception mission, two different values are used
for the lifetime of the timed active perception belief (TAPB): a
shorter and a longer time, 5000 and 25000𝑚𝑠 , respectively. To mea-
sure the impacts of using AP, the missions are repeated with and
without AP and their results are compared. Also, it is performed
for both AP approaches from table 1, which the implementations
are described in section 5. The results obtained with the respective
configurations are presented in table 3.

Table 3: Scenario 1 results

Experiment Setup AP TAPB
lifetime [ms]

Victims rescued Buoys dropped Efficiency
w/ modeMean Std Mode Mean Std Mode

1 1 NO - 2.80 0.45 3 6.00 0.00 6 0.5
2 1 Approach 3 25000 2.80 0.45 3 4.00 0.71 4 0.75
3 1 Approach 3 5000 3.80 0.45 4 4.00 0.71 4 1
4 1 Approach 2 5000 3.60 0.89 4 3.80 0.45 4 1
5 2 NO - 6.00 0.00 6 6.00 0.00 6 1
6 2 Approach 3 5000 6.00 0.00 6 6.00 0.00 6 1

For the first victims setup, experiments 1 to 4, it is possible to
notice that experiments 1 and 2 had a worse result than 3 and 4, with
most of the time 3 and 4 victims being rescued, respectively. In the
second victims setup, experiments 5 and 6, there are no difference
in the number of victims rescued between the experiment with
active perception and the one with only passive perception.

In experiment 1, UAVs do not perform active perception before
dropping the buoy. The rescuers sometimes drop a buoy for victims
who have already drowned and, when a buoy is dropped, the UAV
must return to its initial position and land to load a new buoy. This
consumes time that could be used to rescue a victim who has not
yet drowned.

Experiment 2 has a similar problem, since the TAPB lifetime is
long, the AP pressure is not enough and sometimes the rescuers do
not perform AP when necessary. Again, time is wasted dropping
buoys for victims who have already drowned.

In experiment 3, the TAPB lifetime is shorter and consequently
the AP pressure is higher. AP thus is always carried out before
throwing a buoy which ensures that no buoy will be thrown in
vain, increasing the efficiency of the mission. In this specific case,
constantly performing active perception plans does not affect the
agent’s performance, since the AP plan has almost no cost, it con-
sists only of turning the camera on and off and waiting 1 second.

For experiment 4, AP is replaced from approach 3 to approach
2, which has no impact on the mission result. This is expected,
since the agent has only one relevant plan to drop the buoy that
has a TAPB as a precondition, with the only difference between
approaches 2 and 3 being how the relevant plans are revealed.

In experiments 5 and 6 the environment does not change fast
enough for AP to have any impact on the mission, and since per-
forming the AP plan has almost no cost it does not bring any
disadvantages for the mission.

6.2 Second scenario
The second scenario is a modification of the first scenario, now
the victims do not drown and active perception is not applied be-
fore dropping buoys, and instead of assuming that the network
connection between the agents is constant and without losses the
connection is limited to a predefined distance.

To consider AP in this scenario, a TAPB indicating if the UAV
is in communication range is added in plans that send messages.
Before sending messages the agent checks if the communication
range belief is a missing belief and, if it is, the agent performs an
AP plan to reveal it. The AP plan consists of flying to a predefined
position where the UAV has communication range with most of
the mission area. The communication range is limited to 10𝑚 and
the communication range TAPB lifetime is 1000𝑚𝑠 in the scout
agent. The AP mission is repeated for different TAPB lifetimes in
the rescuers agents, and for both active perception approaches. The
setups and results of each experiment can be seen in table 4.

Table 4: Scenario 2 results

Experiment AP Rescuer range
lifetime [ms]

Victims rescued Buoys dropped Efficiency
w/ modeMean Std Mode Mean Std Mode

1 NO - 1.80 0.45 2 1.80 0.45 2 1.00
2 Approach 2 5000 6.00 0.00 6 6.40 0.55 6 1.00
3 Approach 3 5000 6.00 0.00 6 6.60 0.89 6 1.00
4 Approach 3 1000 6.00 0.00 6 6.20 0.45 6 1.00
5 Approach 3 10000 6.00 0.00 6 7.40 1.14 7 0.86

Experiment 1 has no AP. We can observe that with this configu-
ration most of the time only 2 victims are rescued (mode), which
is the smallest number among the 5 experiments. This happens
because when the scout sends the location of victims 3 to 6 it is
already out of the communication range. It can also be noted that
the efficiency calculated with mode 1.00, which means that when
the mission is successfully performed and no redundant buoy is
dropped.

For all the experiments performed using active perception, 2 to
5, all the victims were rescued in all executions, since the mean is
6 and the standard deviations is 0. The only difference is regard-
ing the efficiency of the system, in experiment 5 most of the time
one unnecessary buoy is dropped, this is due to the larger TAPB
lifetime which leads to an insufficient active perception pressure.
Consequently, the rescuers sometimes do not perform active per-
ception before communicating when it would be necessary, failing
to inform that a victim was already rescued by them.

An interesting aspect to be highlighted in this scenario is that,
although active perception has a cost related to flying to predefined
positions, executing AP constantly does not bring disadvantages to
the mission, as the environment is static.
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6.3 Third scenario
The third scenario is a combination of the last two, the victims
drown after a predefined amount of time and the network connec-
tion is limited to a certain distance.

The AP is included in the same way as the last scenarios, but in
this case there are two TAPB instead of only one. The communica-
tion range is limited to 10𝑚, and for the AP missions the victim’s
position and the scout communication range TAPB lifetime are set
to 5000𝑚𝑠 and 1000𝑚𝑠 , respectively. The AP approach, the victims
drowning times, and the rescuer communication range TAPB life-
time are varied to verify their impact on the mission results. The
experiments configurations and results are presented in table 5.

Table 5: Scenario 3 results

Experiment Setup AP Rescuer range
lifetime [ms]

Victims rescued Buoys dropped Efficiency
w/ modeMean Std Mode Mean Std Mode

1 1 NO - 1.60 0.55 2 2.00 0.00 2 1.00
2 1 Approach 2 5000 1.20 0.45 1 1.20 0.45 1 1.00
3 1 Approach 3 5000 1.20 0.45 1 1.20 0.45 1 1.00
4 1 Approach 3 10000 1.60 0.55 2 1.60 0.55 2 1.00
5 1 Approach 3 1000 1.00 0.00 1 1.00 0.00 1 1.00
6 2 NO - 2.00 0.00 2 2.00 0.00 2 1.00
7 2 Approach 3 5000 4.40 0.55 4 5.20 0.45 5 0.80
8 2 Approach 3 10000 4.20 0.45 4 4.60 0.55 5 0.80
9 2 Approach 3 1000 3.60 0.55 4 4.20 0.45 4 1.00

Experiment 1 and 6 have only passive perception and their behav-
ior are similar to the first experiment in scenario 2. The difference is
that in experiment 1, in some executions, the victims drown before
being rescued, however, in most cases, 2 victims are rescued.

For the first victim’s setup, the AP experiments 2, 3, and 5 have
worse results, only experiment 4 has the same performance as the
experiment with only passive perception. This happens because
the AP plans for the communication range TAPB take a consider-
able amount of time to be performed, so before they have time to
complete, the victims drown. Thus, it can be concluded that the AP
pressure for experiments 2, 3, and 5 is too high for an environment
with this amount of dynamism.

For the second victim’s setup, most of the time the AP experi-
ments 7, 8, and 9 have the same result, 4 victims rescued, which is
better than experiment 6, 2 victims rescued. However, experiment 7
has a slightly higher average of victims rescued, which is an indica-
tive that it is better suited for this victim’s setup. It is interesting
to notice that experiment 7 has an intermediary AP pressure in
comparison with experiment 8 and 9.

After analyzing the results from both victim’s setup, one can
conclude that the amount of active perception pressure that can be
applied in order to improve the mission results depends directly
on the dynamism of the environment and the cost, e.g. time, of the
active perception plans. The lower the dynamism of the environ-
ment, the less the need for active perception, as beliefs maintain
their credibility for longer. In more dynamic environments, the
credibility of beliefs diminishes quickly, which requires active per-
ception to be carried out more often. The problem of performing
actions more constantly is that when it has a medium/high cost it
can impact negatively on the performance of the mission. As an
example, in this scenario the mission has a time restriction to be
completed and the active perception requires an amount of time to
be completed, thus, if the AP is performed too often it can reduce
the performance of the mission, so it can be more advantageous to
have a lower credibility than to spend time performing AP.

The experiments performed in this section demonstrate that
the proposed active perception model can be an asset in some
application scenarios, such as in search and rescue applications.

7 CONCLUSIONS AND FUTUREWORKS
This work concludes that it is not trivial to define an active per-
ception model for BDI agents and to transform such model into a
concrete implementation. It requires that several concepts related
with BDI agents are expanded and several new ones created. In
addition, it shows that it can be done in several different ways,
leaving countless possibilities to be explored.

With the experiments performed, it was shown that it is possi-
ble to use the proposed model and implementations of the active
perception mechanism with BDI agents programmed with Jason to
create complex behaviours for mobile robots. And that active per-
ception is important in some scenarios, where through its inclusion
the efficiency of the system is improved.

As future works, one topic that can be further addressed is the
concept of a belief being updated or outdated. In this work, a belief
changes its state from updated to outdated when the time elapsed
since the last update is longer than the belief lifetime, which is
abrupt. Instead of having this binary change, it can be investigated
the benefits of a a fuzzy transition, as the belief credibility decreas-
ing over time.

Regarding the implementation of the AP mechanism, more ap-
proaches proposed in section 4.7 should be implemented and tested.
After that, it should be analyzed the viability of modifying the Ja-
son architecture to include the active perception mechanism as a
definitive solution, and if it would bring any advantages.
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