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ABSTRACT
Ranking the participants of a tournament has applications in voting,

paired comparisons analysis, sports and other domains. In this pa-

per we introduce bipartite tournaments, which model situations in

which two different kinds of entity compete indirectly via matches

against players of the opposite kind; examples include education

(students/exam questions) and solo sports (golfers/courses). In par-

ticular, we look to find rankings via chain graphs, which correspond

to bipartite tournaments in which the sets of adversaries defeated

by the players on one side are nested with respect to set inclusion.

Tournaments of this form have a natural and appealing ranking as-

sociated with them. We apply chain editing – finding the minimum

number of edge changes required to form a chain graph – as a new

mechanism for tournament ranking. The properties of these rank-

ings are investigated in a probabilistic setting, where they arise as

maximum likelihood estimators, and through the axiomatic method

of social choice theory. Despite some nice properties, two problems

remain: an important anonymity axiom is violated, and chain edit-

ing isNP-hard. We address both issues by relaxing the minimisation

constraint in chain editing, and characterise the resulting ranking

methods via a greedy approximation algorithm.
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1 INTRODUCTION
A tournament consists of a finite set of players equipped with a

beating relation describing pairwise comparisons between each pair

of players. Determining a ranking of the players in a tournament has

applications in voting in social choice [5] (where players represent

alternatives and x beats y if a majority of voters prefer x over y),
paired comparisons analysis [14] (where players may represent

products and the beating relation the preferences of a user), search

engines [24], sports tournaments [3] and other domains.

In this paper we introduce bipartite tournaments, which consist

of two disjoint sets of players A and B such that comparisons only

take place between players from opposite sets. We consider ranking

methods which produce two rankings for each tournament – one for

each side of the bipartition. Such tournaments model situations in

which two different kinds of entity compete indirectly via matches
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against entities of the opposite kind. The notion of competition

may be abstract, which allows the model to be applied in a variety

of settings. An important example is education [15], where A rep-

resents students, B exam questions, and student a ‘beats’ question

b by answering it correctly. Here the ranking of students reflects

their performance in the exam, and the ranking of questions reflects

their difficulty. The simultaneous ranking of both sides allows one

ranking to influence the other; e.g. so that students are rewarded

for correctly answering difficult questions. This may prove partic-

ularly useful in the context of crowdsourced questions provided

by students themselves, which may vary in their difficulty (see for

example the PeerWise system [8]).

A related example is truth discovery [16, 21]: the task of finding

true information on a number of topics when faced with conflicting

reports from sources of varying (but unknown) reliability. Many

truth discovery algorithms operate iteratively, alternately estimat-

ing the reliability of sources based on current estimates of the true

information, and obtaining new estimates of the truth based on

source reliability levels. The former is an instance of a bipartite

tournament; similar to the education example, A represents data

sources, B topics of interest, and a defeats b by providing true infor-

mation on topic b (according to the current estimates of the truth).

Applying a bipartite tournament ranking method at this step may

therefore facilitate development of difficulty-aware truth discovery

algorithms, which reward sources for providing accurate informa-

tion on difficult topics [12]. Other application domains include the

evaluation of generative models in machine learning [19] (where A
represents generators and B discriminators) and solo sports contests

(e.g. where A represents golfers and B golf courses).

In principle, bipartite tournaments are a special case of gener-
alised tournaments [7, 14, 23], which allow intensities of victories

and losses beyond a binary win or loss (thus permitting draws or

multiple comparisons), and drop the requirement that every player

is compared to all others. However, many existing ranking methods

in the literature do not apply to bipartite tournaments due to the

violation of an irreducibility requirement, which requires that the

tournament graph be strongly connected. In any case, bipartite

tournament ranking presents a unique problem – since we aim to

rank players with only indirect information available – which we

believe is worthy of study in its own right.

In this work we focus particularly on ranking via chain graphs
and chain editing. A chain graph is a bipartite graph in which the

neighbourhoods of vertices on one side form a chain with respect

to set inclusion. A (bipartite) tournament of this form represents

an ‘ideal’ situation in which the capabilities of the players are

perfectly nested: weaker players defeat a subset of the opponents

that stronger players defeat. In this case a natural ranking can be

formed according to the set of opponents defeated by each player.

These rankings respect the tournament results in an intuitive sense:

Main Track AAMAS 2021, May 3-7, 2021, Online

1236



if a player a defeats b and b ′ ranks worse than b, then a must defeat

b ′ also. Unfortunately, this perfect nesting may not hold in reality:

a weak player may win a difficult match by coincidence, and a

strong player may lose a match by accident. With this in mind,

Jiao et al. [15] suggested an appealing ranking method for bipartite

tournaments: apply chain editing to the input tournament – i.e. find

the minimum number of edge changes required to form a chain

graph – and output the corresponding rankings. Whilst their work

focused on algorithms for chain editing and its variants, we look to

study the properties of the ranking method itself through the lens

of computational social choice.

Contribution. Our primary contribution is the introduction of a

class of ranking mechanisms for bipartite tournaments defined by

chain editing. We also provide a new probabilistic characterisation

of chain editing via maximum likelihood estimation. To our knowl-

edge this is the first in-depth study of chain editing as a ranking

mechanism. Secondly, we introduce a new class of ‘chain-definable’

mechanisms by relaxing the minimisation constraint of chain edit-

ing in order to obtain tractable algorithms and to resolve the failure

of an important anonymity axiom.

Paper outline. In Section 2 we define the framework for bipartite

tournaments and introduce chain graphs. Section 3 outlines how

one may use chain editing to rank a tournament, and characterises

the resulting mechanisms in a probabilistic setting. Axiomatic prop-

erties are considered in Section 4. Section 5 defines a concrete

scheme for producing chain-editing-based rankings. Section 6 in-

troduces new ranking methods by relaxing the chain editing re-

quirement. Related work is discussed in Section 7, and we conclude

in Section 8. Note that some proofs are omitted due to lack of space,

and can be found in the appendix of [22].

2 PRELIMINARIES
In this section we define our framework for bipartite tournaments,

introduce chain graphs and discuss the link between them.

2.1 Bipartite Tournaments
Following the literature on generalised tournaments [7, 14, 23],

we represent a tournament as a matrix, whose entries represent

the results of matches between participants. In what follows, [n]
denotes the set {1, . . . ,n} whenever n ∈ N.

Definition 2.1. A bipartite tournament – hereafter simply a tour-
nament – is a triple (A,B,K), where A = [m] and B = [n] for
somem,n ∈ N, and K is anm × n matrix with Kab ∈ {0, 1} for all

(a,b) ∈ A × B. The set of all tournaments will be denoted by K .

Here A and B represent the two sets of players in the tourna-

ment.
1
An entry Kab gives the result of the match between a ∈ A

and b ∈ B: it is 1 if a defeats b and 0 otherwise. Note that we do not

allow for the possibility of draws, and every a ∈ A faces every b ∈ B.
When there is no ambiguity we denote a tournament simply by K ,
with the understanding that A = [rows(K)] and B = [columns(K)].

The neighbourhood of a player a ∈ A in K is the set K(a) = {b ∈

B | Kab = 1} ⊆ B, i.e. the set of players which a defeats. The

u1

u2

u3

v4

v3

v2

v1

Figure 1: An example of a chain graph

neighbourhood of b ∈ B is the set K−1(b) = {a ∈ A | Kab = 1} ⊆ A,
i.e. the set of players defeating b.

Given a tournament K , our goal is to place a ranking on each of

A and B. We define a ranking operator for this purpose.

Definition 2.2. An operator φ assigns each tournament K a pair

φ(K) = (⪯
φ
K ,⊑

φ
K ) of total preorders on A and B respectively.

2

For a,a′ ∈ A, we interpret a ⪯
φ
K a′ to mean that a′ is ranked at

least as strong as a in the tournament K , according to the operator

φ (similarly, b ⊑
φ
K b ′ means b ′ is ranked at least as strong as b). The

strict and symmetric parts of ⪯
φ
K are denoted by ≺

φ
K and ≈

φ
K .

As a simple example, consider φcount, where a ⪯
φcount
K a′ iff

|K(a)| ≤ |K(a′)| and b ⊑
φcount
K b ′ iff |K−1(b)| ≥ |K−1(b ′)|. This

operator simply ranks players by number of victories. It is a bipartite

version of the points system introduced by Rubinstein [20], and

generalises Copeland’s rule [5].

2.2 Chain Graphs
Each bipartite tournament K naturally corresponds to a bipartite

graphGK , with verticesA⊔B and an edge betweena andb whenever
Kab = 1.

3
The task of ranking a tournament admits a particularly

simple solution if this graph happens to be a chain graph.

Definition 2.3 ([26]). A bipartite graph G = (U ,V ,E) is a chain
graph if there is an ordering U = {u1, . . . ,uk } of U such that

N (u1) ⊆ · · · ⊆ N (uk ), where N (ui ) = {v ∈ V | (ui ,v) ∈ E} is the
neighbourhood of ui in G.

In other words, a chain graph is a bipartite graph where the

neighbourhoods of the vertices on one side can be ordered so as to

form a chain with respect to set inclusion. It is easily seen that this

nesting property holds forU if and only if it holds for V . Figure 1
shows an example of a chain graph.

Now, as our terminology might suggest, the neighbourhood

K(a) of some player a ∈ A in a tournament K coincides with the

neighbourhood of the corresponding vertex inGK . IfGK is a chain

graph we can therefore enumerate A as {a1, . . . ,am } such that

K(ai ) ⊆ K(ai+1) for each 1 ≤ i < m. This indicates that each ai+1
has performed at least as well asai in a strong sense: every opponent
which ai defeated was also defeated by ai+1, and ai+1 may have

additionally defeated opponents which ai did not.
4
It seems only

1
Note that A and B are not disjoint as sets: 1 is always contained in both A and B , for

instance. This poses no real problem, however, since we view the number 1 merely a

label for a player. It will always be clear from context whether a given integer should

be taken as a label for a player on the A side or the B side.

2
A total preorder is a transitive and complete binary relation.

3 A ⊔ B is the disjoint union of A and B , which we define as {(a, A) | a ∈ A} ∪

{(b, B) | b ∈ B }, where A and B are constant symbols.
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natural in this case that one should rank ai (weakly) below ai+1.
Appealing to transitivity and the fact that each a ∈ A appears as

some ai , we see that any tournament K where GK is a chain graph

comes pre-equipped with a natural total preorder on A, where a′

ranks higher than than a if and only if K(a) ⊆ K(a′). The duality
of the neighbourhood-nesting property for chain graphs implies

that B can also be totally preordered, with b ′ ranked higher than b
if and only if K−1(b) ⊇ K−1(b ′).5 Moreover, these total preorders

relate to the tournament results in an important sense: if a defeats

b and b ′ ranks worse than b, then a must defeat b ′ also. That is, the
neighbourhood of each a ∈ A is downwards closed w.r.t the ranking

of B, and the neighbourhood of each b ∈ B is upwards closed in A.
Tournaments corresponding to chain graphs will be said to sat-

isfy the chain property, and will accordingly be called chain tourna-
ments. We give a simpler (but equivalent) definition which does not

refer to the underlying graph GK . First, define relations ⩽
A
K , ⩽

B
K

on A and B respectively by a ⩽AK a′ iff K(a) ⊆ K(a′) and b ⩽BK b ′

iff K−1(b) ⊇ K−1(b ′), for any tournament K .

Definition 2.4. A tournament K has the chain property if ⩽AK is

a total preorder.

According to the duality principle mentioned already, the chain

property implies that ⩽BK is also a total preorder. Note that the

relations ⩽AK and ⩽BK are analogues of the covering relation for

non-bipartite tournaments [5].

Example 2.5. Consider K =
[
1 0 0 0

1 1 0 0

1 1 1 1

]
. Then K(1) ⊂ K(2) ⊂

K(3), so K has the chain property. In fact, K is the tournament

corresponding to the chain graph G from Figure 1.

3 RANKING VIA CHAIN EDITING
We have seen that chain tournaments come equipped with natural

rankings ofA andB. Such tournaments represent an ‘ideal’ situation,

wherein the abilities of the players on both sides of the tournament

are perfectly nested. Of course this may not be so in reality: the

nesting may be broken by some a ∈ A winning a match it ought

not to by chance, or by losing a match by accident.

One idea for recovering a ranking in this case, originally sug-

gested by Jiao et al. [15], is to apply chain editing: find the minimum

number of edge changes required to convert the graph GK into a

chain graph. This process can be seen as correcting the ‘noise’ in an

observed tournament K to obtain an ideal ranking. In this section

we introduce the class of operators producing rankings in this way.

3.1 Chain-minimal Operators
To define chain-editing in our framework we once again present an

equivalent definition which does not refer to the underlying graph

GK : the number of edge changes between graphs can be replaced

by the Hamming distance between tournament matrices.

Definition 3.1. Form,n ∈ N, let Cm,n denote the set of allm × n
chain tournaments. For an m × n tournament K , write M (K) =

4
Note that this is a more robust notion of performance than comparing the neigh-

bourhoods of ai and ai+1 by cardinality, which may fail to account for differences in

the strength of opponents when counting wins and losses.

5
Note that the ordering of the Bs is reversed compared to the As, since the larger

K−1(b) the worse b has performed.

arg minK ′∈Cm,n
d(K ,K ′) ⊆ K for the set of chain tournaments

closest toK w.r.t the Hamming distanced(K ,K ′) = |{(a,b) ∈ A×B |

Kab , K ′
ab }|. Letm(K) denote this minimum distance.

Note that chain editing, which isNP-hard in general [15], amounts

to finding a single element of M (K).6 We comment further on the

computational complexity of chain editing in Section 7. The follow-

ing property characterises chain editing-based operators φ.

(chain-min) For every tournament K there is K ′ ∈ M (K) such
that φ(K) = (⩽AK ′ , ⩽

B
K ′).

That is, the ranking of K is obtained by choosing the

neighbourhood-subset rankings for some closest chain tournament

K ′
. Operators satisfying chain-min will be called chain-minimal.

Example 3.2. Consider K =
[
1 0 1 0

1 1 0 0

0 1 1 1

]
. K does not have the chain

property, since neitherK(1) ⊆ K(2) norK(2) ⊆ K(1). The setM (K)
consists of four tournaments a distance of 2 from K :

M (K) =
{[

1 1 1 0

1 1 0 0

1 1 1 1

]
,
[
1 0 0 0

1 1 0 0

1 1 1 1

]
,
[
1 0 1 0

1 0 0 0

1 1 1 1

]
,
[
1 0 1 0

1 1 1 0

1 1 1 1

]}
The corresponding rankings are (213, {12}34), (123, 12{34}),

(213, 13{24}) and (123, {13}24).7

Example 3.2 shows that there is no unique chain-minimal oper-

ator, since for a given tournament K there may be several closest

chain tournaments to choose from. In Section 5 we introduce a prin-

cipled way to single out a unique chain tournament and thereby

construct a well-defined chain-minimal operator.

3.2 A Maximum Likelihood Interpretation
So far we have motivated chain-min as a way to fix errors in a

tournament and recover the ideal or true ranking. In this section

we make this notion precise by defining a probabilistic model in

which chain-minimal rankings arise as maximum likelihood es-

timates. The maximum likelihood approach has been applied for

(non-bipartite) tournaments (e.g. the Bradley-Terry model [4, 14]),

voting in social choice theory [10], truth discovery [25], belief merg-

ing [11] and other related problems.

In this approach we take an epistemic view of tournament rank-

ing: it is assumed there exists a true ‘state of the world’ which

determines the tournament results along with objective rankings of

A and B. A given tournament K is then seen as a noisy observation
derived from the true state, and a maximum likelihood estimate is
a state for which the probability of observing K is maximal.

More specifically, a state of the world is represented as a vector

of skill levels for the players in A and B.8

Definition 3.3. For a fixed size m × n, a state of the world is a

tuple θ = ⟨x ,y⟩, where x ∈ Rm and y ∈ Rn satisfies the following

properties:

∀a,a′ ∈ A (xa < xa′ =⇒ ∃b ∈ B : xa < yb ≤ xa′) (1)

∀b,b ′ ∈ B (yb < yb′ =⇒ ∃a ∈ A : yb ≤ xa < yb′) (2)

where A = [m], B = [n]. Write Θm,n for the set of allm × n states.

6
The decision problem associated with chain editing – which in tournament terms is

the question of whetherm(K ) ≤ k for a given integer k – is NP-complete [9].

7
Here a1a2a3 is shorthand for the ranking a1 ≺ a2 ≺ a3 of A, and similar for B .

Elements in brackets are ranked equally.

8
For simplicity we use numerical skill levels here, although it would suffice to have a

partial preorder on A ⊔ B such that each a ∈ A is comparable with every b ∈ B .
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For a ∈ A, xa is the skill level of a in state θ (and similarly foryb ).
These skill levels represent the true capabilities of the players in A
and B in state θ : a is capable of defeating b if and only if xa ≥ yb .
Note that (1) suggests a simple form of explainability: a′ can only be
strictly more skilful than a if there is someb ∈ B which explains this
fact, i.e. someb which a′ can defeat but a cannot ((2) is analogous for
the Bs). These conditions are intuitive if we assume that skill levels

are relative to the sets A and B currently under consideration (i.e.

they do not reflect the abilities of players in future matches against

new contenders outside ofA or B). Finally note that our states of the
world are richer than the output of an operator, in contrast to other

work in the literature [4, 10, 14]. Specifically, a state θ contains

extra information in the form of comparisons between A and B.
Noise is introduced in the observed tournament K via false pos-

itives (where a ∈ A defeats a more skilled b ∈ B by accident) and

false negatives (where a ∈ A is defeated by an inferior b ∈ B by

mistake).
9
The noise model is therefore parametrised by the false

positive and false negative rates α = ⟨α+,α−⟩ ∈ [0, 1]2, which we

assume are the same for all a ∈ A.10 We also assume that noise

occurs independently across all matches.

Definition 3.4. Let α = ⟨α+,α−⟩ ∈ [0, 1]2. For eachm,n ∈ N and

θ = ⟨x ,y⟩ ∈ Θm,n , consider independent binary random variables

Xab representing the outcome of a match between a ∈ [m] and

b ∈ [n], where

Pα (Xab = 1 | θ ) =

{
α+, xa < yb
1 − α−, xa ≥ yb

(3)

Pα (Xab = 0 | θ ) =

{
1 − α+, xa < yb
α−, xa ≥ yb

(4)

This defines a probability distribution Pα (· | θ ) over m × n
tournaments by

Pα (K | θ ) =
∏

(a,b)∈[m]×[n]

Pα (Xab = Kab | θ )

Here Pα (K | θ ) is the probability of observing the tournament

results K when the false positive and negative rates are given by α
and the true state of the world is θ . Note that the four cases in (3)

and (4) correspond to a false positive, true positive, true negative

and false negative respectively. We can now define a maximum

likelihood operator.

Definition 3.5. Let α ∈ [0, 1]2 and m,n ∈ N. Then θ ∈ Θm,n
is a maximum likelihood estimate (MLE) for anm × n tournament

K w.r.t α if θ ∈ arg maxθ ′∈Θm,n
Pα (K | θ ′). An operator φ is a

maximum likelihood operator w.r.t α if for anym,n ∈ N and any

m ×n tournament K there is an MLE θ = ⟨x ,y⟩ ∈ Θm,n for K such

that a ⪯
φ
K a′ iff xa ≤ xa′ and b ⊑

φ
K b ′ iff yb ≤ yb′ .

Now, consider the tournament Kθ associated with each state θ =
⟨x ,y⟩, given by [Kθ ]ab = 1 if xa ≥ yb and [Kθ ]ab = 0 otherwise.

Note that Kθ is the unique tournament with non-zero probability

when there are no false positive or false negatives. Expressed in

terms of Kθ , the MLEs take a particularly simple form if α+ = α−,
i.e. if false positives and false negatives occur at the same rate.

9
Note that a false positive for a is a false negative for b and vice versa.

10
This is a strong assumption, and it may be more realistic to model the false posi-

tive/negative rates as a function of xa . We leave this to future work.

Lemma 3.6. Let α = ⟨β , β⟩ for some β < 1

2
. Then θ is an MLE for

K if and only if θ ∈ arg minθ ′∈Θm,n
d(K ,Kθ ′).

Proof (sketch). Let K be anm×n tournament. It can be shown

(and we do so in the appendix) that for any θ ∈ Θm,n

Pα (K | θ ) =
( ∏
a∈A

α
|K (a)\Kθ (a) |
+ (1 − α−)

|K (a)∩Kθ (a) |

(1 − α+)
|B\(K (a)∪Kθ (a)) |α |Kθ (a)\K (a) |

−

)
Plugging in α+ = α− = β and simplifying, one can obtain

Pα (K | θ ) = c
∏
a∈A

(
β

1 − β

) |K (a)△Kθ (a) |

where X △ Y = (X \ Y ) ∪ (Y \ X ) is the symmetric difference of

two sets X and Y , and c = (1 − β) |A | · |B |
is a positive constant that

does not depend on θ . Now, Pα (K | θ ) is positive, and is maximal

when its logarithm is. We have

log Pα (K | θ ) = log c + log

(
β

1 − β

) ∑
a∈A

|K(a) △ Kθ (a)|

= log c + log

(
β

1 − β

)
d(K ,Kθ )

Since log c is constant and β < 1/2 implies log

(
β

1−β

)
< 0, it fol-

lows that log Pα (K | θ ) is maximised exactly when d(K ,Kθ ) is min-

imised, which proves the result. □

This result characterises the MLE states for K as those for which

Kθ is the closest to K . As it turns out, the tournaments Kθ that

arise in this way are exactly those with the chain property.

Lemma 3.7. Anm×n tournament K has the chain property if and
only if K = Kθ for some θ ∈ Θm,n .

The proof of Lemma 3.7 relies crucially on (1) and (2) in the

definition of a state. Combining all the results so far we obtain our

first main result: the maximum likelihood operators for α = ⟨β, β⟩
are exactly the chain-minimal operators.

Theorem 3.8. Let α = ⟨β, β⟩ for some β < 1

2
. Then φ is a maxi-

mum likelihood operator w.r.tα if and only ifφ satisfies chain-min.

Proof (sketch). First note that by Lemma 3.6, a state θ is an

MLE for an m × n tournament K iff Kθ is closest to K amongst

all other tournaments {Kθ ′ | θ ′ ∈ Θm,n }. But by Lemma 3.7, this

set is exactly the m × n tournaments with the chain property. It

follows from the definition ofM (K) that θ is an MLE if and only

if Kθ ∈ M (K). Consequently, K ′ ∈ M (K) if and only if K ′ = Kθ
for some MLE θ for K . We see that chain-min can be equivalently

stated as follows: for all K there exists an MLE θ such that φ(K) =

(⩽AKθ
, ⩽BKθ

). Using properties (1) and (2) in Definition 3.3 for θ it is

straightforward to show that a ⩽AKθ
a′ iff xa ≤ xa′ and b ⩽

B
Kθ

b ′ iff

yb ≤ yb′ for all a,a
′ ∈ A, b,b ′ ∈ B (where θ = ⟨x ,y⟩). This means

that the above reformulation of chain-min coincides with the

definition of a maximum likelihood operator, and we are done. □

Similar results can be obtained for other limiting values of α . If

α+ = 0 and α− ∈ (0, 1) then the MLE operators correspond to chain
completion: finding theminimumnumber of edge additions required

Main Track AAMAS 2021, May 3-7, 2021, Online

1239



to make GK a chain graph. This models situations where false

positives never occur, although false negatives may (e.g. numerical

entry questions in the case where A represents students and B
exam questions [15]). Similarly, the case α− = 0 and α+ ∈ (0, 1)

corresponds to chain deletion, where edge additions are not allowed.

4 AXIOMATIC ANALYSIS
Chain-minimal operators have theoretical backing in a probabilistic

sense due to the results of Section 3.2, but are they appropriate rank-

ing methods in practise? To address this question we consider the

normative properties of chain-minimal operators via the axiomatic

method of social choice theory. We formulate several axioms for

bipartite tournament ranking and assess whether they are compati-

ble with chain-min. It will be seen that an important anonymity
axiom fails for all chain-minimal operators; later in Section 5 we

describe a scenario in which this is acceptable and define a class

of concrete operators for this case, and in Section 6 we relax the

chain-min requirement in order to gain anonymity.

4.1 The Axioms
Wewill consider five axioms –mainly adaptations of standard social

choice properties to the bipartite tournament setting.

Symmetry Properties. We consider two symmetry properties.

The first is a classic anonymity axiom, which says that an operator

φ should not be sensitive to the ‘labels’ used to identify participants

in a tournament. Axioms of this form are standard in social choice

theory; a tournament version goes at least as far back as [20].

We need some notation: for a tournament K and permutations

σ : A → A, π : B → B, let σ (K) and π (K) denote the tournament

obtained by permuting the rows and columns of K by σ and π
respectively, i.e. [σ (K)]ab = Kσ −1(a),b and [π (K)]ab = Ka,π −1(b).

Note that in the statement of the axioms we omit universal quan-

tification over K , a,a′ ∈ A and b,b ′ ∈ B for brevity.

(anon) Let σ : A → A and π : B → B be permutations. Then
a ⪯

φ
K a′ iff σ (a) ⪯

φ
π (σ (K ))

σ (a′).

Our second axiom is specific to bipartite tournaments, and ex-

presses a duality between the two sides A and B: given the two

sets of conceptually disjoint entities participating in a bipartite

tournament, it should not matter which one we label A and which

one we label B. We need the notion of a dual tournament.

Definition 4.1. The dual tournament of K is K = 1 − K⊤
, where

1 denotes the matrix consisting entirely of 1s.

K is essentially the same tournament as K , but with the roles of

A and B swapped. In particular, AK = BK , BK = AK and Kab = 1

iff Kba = 0. Also note that K = K . The duality axiom states that

the ranking of the Bs in K is the same as the As in K .

(dual) b ⊑
φ
K b ′ iff b ⪯

φ
K
b ′.

Whilst dual is not necessarily a universally desirable property

– one can imagine situations where A and B are not fully abstract

and should not be treated symmetrically – it is important to con-

sider in any study of bipartite tournaments. Note that dual implies

a ⪯
φ
K a′ iff a ⊑

φ
K

a′, so that a dual-operator can be defined by

giving the ranking for one of A or B only, and defining the other by

duality. This explains our choice to define anon (and subsequent

axioms) solely in terms of the A ranking: the analogous anonymity

constraint for the B ranking follows from anon together with dual.
An Independence Property. Independence axioms play a crucial

role in social choice. We present a bipartite adaptation of a clas-

sic axiom introduced in [20], which has subsequently been called

Independence of Irrelevant Matches [14].

(IIM) If K1,K2 are tournaments of the same size with identical a-th
and a′-th rows, then a ⪯

φ
K1

a′ iff a ⪯
φ
K2

a′.

IIM is a strong property, which says the relative ranking of a and
a′ does not depend on the results of any match not involving a or a′.
This axiom has been questioned for generalised tournaments [14],

and a similar argument can be made against it here: although each

player in A faces the same opponents, we may wish to take the

strength of opponents into account, e.g. by rewarding victories

against highly-ranked players in B. Consequently we do not view

IIM as an essential requirement, but rather introduce it to facilitate

comparison with our work and the existing tournament literature.

Monotonicity Properties. Our final axioms are monotonicity

properties, which express the idea that more victories are better.
The first axiom follows our original intuition for constructing the

natural ranking associated with a chain graph; namely that K(a) ⊆
K(a′) indicates a′ has performed at least as well as a.

(mon) If K(a) ⊆ K(a′) then a ⪯
φ
K a′.

Note that mon simply says ⪯
φ
K extends the (in general, partial)

preorder ⩽AK . Yet another standard axiom is positive responsiveness.

(pos-resp) If a ⪯
φ
K a′ and Ka′,b = 0 for some b ∈ B, then

a ≺
φ
K+1a′,b

a′, where 1a′,b is the matrix with 1 in position (a′,b)

and zeros elsewhere.

That is, adding an extra victory for a should only improve its

ranking, with ties now broken in its favour. This version of positive

responsiveness was again introduced in [20], where together with

anon and IIM it characterises the points system ranking method for

round-robin tournaments, which simply ranks players according to

the number of victories. The analogous operator in our framework

is φcount, and it can be shown that φcount is uniquely characterised

by anon, IIM, pos-resp and dual. Finally, note that pos-resp also

acts as a kind of strategyproofness: a cannot improve its ranking by

deliberately losing a match. Specifically, if Kab = 1 and a ⪯
φ
K a′,

then pos-resp implies a ≺
φ
K−1ab

a′.

4.2 Axiom Compatibility with chain-min
We come to analysing the compatibility of chain-min with the

axioms. First, the negative results.

Theorem 4.2. There is no operator satisfying chain-min and
any of anon, IIM or pos-resp.

The counterexample for anon is particularly simple: take K =[
1 0

0 1

]
. Swapping the rows and columns brings us back to K , so

anon implies 1, 2 ∈ A rank equally. However, it is easily seen for

every K ′ ∈ M (K), either K(1) ⊂ K(2) or K(2) ⊂ K(1), i.e no

chain-minimal operator can rank 1 and 2 equally.
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The MLE results of Section 3.2 provides informal explanation for

this result. For K above to arise in the noise model of Definition 3.4

there must have been two ‘mistakes’ (false positives or false neg-

atives). This is less likely than a single mistake from just one of

1, 2 ∈ A, but the likelihood maximisation forces us to choose one

or the other. A similar argument explains the pos-resp failure.

It is also worth noting that anon only fails at the last step of

chain editing, where a single element of M (K) is chosen. Indeed,
the setM (K) itself does exhibit the kind of symmetry one might

expect: we have M (π (σ (K))) = {π (σ (K ′)) | K ′ ∈ M (K)}. This
means that an operator which aggregates the rankings from all
K ′ ∈ M (K) – e.g. any anonymous social welfare function – would

satisfy anon. The other axioms are compatible with chain-min.

Theorem 4.3. For each of dual andmon, there exists an operator
satisfying chain-min and the stated property.

Despite the simplicity of mon, Theorem 4.3 is deceptively dif-

ficult to prove. We describe operators satisfying chain-def and

dual ormon non-constructively by first taking an arbitrary chain-

minimal operator φ, and using properties of the setM (K) to pro-

duce φ ′ satisfying dual or mon. Note also that we have not yet

constructed an operator satisfying dual,mon and chain-min si-

multaneously, although we conjecture that such operators do exist.

5 MATCH-PREFERENCE OPERATORS
The counterexample for chain-min and anon suggests that chain-

minimal operators require some form of tie-breaking mechanism

when the tournaments in M (K) cannot be distinguished while

respecting anonymity. While this limits the use of chain-minimal

operators as general purpose ranking methods, it is not such a prob-

lem if additional information is available to guide the tie-breaking.

In this section we introduce a new class of operators for this case.

The core idea is to single out a unique chain tournament close to

K by paying attention to not only the number of entries in K that

need to be changed to produce a chain tournament, which entries.

Specifically, we assume the availability of a total order on the set of

matrix indices N×N (thematches) which indicates our willingness

to change an entry in K : the higher up (a,b) is in the ranking, the

more acceptable it is to change Kab during chain editing.

This total order – called the match-preference relation – is fixed

for all tournaments K ; this means we are dealing with extra infor-

mation about how tournaments are constructed in matrix form, not

extra information about any specific tournament K .
One possible motivation for such a ranking comes from cases

where matches occur at distinct points in time. In this case the

matches occurring more recently are (presumably) more repre-

sentative of the players’ current abilities, and we should therefore

prefer to modify the outcome of old matches where possible.

For the formal definition we need notation for the vectorisation of
a tournamentK : for a total order ⊴ onN×N and anm×n tournament

K , we write vec⊴(K) for the vector in {0, 1}mn
obtained by collect-

ing the entries of K in the order given by ⊴ ↾ (A × B),11 starting
with the minimal entry. That is, vec⊴(K) = (Ka1,b1 , . . . ,Kamn,bmn ),

where (a1,b1), . . . , (amn ,bmn ) is the unique enumeration of A × B
such that (ai ,bi ) ⊴ (ai+1,bi+1) for each i .

11
This denotes the restriction of ⊴ to A × B , i.e. ⊴ ∩ ((A × B) × (A × B)).

The operator corresponding to ⊴ is defined using the notion of

a choice function: a function α which maps any tournament K to

an element ofM (K). Any such function defines a chain-minimal

operator φ by setting φ(K) = (⩽Aα (K )
, ⩽Bα (K )

).

Definition 5.1. Let ⊴ be a total order onN×N. Define an operator
φ⊴ according to the choice function

α⊴(K) = arg min

K ′∈M(K )

vec⊴(K ⊕ K ′) (5)

where [K ⊕ K ′]ab = |Kab − K ′
ab |, and the minimum is taken w.r.t

the lexicographic ordering on {0, 1} |A | · |B |
.
12

Operators generated

in this way will be called match-preference operators.

Example 5.2. Let ⊴ be the lexicographic order
13

onN×N so that

vec⊴(K ⊕K ′) is obtained by collecting the entries of K ⊕K ′
row-by-

row, from top to bottom and left to right. Take K from Example 3.2.

Writing K1, . . . ,K4 for the elements ofM (K) in the order that they

appear in Example 3.2 and setting vi = vec⊴(K ⊕ Ki ), we have

v1 = (0100 0000 10000); v2 = (0010 0000 10000)

v3 = (0000 0100 10000); v4 = (0000 0010 10000)

The lexicographic minimum is the one with the 1 entries as far

right as possible, which in this case is v4. Consequently φ⊴ ranks

K according to K4, i.e. 1 ≺
φ⊴
K 2 ≺

φ⊴
K 3 and 1 ≈

φ⊴
K 3 ⊏

φ⊴
K 2 ⊏

φ⊴
K 4.

To conclude the discussion of match-preference operators, we

note that one can compute α⊴(K) as the unique closest chain tour-

nament to K w.r.t a weighted Hamming distance, and thereby avoid

the need to enumerate M (K) in full as per eq. (5).

Theorem 5.3. Let ⊴ be a total order on N × N. Then for any
m,n ∈ N there exists a function w : [m] × [n] → R≥0 such that for
allm × n tournaments K :

arg min

K ′∈Cm,n

dw (K ,K ′) = {α⊴(K)} (6)

where dw (K ,K ′) =
∑
(a,b)∈[m]×[n]w(a,b) · |Kab − K ′

ab |.

For example, the weights corresponding to ⊴ from Example 5.2

andm = 2, n = 3 arew =
[

1.5 1.25 1.125
1.0625 1.03125 1.015625

]
.

6 RELAXING CHAIN-MIN
Having studied chain-minimal operators in some detail, we turn to

two remaining problems: chain-min is incompatible with anon,
and computing a chain-minimal operator isNP-hard. In this section

we obtain both anonymity and tractability by relaxing the chain-
min requirement to a property we call chain-definability. We go

on to characterise the class of operators with this weaker property

via a greedy approximation algorithm, single out a particularly

intuitive instance, and revisit the axioms of Section 4.

6.1 Chain-definability
The source of the difficulties with chain-min lies in the minimi-

sation aspect of chain editing. A natural way to retain the spirit

of chain-min without the complications is to require that φ(K)
corresponds to some chain tournament, not necessarily one closest

to K . We call this property chain-definability.
12

Note that K ⊕ K ′
is 1 in exactly the entries where K and K ′

differ.

13
That is, (a, b) ⊴ (a′, b′) iff a < a′ or (a = a′ and b ≤ b′).
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(chain-def) For everym×n tournamentK there isK ′ ∈ Cm,n such
that φ(K) = (⩽AK ′ , ⩽

B
K ′).

Clearly chain-min implies chain-def. ‘Chain-definable’ opera-
tors can also be cast in the MLE framework of Section 3.2 as those

whose rankings correspond to some (not necessarily MLE) state θ .
At first glance it may seem difficult to determine whether a given

pair of rankings correspond to a chain tournament, since the num-

ber of such tournaments grows rapidly withm and n. Fortunately,
chain-def can be characterised without reference to chain tourna-

ments by considering the number of ranks of ⪯φK and ⊑
φ
K . In what

follows ranks(⪯) denotes the number of ranks of a total preorder

⪯, i.e. the number of equivalence classes of its symmetric part.

Theorem 6.1. φ satisfies chain-def if and only if |ranks(⪯φK ) −
ranks(⊑φK )| ≤ 1 for every tournament K .

6.2 Interleaving Operators
According to Theorem 6.1, to construct a chain-definable operator

it is enough to ensure that the number of ranks of ⪯
φ
K and ⊑

φ
K differ

by at most one. A simple way to achieve this is to iteratively select

and remove the top-ranked players ofA and B simultaneously, until

one of A or B is exhausted. We call such operators interleaving
operators. Closely related ranking methods have been previously

introduced for non-bipartite tournaments by Bouyssou [2].

Formally, our procedure is defined by two functions f and д
which select the next top ranks given a tournament K and subsets

A′ ⊆ A, B′ ⊆ B of the remaining players.

Definition 6.2. An A-selection function is a mapping f : K ×

2
N × 2

N → 2
N
such that for any tournament K ,A′ ⊆ A and B′ ⊆ B:

(i) f (K ,A′,B′) ⊆ A′
; (ii) If A′ , ∅ then f (K ,A′,B′) , ∅; (iii)

f (K ,A′, ∅) = A′
.

Similarly, a B-selection function is a mapping д : K × 2
N ×

2
N → 2

N
such that (i) д(K ,A′,B′) ⊆ B′

; (ii) If B′ , ∅ then

д(K ,A′,B′) , ∅; (iii) д(K , ∅,B′) = B′
.

The corresponding interleaving operator ranks players according

to how soon they are selected in this way; the earlier the better.

Definition 6.3. Let f and д be selection functions and K a tour-

nament. Write A0 = A, B0 = B, and for i ≥ 0:

Ai+1 = Ai \ f (K ,Ai ,Bi ); Bi+1 = Bi \ д(K ,Ai ,Bi )

For a ∈ A and b ∈ B, write r (a) = max {i | a ∈ Ai } and s(b) =
max {i | b ∈ Bi }.

14
We define the corresponding interleaving opera-

tor φ = φintf ,д by a ⪯
φ
K a′ iff r (a) ≥ r (a′) and b ⊑

φ
K b ′ iff s(b) ≥ s(b ′).

Note thatAi and Bi are the players left remaining after i applica-
tions of f and д, i.e. after removing the top i ranks from both sides.

Before giving a concrete example, we note that interleaving is not

just one way to satisfying chain-def, it is the only way.

Theorem 6.4. An operator φ satisfies chain-def if and only if
φ = φintf ,д for some selection functions (f ,д).

14
We show in the appendix that the recursive procedure eventually terminates with

Ai and Bi becoming empty (and remaining so) after finitely many iterations, so r and

s are well-defined.

Table 1: Iteration of the interleaving algorithm for φCI

i K Ai Bi f д K ′
i

0

[
1 1 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

]
{1, 2, 3, 4} {1, 2, 3, 4, 5} {1} {1}

[
1 1 1 1 1
0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

]
1

[
1 1 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

]
{2, 3, 4} {2, 3, 4, 5} {3} {3, 4}

[
1 1 1 1 1
0 1 0 0 1

0 1 1 1 1

0 1 0 0 0

]
2

[
1 1 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

]
{2, 4} {2, 5} {2} {5} -

3

[
1 1 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

]
{4} {2} {4} {2} -

4 - ∅ ∅ ∅ ∅ -

Theorem 6.4 justifies our study of interleaving operators, and

provides a different perspective on chain-definability via the selec-

tion functions f and д. We come to an important example.

Example 6.5. Define the cardinality-based interleaving operator
φCI = φintf ,д where f (K ,A′,B′) = arg maxa∈A′ |K(a) ∩ B′ | and

д(K ,A′,B′) = arg minb ∈B′ |K−1(b) ∩A′ |, so that the ‘winners’ at

each iteration are the As with the most wins, and the Bs with

the least losses, when restricting to A′
and B′

only. We take the

arg min/arg max to be the emptyset whenever A′
or B′

is empty.

Table 1 shows the iteration of the algorithm for a 4×5 tournament

K . In each row i we show K with the rows and columns of A \Ai
and B \ Bi greyed out, so as to make it more clear how the f and д
values are calculated.

15
For brevity we also write f and д in place

of f (K ,Ai ,Bi ) and д(K ,Ai ,Bi ) respectively.
The r and s values can be read off as 0, 2, 1, 3 for A and 0, 3, 1, 1,

2 for B, giving the ranking on A as 4 ≺ 2 ≺ 3 ≺ 1, and the ranking

on B as 2 ⊏ 5 ⊏ 3 ≈ 4 ⊏ 1. Note also that each f (K ,Ai ,Bi ) is a
rank of ⪯

φ
K (and similar for д(K ,Ai ,Bi )), so the rankings can in fact

be read off by looking at the f and д columns of Table 1.

The interleaving algorithm can also be seen as a greedy algorithm

for converting K into a chain graph directly. Indeed, by setting the

neighbourhood of each a ∈ f (K ,Ai ,Bi ) to Bi , and removing each

b ∈ д(K ,Ai ,Bi ) from the neighbourhoods of all a ∈ Ai+1, we
eventually obtain a chain graph. We show this process in the K ′

i
column of Table 1, where only three entries need to be changed.

16

The selection functions f and д can therefore be seen as heuristics
with the goal of finding a chain graph ‘close’ to K .

The operatorφCI from Example 6.5 uses simple cardinality-based

heuristics, and can be seen as a chain-definable version of φcount
(which is not chain-definable). It is also the bipartite counterpart to

repeated applications of Copeland’s rule [2]. Note that f (K ,Ai ,Bi )
and д(K ,Ai ,Bi ) can be computed in O(N 2) time at each iteration i ,
where N = |A| + |B |. Since there cannot be more than N iterations,

it follows that the rankings of φCI can be computed in O(N 3) time.

6.3 Axiom Compatibility
We now revisit the axioms of Section 4 in relation to chain-definable

operators in general and φCI specifically. Firstly, the weakening of

chain-min pays off: chain-def is compatible with all our axioms.

15
Note that while f and д for φCI are independent of the greyed out entries, we do

not require this property for selection functions in general.

16
In this example M (K ) contains a single tournament a distance of 2 from K , so φCI

makes one more change than necessary.
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Theorem 6.6. For each of anon, dual, IIM, mon and pos-resp,
there exists an operator satisfying chain-def and the stated property.

Unfortunately, these cannot all hold at the same time. Indeed,

taking K =
[
0 0 1 1

0 1 0 1

]⊤
and assuming anon and pos-resp, the rank-

ing on A is fully determined as 1 ≺ 2 ≈ 3 ≺ 4, and ranks(⪯φK ) = 3.

However, anon with dual implies the ranking of B is flat, i.e.

ranks(⊑φK ) = 1. This contradicts chain-def by Theorem 6.1, yield-

ing the following impossibility result.

Theorem 6.7. There is no operator satisfying chain-def, anon,
dual and pos-resp.

For the specific operator φCI we have the following.

Theorem 6.8. φCI satisfies chain-def, anon, dual and mon,
and does not satisfy IIM or pos-resp.

Note that anon is satisfied. This makes φCI an important exam-

ple of a well-motivated, tractable, chain-definable and anonymous

operator, meeting the criteria outlined at the start of this section.

7 RELATEDWORK
On chain graphs. Chain graphs were originally introduced by

Yannakakis [26], who proved that chain completion – finding the

minimum number of edges that when added to a bipartite graph

form a chain graph – is NP-complete. Hardness results have sub-

sequently been obtained for chain deletion [18] (where only edge

deletions are allowed) and chain editing [9] (where both additions

and deletions are allowed). We refer the reader to the work of Jiao

et al. [15] and Drange et al. [9] for a more detailed account of this

literature. Outside of complexity theory, chain graphs have been

studied for their spectral properties in [1, 13], and the more general

notion of a nested colouring was introduced in [6].

On tournaments in social choice. Tournaments have important

applications in the design of voting rules, where an alternative x
beats y in a pairwise comparison if a majority of voters prefer x to

y. Various tournament solutions have been proposed, which select a

set of ‘winners’ from a given tournament.
17

Of particular relevance

to our work are the Slater set and Kemeney’s rule [5], which find

minimal sets of edges to invert in the tournament graph such that

the beating relation becomes a total order.
18

These methods are

intuitively similar to chain editing: both involve making minimal

changes to the tournament until some property is satisfied. A rough

analogue to the Slater set in our framework is the union of the

top-ranked players from each K ′ ∈ M (K). Solutions based on the

covering relation – such as the uncovered and Banks set [5] – also

bear similarity to chain editing.

Finally, note that directed versions of chain graphs (obtained by

orienting edges from A to B and adding missing edges from B to

A) correspond to acyclic tournaments, and a topological sort of A

becomes a linearisation of the chain ranking ⩽AK . This suggests a

connection between chain deletion and the standard feedback arc
set problem for removing cycles and obtaining a ranking.

17
Note that a ranking, such as we consider in this paper, induces a set of winners by

taking the maximally ranked players.

18
Note that like chain editing, Kemeny’s rule also admits a maximum likelihood

characterisation [10].

On generalised tournaments. A generalised tournament [14] is

a pair (X ,T ), where X = [t] for some t ∈ N and T ∈ Rt×t
≥0

is a non-

negative t×t matrix withTii = 0 for all i ∈ X . In this formalism each

encounter between a pair of players i and j is represented by two
numbers: Ti j and Tji . This allows one to model both intensities of

victories and losses (including draws) via the differenceTi j−Tji , and
the case where a comparison is not available (where Ti j = Tji = 0).

Anym×n bipartite tournament K has a natural generalised tour-

nament representation via the (m+n) × (m+n) anti-diagonal block

matrix T =
[
0 K
K 0

]
, where the top-left and bottom-right blocks are

the m ×m and n × n zero matrices respectively. However, such

anti-diagonal block matrices are often excluded in the generalised

tournament literature due to an assumption of irreducibility, which
requires that the directed graph corresponding toT is strongly con-

nected. This is not the case in general for T constructed as above,

which means not all existing tournament operators (and tourna-

ment axioms) are well-defined for bipartite inputs.
19

Consequently,

bipartite tournaments are a special case of generalised tournaments

in principle, but not in practise.

8 CONCLUSION
Summary. In this paper we studied chain editing, an interesting

problem from computational complexity theory, as a ranking mech-

anism for bipartite tournaments. We analysed such mechanisms

from a probabilistic viewpoint via the MLE characterisation, and

in axiomatic terms. To resolve both the failure of an important

anonymity axiom and NP-hardness, we weakened the chain edit-

ing requirement to one of chain definability, and characterised the

resulting class of operators by the intuitive interleaving algorithm.

Limitations and future work. The hardness of chain editing

remains a limitation of our approach. A possible remedy is to look

to one of the numerous variant problems that are polynomial-time

solvable [15]; determining their applicability to ranking is an in-

teresting topic for future work. One could develop approximation

algorithms for chain editing, possibly based on existing approxi-

mations of chain completion [17]. The interleaving operators of

Section 6.2 go in this direction, but we did not yet obtain any theo-

retical or experimental bounds on the approximation ratio.

A second limitation of our work lies in the assumptions of the

probabilistic model; namely that the true state of the world can be

reduced to vectors of numerical skill levels which totally describe

the tournament participants. This assumptionmay be violatedwhen

the competitive element of a tournament is multi-faceted, since a
single number cannot represent multiple orthogonal components

of a player’s capabilities. Nevertheless, if skill levels are taken as

aggregations of these components, chain editing may prove to be a

useful, albeit simplified, model.

Finally, there is room for more detailed axiomatic investigation.

In this paper we have stuckwith fairly standard social choice axioms

and performed preliminary analysis. However, the indirect nature

of the comparisons in a bipartite tournament presents unique chal-

lenges; new axioms may need to be formulated to properly evaluate

bipartite ranking methods in a normative sense.

19
We note that Slutzki and Volij [23] side-step the reducibility issue by decomposing

T into irreducible components and ranking each separately, although their methods

may give only partial orders.
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