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ABSTRACT
We present a general framework for modelling and verifying epis-

temic properties over parameterized multi-agent systems that com-

municate by truthful public announcements. In our framework, the

number of agents or the amount of certain resources are parame-

terized (i.e. not known a priori), and the corresponding verification

problem asks whether a given epistemic property is true regardless

of the instantiation of the parameters. For example, in a muddy chil-

dren puzzle, one could ask whether each child will eventually find

out whether (s)he is muddy, regardless of the number of children.

Our framework is regular model checking (RMC) -based, wherein

synchronous finite-state automata (equivalently, monadic second-

order logic over words) are used to specify the systems. We propose

an extension of public announcement logic as specification lan-

guage. Of special interests is the addition of the so-called iterated

public announcement operators, which are crucial for reasoning

about knowledge in parameterized systems. Although the operators

make the model checking problem undecidable, we show that this

becomes decidable when an appropriate “disappearance relation” is

given. Further, we show how Angluin’s L*-algorithm for learning fi-

nite automata can be applied to find a disappearance relation, which

is guaranteed to terminate if it is regular. We have implemented the

algorithm and apply this to such examples as the Muddy Children

Puzzle, the Russian Card Problem, and Large Number Challenge.
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1 INTRODUCTION
Consider the standard problem of muddy children puzzle in knowl-

edge reasoning [13]. Suppose that there are a total of N children,

whereM ∈ {1, . . . ,N } of them has a mud on their forehead. Each

child can observe whether another child (but not himself) has a

mud on their forehead. The muddy children protocol goes in rounds.

At each round, the father declares that there is a muddy child (i.e.

with a mud on their forehead), and asks the children whether they

know if they are muddy, to which the children can answer yes/no.
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The announcements made by the children are observable by other

children. After a few rounds (more preciselyM rounds), all children

will discover the so-called common knowledge of which children

(including themselves) are muddy and which are not, regardless of

the value of the parametersM and N (e.g. see [13]).

The muddy children puzzle can be constructed as a typical exam-

ple of a parameterized verification problem [5, 9, 18, 19] but with re-

spect to epistemic properties. Even though the problem was shown

undecidable for a simple safety property by Apt and Kozen in the

80s [7], the past twenty years or so have witnessed significant

progress in parameterized verification (e.g., see [1, 9, 24, 45, 46]

for surveys). Researchers resort to either (1) semi-algorithmic tech-

niques that are applicable to general systems, but either without

a termination guarantee or the method might terminate with a

“don’t know” answer, or (2) restriction to decidable subproblems

(e.g. obtained by imposing certain structures on the parameter-

ized systems). More recently, parameterized verification problem

was also considered in the setting of multi-agent systems (e.g.,

see [5, 9, 18, 19, 25]). Despite this, very little work has been done

on parameterized verification problem with respect to epistemic

properties, which is in particular applicable in the simple setting

of the muddy children example. This is an extremely challenging

problem, while most research focus in parameterized system ver-

ification for a few decades has been on simple safety properties

(e.g. [1, 2, 12, 29, 45]) and only recently on liveness properties (e.g.

[21, 23]).

Summary of Results. We propose a framework for modelling and

model-checking epistemic properties over parameterized multi-

agent systems. Our emphasis in this paper is on general semi-
algorithmic solutions that can lend themselves to automatically

solve a variety of interesting examples in knowledge reasoning.

While our semi-algorithm is not guaranteed to terminate in gen-

eral, we provide a general termination condition, which is proved

to subsume examples like Muddy Children Puzzle, Large Number

Challenge, and Russian Card Problem. We detail our results below.

Firstly, let us recall a standard setting in the finite non-para-

meterized case using Public Announcement Logic (PAL) [31, 42]
(also see [39, 41, 43], which provide more detailed modelling and a

finite-state model checker). The system is represented by a finite

Kripke structure, each of whose (binary) accessibility relation

a
{

(for each agent a) satisfying the S5 axioms, i.e.,

a
{ is an equivalence

relation (reflexive, symmetric, and transitive). That way,

a
{ can be

interpreted as knowledge-indistinguishability by agent a. PAL then

is simply a standard modal logic with one accessibility relation per

agent, as well as public announcement modalities {φ!}, whereby
each agent learns about φ. A standard application of the public
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announcement operator is to model the announcement of a child in

the muddy children protocol, who declares that he knows whether

he has a mud on his forehead.

To extend the framework to the parameterized setting, there

are a few problems. Firstly, since the Kripke Structure is now infi-

nite (i.e. the union of all possible instantiations of the parameter),

how do we symbolically represent the Kripke Structure? Secondly, a
closer look at the solution to the muddy children example via PAL

(or similar logics) [13, 31, 42] suggests that the formula in the logic

is different for different numbers of muddy children. For parameter-

ized verification, it is essential that we have a uniform specification

for the epistemic property regardless of the instantiation of the

parameters. We note that generalizations of epistemic logics that

can provide such a uniform specification exist (e.g., quantified epis-

temic logic [8], iterated public announcement [15, 27]). However,

the resulting logics are not only undecidable, but there are also no

known semi-algorithmic solutions that would work for interesting

examples.

Our framework (see §3) is in the spirit of regular model checking
[1, 3, 10, 11, 37], wherein a configuration in the (parameterized)

systems is represented by a string over some finite alphabet Σ,
while a binary relation{⊆ Σ∗ × Σ∗ is represented by an automata

over the product alphabet Σ × Σ. [The reader could understand a

product alphabet just like a normal alphabet, where an automaton

would synchronously read a pair (a,b) of symbols at each step.] The

resulting Kripke structures are called automatic Kripke structures
[10, 11, 37]. One benefit of this framework is that one could encode

an infinite number of accessibility relation {
i
{}i ∈N (one for each

agent indexed i = 0, 1, 2, . . .), where
i
{⊆ Σ∗ × Σ∗, as one single

automaton representing{⊆ Σ∗ × N × Σ∗. Since a string encoding

s(i) of each number i ∈ N could be given (e.g. i = 3 could be

represented in unary), this automata could run over some product

alphabet, e.g., Σ × {0, 1} × Σ. Second, to reason about knowledge

over automatic Kripke Structures, it is important to enrich PAL with

a few new features: (1) basic string reasoning (e.g. whether b occurs

at an even position in the string), since configurations in the Kripke

models are represented as strings (2) iterated public announcement

operator {φ!}∗, since in general an unbounded number of public

announcements need to be made in parameterized systems (e.g. one

announcement per child/round in the muddy children protocol).

Our key results is as follows. First, in the absence of the iterated

public announcement operators in the input formula, the model

checking problem in our framework is decidable with a nonelemen-
tary complexity (see §4). Despite the high complexity, we show that

our implementation [34] works well on examples like the parame-

terized version of the Russian Card Problem [40, 43] (where the total

number of cards is not fixed a priori), where the tool verifies anony-

mous communication between two parties of the system could be

achieved (see §6). Second, in the presence of the iterated public

announcement operators in the input formula, although the model

checking problem is in general undecidable (see §4), we provide a

semi-algorithm for the problem tapping into Angluin’s L* automata

learning algorithm [6, 17] (see §5). To the best of our knowledge,

this is the first application of automata learning methods to the

parameterized model checking of epistemic properties. Loosely

speaking, the learning algorithm will attempt the computation of

the so-called “disappearance relation”, that captures the order in

which states are discarded during the announcements and is likely

to exhibit regular patterns of the system. A termination guarantee

is provided in this case (i.e. when the order can be represented by

regular languages). We implemented the method and show that it

can successfully verify the parameterized versions of the Muddy

Children Protocol and the Large Number Challenge (see §6).

We refer the reader to our technical report [35] when complete

proofs are omitted.

2 PRELIMINARIES
We denote N the set of natural numbers, and for any n ∈ N,
[n] = {x ∈ N | 0 ≤ x < n}.
Automata Background: An alphabet is a finite set Σ. A word w
over Σ is a finite sequence x0 . . . xn−1 ∈ Σn , of letters of Σ, for some

length n, which is is denoted |w | = n. We write w[i] = xi for its
i-th letter (i ∈ [|w |]) and ϵ for the empty word of length 0.

A set of words L is called a language. It is regular if it it can
be recognized by a regular expression, or equivalently by a non-

deterministic automaton (NFA, e.g. see [33]). We denote Reg (Σ)
the class of regular languages over Σ and recall the class is closed

under concatenation, boolean operations, and Kleene star.

Let Σ1 ⊆ Σ′
1
and Σ2. Regular languages are also preserved by

Synchronous product and morphism:

For w1 ∈ Σl
1
and w2 ∈ Σl

2
two words of the same length l ∈ N,

we writew1 ⊗w2 for the synchronous product wordw ∈ (Σ1 × Σ2)
l

such that ∀i ∈ [l], w[i] = (w1[i],w2[i]). We extend ⊗ to lan-

guages, by defining, for any L1 ⊆ Σ∗
1
and L2 ⊆ Σ∗

2
, L1 ⊗ L2 ={

w1 ⊗w2

���w1 ∈ L1 ∧w2 ∈ L2 ∩ Σ
|w1 |

2

}
A morphism is any function f : Σ1 → Σ2, we extend f to words

over Σ1 by defining, for anyw ∈ Σ∗
1
, f (w) = f (w[0]) . . . f(w[|w|-1]) ∈

Σ∗
2
, then to languages over the superset Σ′

1
: for any L ⊆ (Σ′

1
)∗,

f (L) = { f (w) | w ∈ L ∩ (Σ1)
∗}.

For example, synchronous product’s counterparts can be defined

as the morphisms π(Σ1,−) and π(−,Σ2), projections on the first and

second component, respectively.

We encode positions inside a word with the alphabet B = {0, 1}

and for 0 ≤ i < l ,V (i, l) = 0
i
10

l−i−1 ∈ Bl encodes the i-th position.

When the meaning is clear, we will at times identify a finite

automaton A and its recognized language L(A) ∈ Reg (Σ). In par-

ticular, whenever we claim a language L is regular, a recognizing

automaton may be provided instead. Whenever Σ = Σ1 × Σ2, the
automaton may also be called a length-preserving transducer, or sim-

ply “transducer”, as it can be interpreted as an automaton mapping

a word w1 ∈ Σ∗
1
to (non-deterministically) a word w2 ∈ Σ∗

2
of the

same length, such thatw1 ⊗w2 ∈ L.

3 OUR FRAMEWORK
In this section, we provide our regularmodel checking framework to

knowledge reasoning over parameterized systems. The section has

two parts. First, an extension of PAL called PPAL (Parameterized

PAL) that is interpreted over a parameterized Kripke structure.

Second, a regular presentation of parameterized Kripke structure,

over which PPAL-model checking is decidable.
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Figure 1: First members of the parameterized Kripke fam-
ily of the Muddy children example, with parameter 2 (left)
and 3 (right), self loops are omitted.

3.1 Parameterized Public Announcement Logic
The logic PPAL will be evaluated on a parameterized Kripke struc-

ture. Loosely, such a structure represents a parameterized system,

which can be viewed as a union of an infinite family of structures,

each obtained by instantiating the parameter. Each state will be

assigned a fixed parameter instantation, shared by all its succes-

sors. For simplicity, we use only one parameter called the state size,
which quantifies the (maximal) number of agents involved, as well

as the number of copies of atomic propositions.

Definition 3.1. A parameterized Kripke structure is a tuple
M = (S,AP,{, L, | · |) where:

• S is a (possibly infinite) set of states;

• AP is a finite set of atomic propositions;

• | · | maps any state s ∈ S to its size |s | ∈ N;
• L maps any state s ∈ S and index i ∈ [|s |] to its labelling
Li (s) ⊆ AP ;

• {⊆ S × N × S is a N-labelled accessibility relation between

states, called indistinguishability relation, such that any triple
(s, i, s ′) ∈{ satisfies 0 ≤ i < |s | = |s ′ |. We assume: for any

s ∈ S and 0 ≤ i < |s |, we have (s, i, s) ∈{.

(s, i, s ′) ∈{ is written s
i
{ s ′ and reads "if s is the actual state

of the system (world), the i-th agent entertains the possibility that

the current state is actually s ′, given its observation." Even though

this is not enforced by our definition, most of the proposed models

below will assume

i
{ to be an equivalence relation, for all i , and

this property will be preserved when deriving models.

Example 3.2. Figure 1 depicts a parameterized Kripke structure

for the muddy children puzzle, where S = {m, c}∗, AP = {m}, and

the size |w | of a statew ∈ S is defined as its length. For all i ∈ [|w |],

Li (w) =

{
{m} ifw[i] =m

∅ otherwise

∈ 2
AP

Definition 3.3. We define a formula φ in parameterized public
announcement logic (PPAL) by the following grammar:

φ ::= ⊤ | φ∧φ | ¬φ | ∃i : φ | i = 0 | i%k = 0 | i = j+k | pi | ⟨i⟩φ | {φ!}φ

Where i, j are index variables, k ∈ N is any integral constant and

p ∈ AP is any atomic proposition.

Intuitively, PPAL extends PAL by an indexing capability, so that

one could easily refer to the ith agent in the system. This is to some

extent akin to how indexed LTL extends LTL [9]. However, we also

suitably restrict the indexing capability (essentially, the difference

between the indices of two agents is a certain constant k , or that
the index of agent is k (mod d) for some constants k and d). This
is essentially the extension of the difference logic [20] with modulo

operators. This restriction makes the logic amenable to regular

model checking techniques, but is also sufficiently powerful for

modelling typical examples in parameterized systems.

Shorthands: Boolean connectives ∨,→,↔ and universal quan-

tification ∀ can be encoded in a standard way. The formula [i]φ ≡

¬⟨i⟩¬φ encodes that agent i knows with certainty that φ holds.

Usage of constants is also allowed: i = k ≡ ∃j : j = 0 ∧ i = j + k ,
pk ≡ ∃i : i = k ∧ pi , ⟨k⟩φ ≡ ∃i : i = k ∧ ⟨i⟩φ.

We denote FV (φ) for the set of (“not quantified”) free variables,
of φ. We say that φ is a closed formula whenever FV (φ) = ∅. For

any setX of index variables, a function µ ∈ NX is called a valuation.

For a valuation µ and a formula φ, we write φ(µ) for the instantiated
formula where each occurrence of x ∈ X has been replaced by µ(x).
In particular, if FV (φ) ⊆ X , then φ(µ) is a closed formula.

Definition 3.4. For a parameterized Kripke structureM, a state

s ∈ S , a PPAL formula φ, and a valuation µ ∈ NFV (φ)
, we define

the satisfaction relation ⊨, inductively, by M, s, µ ⊨ φ if, and only if,

∀i, µ(i) ∈ [|s |] and one of the following condition holds:

φ ≡ ⊤

φ ≡ ψ1 ∧ψ and M, s, µ ⊨ ψ1 and M, s, µ ⊨ ψ2

φ ≡ ¬ψ and M, s, µ ⊭ ψ

φ ≡ ∃i : ψ and M, s, µ ′ ⊨ ψ for some µ ′ s.t. ∀x , i, µ(x) ≡ µ ′(x)

φ ≡ i = j + k and µ(i) ≡ µ(j) + k

φ ≡ i = 0 and µ(i) ≡ 0

φ ≡ i%k = 0 and µ(i)%k ≡ 0

φ ≡ pi and p ∈ Lµ(i)(s)

φ ≡ ⟨i⟩ψ and there exists t ∈ S such that s
µ(i)
{ t and M, t, µ ⊨ ψ

φ ≡ {ψ1!}ψ2 and M, s, µ ⊨ ψ1 implies M{φ(µ)!}µ , s, µ ⊨ ψ

where for any closed PPAL formula ψ , M{ψ !} is the (parameter-

ized) Kripke structure M restricted to the state space satisfyingψ :
S{ψ !} = {s | M, s, · ⊨ ψ }.

Note that we adopt here the vacuous truth semantics for the

public announcement operator: whenever a state doesn’t satisfy a

publicly announced property, it satisfies its conclusion. This choice

will turn out to be more convenient with our examples involving

the newly iterated public announcement. While an alternative defi-

nition φ ∧ {φ!}ψ is possible, they are both expressively equivalent.

It is important to notice that the logic does not make a distinc-

tion between variables designed for atomic propositions manipula-

tion and variables for indexing agents. Not only this simplification

makes our definition more concise, it also enables the specification

of relationships between agents and their atomic propositions.

Example 3.5. Consider the scenario of the muddy children puzzle,

where the father announces that there is exactly one muddy child.

“after this announcement, every child knows their own state” is

encoded as the formula:{
∃i :mi ∧ ∀j, i , j → ¬mj !

}
∀i, [i]mi ∨ [i]¬mi
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Figure 2: Transducer for the Muddy children

3.2 Regular Kripke Structures
We now provide a regular presentation of parameterized Kripke

structures, and define the model checking problem.

Definition 3.6. Let M = (S,AP,{, L, | · |) be a parameterized

Kripke structure. It is regular if there exists an alphabet Σ such that:

• S ⊆ Σ∗;
• For all s ∈ S , |s | is the actual length of s , seen as a word;

• For all i ∈ [|s |], Li (s) = L0(s[i]);
• The indistinguishability relation can be encoded as a trans-

ducer, more precisely the following language is regular:

TM =

{
s ⊗ V (i, |s |) ⊗ t

���� s i
{ t

}
Recall that we assume the reflexivity

i
{, for each i ∈ N. Hence,

the state space S of a regular Kripke structure is also regular, since

S = πΣ,−(TM ) is a morphism image. In the rest of the paper, we will

assume the labelling L to be fixed, and identify any regular Kripke

structureM with its regular languageTM , seen as a transducer. The

following proposition justifies the validity of the above restriction.

Proposition 3.7. Given an indistinguishability relation (
i
{)i ,

encoded as a transducer, checking any of the following properties to

be satisfied by
i
{ (for each i ∈ N) is decidable: (1) reflexive, (2) sym-

metric, and (3) transitive.

This follows from the fact that reflexivity, symmetry, and transi-

tivity of a binary relation are first-order decidable, and that first-

order model checking over regular Kripke structures (more gen-

erally automatic structures) is decidable [10, 11]. As a remark, it

follows also that checking whether a regular Kripke Structure sat-

isfies the S5 axioms (whether all

i
{ are equivalence relations) is

decidable.

Example 3.8 (Muddy children). The parameterized Kripke struc-

ture of Example 3.2 is regular: the transducer TM is recognized

by the NFA depicted in Figure 2. For example, the accepting run

q0
(c ,0,c)
−−−−−→ q0

(c ,0,c)
−−−−−→ q0

(m,1,c)
−−−−−−→ qf for the word ccm ⊗ 001 ⊗ ccc

encodes the observation ccm
2

{ ccc .

The regular model checking problem for PPAL is the problem

of model checking PPAL formulas over regular Kripke structures:

given a regular Kripke structureM, and a formula φ, check if the

following satisfaction set is empty:

⟦φ⟧ (M) :=
{
(s, µ) ∈ S × NFV (φ)

��� M, s, µ ⊨ φ}

4 REGULAR MODEL CHECKING OF PPAL
In this section, we prove that this problem is decidable:

Theorem 4.1. Given a regular Kripke structureM and a closed
PPAL formula φ, its semantics ⟦φ⟧ (M) is regular and computable.

When evaluating a public announcement, the Kripke structure

may be modified in a way that is dependent of the current valuation.

The crux of the proof lies in carrying a family of regular Kripke

structures, encoded as a single extended transducer:

Lemma 4.2. Let X be a finite set of variables, φ a PPAL formula

with FV (φ) ⊆ X, and T ∈ Reg

(
Σ × B × Σ × BX

)
. We assume that

for any v ∈ BX , the transducer {w | w ⊗ v ∈ T } represents a regular
Kripke structure denoted Mv . Then, the extended semantics

⟦̃φ⟧(T ) = {s ⊗ v | ∃µ ∈ NX
: v = V (µ, |s |) ∧Mv , s, µ ⊨ φ}

can be recursively computed using boolean, synchronous product and
morphism operations on regular languages.

Proof. We focus our proof on two PPAL constructions:

• �⟦⟨ai ⟩φ⟧(T ) = π (
T ∩ A∗BA∗ ∩ (Σ × B)∗ ⊗ ⟦̃φ⟧(T )

)
where:


A = Σ × {0} × Σ × {v | v(i) = 0}

B = Σ × {1} × Σ × {v | v(i) = 1}

π (α, β,γ ,η) = (α,η)

Intuitively, we intersect the transducer with legal moves

where the current observational playermatches the variable i .
We also intersect with the transducer that always ends up

in a state and valuation satisfying φ.
• The implementation of the public announcement is by far

the most complex one as, we need first to introduce the

public announcement transducer T {φ!}, encoding for any

v , the regular Kripke structure obtained from Mv , after

announcing φ(µv ):

T {φ!} =
⋃

v ∈BX

(
TMv {φ(µv )!}

)
⊗ {v}

T {φ!} is actually regular: we first build ⟦̃φ⟧(T ) in order to

construct a regular Kripke on this state space. In order to do

so, we define the morphism F defined for any
1 t = w⊗v⊗x⊗

w ′⊗v ∈ (Σ×BX ×Σ×BX)∗ by F (t) = w ⊗x ⊗w ′⊗v . Then,
it remains to intersect the image transducer with the initial

model:T {φ!} = T ∩ F (⟦̃φ⟧(T ) ⊗ 0
∗
10

∗ ⊗ ⟦̃φ⟧(T )). Finally, we
conclude with the implementation of the (vacuous truth)

semantics of the public announcement:�⟦{φ!}ψ⟧ = �⟦¬φ⟧(T ) ∪ ⟦̃ψ⟧(T {φ!})
□

Example 4.3. Consider again the regular Kripke structure of

Figure 2 and the effect of publicly announcing "there is at least

one muddy child": initiallyM has state space Σ∗ = {m, c}∗. After
{∃i :mi !}, it is reduced to Σ∗{m}Σ∗. After announcing "no one

knows (s)he muddy", namely {∀i, ⟨i⟩¬mi !}, it is further reduced to

Σ∗{m}Σ∗{m}Σ∗. And after k similar announcements, the resulting

1
Notice that the same valuation v appears on both sides.
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state space becomes Σ∗ ({m}Σ∗)k . This sequence of announcements,

however, cannot continue forever as the k-th iteration removes all

states of length k − 1.

As the reader easily infers, the PPAL logic is suitable for the

model checking of regular Kripke structures of a given size, but

cannot keep up in the parameterized setting, when the number of

announcements in the specification depends on the parameter.

Informally, wewould like to embed an arbitrary but finite number

of iterations, namely an iterated public announcement operator [27]:
{φ!} {φ!} . . . {φ!}︸                ︷︷                ︸
abritrarily many times

ψ

Definition 4.4. A formula φ is in PPAL
∗
if it is in the grammar

of PPAL, augmentedwith φ ::= {φ!}k φ | {φ!}∗ φ with k ∈ N. The
semantics is given by induction on k :

•
�
{φ!}0ψ

�
(M) = ⟦ψ⟧ (M);

•

�
{φ!}k+1ψ

�
(M) =

�
{φ!}k ({φ!}ψ )

�
(M);

•
�
{φ!}∗ψ

�
(M) =

⋃
k≥0

�
{φ!}k ψ

�
(M).

Theorem 4.1 ensures that model checking of a regular Kripke

structure against a PPAL formula is decidable, by reduction to reg-

ular language universality problem. However, the translation of a

formula into a regular language may involve several exponential

blow-ups, so the overall running time may become non-elementary.

Moreover, this translation does not apply to the newly introduced

{·!}∗ operator, and decidability is not guaranteed in this case. We

clarify now these complexity questions:

Theorem 4.5. There exists a regular structure M, such that:
(1) Model checking against a PPAL formula is non-elementary;
(2) Model checking against a PPAL∗ formula is undecidable.

Sketch. (1) In [36, Proposition 20], the author constructs an

automatic structure M whose modal logic theory is non-

elementary. Modal logic can be seen as a particular fragment

of PPAL, with only one agent. An automatic structure can

also be seen as a regular Kripke structure with only one

agent. The hardness reduction is therefore immediate.

(2) We construct now a regular Kripke structureM such that

its PPAL
∗
theory is undecidable. To this end, we draft a

reduction of the Minsky machine halting problem [28]. A

configuration of a Minsky machine can be seen as a triple

(q, x1, x2) ∈ N, that we encode as the state space ofM, relat-

ing all states (complete graph). Informally, for any machine

C, we define φC = φi ∧ {φt !}
∗ ⊥, which iteratively removes

configurations reaching a final state. φi encodes the initial
configuration while φt the existence of a valid transition

to another non-final configuration, based on C’s definition.

The satisfaction set is non-empty if, and only if, the initial

configuration is eventually removed (finite run).

□

5 DISAPPEARANCE RELATION
We study in this section the limit behaviour induced by an operator

restricting incrementally the state space. This study is motivated

by the PPAL
∗
construction {φ!}∗ ⊥, whose semantics can be seen

as the set of states not being removed, after arbitrarily many state

space restrictions operated by the public announcement {φ!}.
For the rest of this section, we fix a more general setting with:

• An initial state space S = S0 ⊆ Σ∗;

• A function F : 2
Σ∗ → 2

Σ∗
restricting the state space, that is

to say: ∀X ⊆ Σ∗, F (X ) ⊆ X .

• For all k ∈ N, we let Sk+1 = F (Sk ) and S∞ = ∩k≥0Sk .

Moreover, we assume S to be a regular language, and F to pre-

serve regular languages, in a way that will later be clarified.

Our study aims at computing the limit set of states S∞. Despite

our assumptions, this set is not in general regular nor computable,

as one can observe as a consequence of the undecidability result of

Theorem 4.5, or the following counterexample.

Example 5.1. Consider S0 = {a}∗{b}∗, and for all X ⊆ S0, define
F (X ) = {anbm | n = m = 0 ∨ (nm > 0 ∧ an−1bm−1 ∈ X )}. Then,

for any k ∈ N, Sk = {aibi | 0 ≤ i < k} ∪ {ak+nbk+m | n,m ≥ 0} is

regular, but not its limit S∞ = {aibi | 0 ≤ i}.

5.1 Unique Characterization
Let us first remark that the application F is not necessarily mono-

tone. Consider for example the announcement∀i,mi∨[i]¬mi which

reads:

“ every non-muddy child knows he’s not muddy. ”

Then F ({cm}) = {cm} but F ({cm,mm}) = ∅. As a consequence, S∞
is a fixed point of F , but cannot be characterized as the smallest nor

the greatest one. Hence, we narrow down our computation goal by

introducing the following pre-order over states:

Definition 5.2. The disappearance relation ⪯ is defined for every

(s, t) ∈ S2, by:

s ⪯ t if, and only if, ∀k ∈ N, s ∈ Sk ⇒ t ∈ Sk

Intuitively, s ⪯ t means that s disappears from the state space be-

fore t . ⪯ is a total pre-order, i.e. any two elements are comparable,

the relation is reflexive, transitive, but not necessarily antisym-

metric. Notice that S∞ can be characterized as the set of maximal

elements of ⪯.

In order to reason over set of states induced by a pre-order, we

introduce the following notations:

Definition 5.3. For a relation R ⊆ S × S, and any s ∈ S, we
define the upward-closure and equivalence class of s by ↑ Rs =
{u ∈ S | (s,u) ∈ R}, and [s]R = {u ∈ S | (s,u) ∈ R ∧ (u, s) ∈ R},
respectively. We omit the subscript notation when R =⪯.

As suggested by its name, the latter notion involves an equiva-

lence relation, namely R∩R−1 which relates states of S disappearing
at the same iteration. On the other hand, the upward-closure ↑s can
be interpreted as one of the iterated Sk =↑s for some k ∈ N ⊎ {∞}.

When k < ∞, we know this is the last iteration before s and all its

equivalent states got removed. This entails Sk+1 = Sk\[s], hence
F (↑s) =↑s\[s]. When k = ∞, we know on the contrary, that s never
disappears, which also means [s] =↑s = S∞.

This setting is summarised in the following Figure 3 and Propo-

sition 5.4, the latter also provides a unique characterization under

certain conditions:
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S0\S1 S∞Si\Si+1 Si+1\Si+2⪯ . . .⪯ ⪯ ⪯ . . . ⪯

Si =↑s

Si+1 = F (↑s)
s t≺≻

Figure 3: Hierarchy of the equivalence classes of the disap-
pearance relation

Proposition 5.4. Let R ⊆ S × S. If R =⪯, then:

(1) R is a total pre-order on S, and
(2) for s ∈ S, [s]R = ↑Rs\F (↑Rs) or [s]R = ↑Rs = F (↑Rs).

Moreover, the converse holds whenever S is finite.

5.2 Learning Procedure
The unique characterization of Proposition 5.4 paves the way to a

learning procedure for computing ⪯. More precisely, we consider

for this section an encoding of ⪯ seen as as a language over pairs

of letters: L⪯ = {s ⊗ t | |s | = |t | ∧ s ⪯ t} ⊆ (Σ × Σ)∗

Assuming L⪯ is a regular language, we will develop a learning

procedure to construct it. On the one hand, notice that this defini-

tion of L⪯ looses some information about ⪯ as it can only relate

states of the same length. On the other hand, this restriction is not

crucial as the PPAL logic is exclusively based on length-preserving

transducers. We keep the following requirement:

(R1): “F is length-preserving”

Strictly speaking, we assume L⪯ to be the representation of the

family (⪯k )k ∈N, where for each k , ⪯k is the disappearance relation

starting from the initial state space S0 ∩ Σk . As Σk is finite for

a given k , this restriction further allows us to provide a unique

characterization of L⪯ , as provided by Proposition 5.4.

We now introduce the L∗ algorithm from Angluin, which allows

us to learn a finite automaton A, or equivalently a target regular

language Lt ∈ Reg (Σt ), based on queries answered by an Oracle.

Such an Oracle has to answer membership and equivalence queries,
by direct access to the target language or by indirect means.

We explain the exact semantics of L∗ queries for a target language
language Lt ∈ Reg (Σt ), and how they are answered in this learning

procedure, where the target language is L⪯ ∈ Reg (Σ × Σ):

• Membership Queries: the Oracle is asked whether a given
wordw ∈ Σ∗t is in the target language Lt .

Answer:we let s, t ∈ Σ |w |
with s⊗t = w and decide whether

s ⪯ t . We proceed to the iterative computation of the sets

(Sk )k ∈N and stopwhenever s or t is nomore in the set. This is

however a semi-decision procedure as it may fail in the case

where neither s nor t disappear (s, t ∈ S∞). To circumvent

this issue, we perform the computation on the restricted

state space of a fixed length |w |, namely Sk ∩ Σ |w |
, ensuring

a finite cardinality. As soon as s, t ∈ Sk ∩Σ |w | = Sk+1∩Σ |w |
,

we conclude that s ⪯ t . This leads to our second requirement:

(R2): “F restricts the state space independently for different

state sizes.”

• Equivalence Queries: Given a candidate language L, the
Oracle is asked whether L = Lt and if not, provides a coun-

terexamplew ∈ L\Lt ∪ Lt \L.
Answer: we use Proposition 5.4, which can be seen as a first

order characterization of ⪯, and translate the listed criteria

into equivalence problems over regular languages. If one reg-

ular language equivalence fails, we have to provide a counter

example to the learning procedure. Unfortunately, a coun-

terexample to a criterion of Proposition 5.4 does not directly

provide a counterexample for L∗. For example, a counterex-

ample for the transitivity property would consist in a triple

(s1, s2, s3) ∈ S
3
such that s1⊗s2 ∈ L, s2⊗s3 ∈ L but s1⊗s3 < L,

and it wouldn’t be clear whether the property fails because

either (s1, s2) or (s2, s3) should be removed from L or because

(s1, s3) should be added. Nonetheless, since a counterexam-

ple was provided for a fixed length l , L restricted to (Σ×Σ)l is

guaranteed not to be a proper encoding of ⪯ ∩Σl × Σl . A di-

rect enumeration of the sequence (Sk ∩Σl )k≥0 will therefore
terminate and provide a counterexample.

5.3 Effective and Uniform Regularity
In order to effectively implement the procedure, we provide the

following equivalent characterization of Proposition 5.4, in terms

of first-order formulae.

Proposition 5.5. Let R ⊆ Σ∗ × Σ∗ and k ∈ N.
R ∩ (Σk × Σk ) ,⪯k if, and only if, any one of the conditions holds:

(1) ∃s, t : (s, t) ∈ R ∧ (s, t) < S × S;
(2) ∃s : (s, s) < R;
(3) ∃s1, s2, s3 : (s1, s2) ∈ R ∧ (s2, s3) ∈ R ∧ (s1, s3) < R;
(4) ∃s, t : (s, t) < R ∧ (t, s) < R;
(5)

∃s, t1, t2 :


(s, t1) ∈ R ∧ (s, t2) ∈ R

(t1, s) < R ↮ t ∈ F (↑Rs)

(t2, s) < R ∨ t2 < F (↑Rs)

Where all quantifications are made over Σk .

Based on this first-order characterization, we provide an actual

implementation of equivalence queries on the candidate language

L, by resorting to queries on length-preserving transducers, namely

regular languages over Σ×Σ. For example, Property (1) is translated

to the query L ∩ S ⊗ S
?

= ∅.

While the predicates S × S and R can be encoded as the regular

languages S ⊗ S and Lc , respectively, property (5) involves the

computation of the operator F as the following binary predicate:

F (↑R ·) = {(s, t) | s ∈ F (↑Rt)}

This condition is introduced as the last requirement:

(R3): “F is effective and uniformly regular”

Conditions (R1) − (R3) are formally defined through the following

conditions:

Definition 5.6. Let G be a function from 2
Σ∗
1 to 2

Σ∗
2 .

• G is independently length-preserving if:

∀l ∈ N ∀X ⊆ Σ∗
1
,G(X ∩ Σl

1
) = G(X ) ∩ Σl

2
;
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• G is effectively uniformly regular if:
For any given alphabet Σ′ and L ∈ Reg (Σ′ × Σ1), the follow-
ing language is regular and computable:{
w ′ ⊗w2

��� ∃w1 ∈ Σ |w2 |
: w2 ∈ G

({
w1 | w

′ ⊗w1 ∈ L
})}

Theorem 5.7. Assume F is an independently length-preserving
and uniformly regular function.
Then the L∗ learning procedure described in Section 5.2 eventually
terminates and returns L⪯ if, and only, it is regular.

5.4 Application to PPAL
∗

We finally address the general case with the following observation:

Proposition 5.8. Let φ and ψ be two closed formula and M a
parameterized Kripke structure, whose state space is S. For anyX ⊆ S,
we defineM |X for the parameterized Kripke structure restricted to X
and consider the resulting disappearance relation ⪯⊆ S2.

We have:�
[φ!]∗ψ

�
(M) =

{
s ∈ S

�� ∃t ∈ S : s ∈ ⟦ψ⟧ (M |↑⪯t )
}

We can easily see that the above set is regular if M and ⪯ are

both regular. In order to proceed to their computation, we need to

provide the following uniformly regular property:

Proposition 5.9. Let φ be a closed formula on a regular Kripke
structure M. The application, Fφ defined by

∀X ⊆ S, Fφ (X ) = ⟦φ⟧ (M |X )

is length-preserving, effectively and uniformly regular.

Proof. Given L ∈ Reg (Σ′ × Σ), we define a new regular Kripke

structure M ′
storing the information about Σ′ in its state space.

The construction of M ′
is effective, and by Theorem 4.1, we can

compute ⟦φ⟧ (M ′). □

6 EXPERIMENTS
We developed a prototype tool implementation, using the Java

libraries Learnlib and Automatalib [16]. Three different models

were specified then verified
2
showing tractability of the procedure:

Model Duration Memory Usage

Russian cards 36s 2365MB

Large number 53s 1218MB

M ≤ 9 Muddy children 24s 1136Mo

M ≤ 10 Muddy children TO (5min+)

M < ∞Muddy children 2.5s 111MB

The rest of the section discusses implementation details and de-

scription of the aforementioned models.

Usage. The tool takes as an input an automaton description of a

regular Kripke structureM, and for each specification φ, computes

its satisfaction set. In case the complement ⟦¬φ⟧ (M) is non-empty,

a NFA is returned, which can be interpreted as the set of counterex-

amples to φ. For usability reasons, the syntax of PPAL∗ is enhanced
with several syntactic sugars, but can also embed dummy formu-

lae, equivalent to ⊤, whose evaluation triggers visualization of the

intermediate constructed automata.

2
Experiments were conducted on a i7-8550U CPU @ 1.80GHz, 16GB machine with

JavaSE-1.8. The prototype and model files are available online [34].

Automaton size. Since specifying a transducer for

·
{ can be

quite tedious, we specify a rather general regular Kripke structure

encoding only the observation of the agents, and further restricting

the state space by applying public announcement constructions. As

a matter of fact, the state space after only few announcements can

already require several hundred states. The intermediate compu-

tations may even lead to semantics automata of up to millions of

states. Note that the ordering of index quantifications inside the

specification plays a crucial role, as each quantified index is carried

around in one coordinate of the automaton alphabet, as explained

by Lemma 4.2.

Learning procedure.Although several DFA learning algorithms

are provided by Learnlib, the classical Angluin’s L∗turned out to

be sufficient for our experiments: for all our examples, whenever

termination was guaranteed
3
, the algorithm converged within a

minute. The most expensive task of the equivalence check is the last

property of Proposition 5.5: it is indeed the only criterion involving

the evaluation of the PPAL formula. Fortunately, many equivalence

queries fail on previous criteria, that are less expensive to check.

6.1 Russian Card Problem
This puzzle [40] involves N different cards which are distributed

between three players Alice, Bob and Cathy. The goal of the game

is for Alice and Bob to exchange messages publicly, in order to get

to know who has which card in their hand, without disclosing any

individual card information to Cathy.

In the one-round setting, Alice broadcasts a first message, then

Bob replies, which conclude the protocol. As Bob can only announce

a piece of information he already knows, his message can trivially

be assumed to announce Cathy’s cards. In other words, the one-

round case focuses on Alice’s announcement.

Kripke structure. We let AP = {a,b, c}, and the only agent

indexes involved
4
are a = 1, b = 2, and c = 3. For x ∈ AP and i ∈ N,

xi holds iff agent x has card i in their hand. Moreover, we assume

that ai ,bi and ci are mutually exclusive (each card appears only in

one) hand. We easily check that M is regular.

Specification. An announcement of Alice is any statement

about her own observation, namely a characterization of the cards

in her hand, or equivalently {{i0, i1, i2}, {i3, i4, i5}, . . .}, seen as a

set of possible hands. However, this representation is not fit to a

parameterized context, where the total number of cards is not fixed

a priori. Instead, we consider announcements specified in a param-

eterized manner, namely in the propositional fragment of PPAL,

involving only index quantifications, the atomic proposition a and

no epistemic operator. A formulaψ is a good announcement if fur-
thermore, it satisfies:

φдood = ψ ∧ {ψ !} ( // truthful PA

∀i, [b]ai ∨ [b]bi ∨ [b]ci // b knows the distribution

∀i,¬ci →

{
⟨c⟩ai ∧ ⟨c⟩¬ai

⟨c⟩bi ∧ ⟨c⟩¬bi )
// c doesn’t know

While [4] provides several sufficient and necessary conditions

on the number of cards received by each participants, we focus here

on a single example of (sufficient) good announcement, provided

3
The learning procedure diverges if, and only if, L⪯ is not regular.

4
We can assume that

i
{ is trivial for i ≥ 3.
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by [4, Proposition 5] in the case where N%3 = 0, Alice receives 3

cards, Cathy only one, and Bob the rest (property φmodel ).

If Alice received the first three cards, the following announce-

ment is claimed to be good:

ψ ≡ ∃j : j%3 = 0 ∧
(
(aj ∧ aj+1 ∧ aj+2) ∨ (aj ∧ aj+4 ∧ aj+8)

)
Which can be checked with the verification question:

M
?

⊨ {φmodel !}
(
a0 ∧ a1 ∧ a2 → φдood

)
We leave to the reader the generalization to any initial hand of

Alice and the specification of φmodel .

6.2 Highest Number
The highest number problem involves two agents Alice and Bob

both receiving a different natural number between 0 and N , which

they keep private. We model this situation by AP = {a,b} and

encode the observation of a = 0 and b = 1 as a transducer. A letter

α ∈ AP is used to encode α ’s number, in unary. At each round, they

are both asked simultaneously if one of them knows who has the

highest number. If not, a public announcement is made for this fact.

If yes, the game stops. The termination of this protocol is checked

by the following iterated announcement, which we successfully

verify: {¬ (∃i∃j : [j](ai ∧ ¬bi ) ∨ [j](¬ai ∧ bi ))!}
∗ ⊥

6.3 Muddy Children: Bounded Case
In this section, assume the number of muddy children is bounded

by some fixedM ∈ N, although the total number of children is left

as a parameter N . This assumption is implemented as public an-

nounecement made on the regular Kripke structure of Example 3.8.

Intuitively, the effect of this announcements is to construct the

product automaton of the original transducer TM with a finite

automaton of sizeM + 1 counting how many muddy children have

been seen so far. This product has to be made twice: once on the

source and once on the target of the transducer. Nonetheless, the

target and source word differ only by one letter, hence the resulting

automaton is of size O(M).

Then, we proceed to the iterated announcement {∀i, ⟨i⟩¬mi !}
∗
,

which reduces to the disappearance relation computation: for s, t ∈
S0, s ⪯ t if, and only if, |s |m ≤ |t |m . As a matter of fact, the protocol

terminates after |s |m announcements of the father whenever there

are exactly |s |m muddy children.

This relation can be effectively encoded as a length-preserving

transducer, counting the difference of number of muddy children

between s and t , which lies between −M and M . Our algorithm

successfully computes a transducer for ⪯, with O(M) states.

6.4 Muddy Children: Unbounded Case
We remove now the boundedness condition. As before, ⪯ has to

compare the number of muddy children between two given states,

which can now be arbitrarily large: take for examplemncn ⪯ cnmn
.

As a consequence, L⪯ is not regular anymore and the learning

procedure doesn’t terminate.

Nonetheless, we observe that the problem is invariant under

permutation, more precisely: (1) The formula φ lies in a fragment

of PPAL
∗
without index comparison of the form i = j + k for any

k , 0; and (2) For any wordw ∈ TM and any bijection Σ on [|w |],

w[σ (0)] . . .w[σ (|w | − 1)] ∈ TM .

Therefore, we proceed to a counting abstraction of the model,

restricting the regular Kripke structure. Informally, we want to

preserve the property that a transition s
i
{ t is valid if, and only

if, there exists some agent j with the same "local state" as i , that
can perform this transition. Here, the announcement translates to

“there is still a muddy child who doesn’t know”.

As the state space is reduced to c∗m∗
, our rewriting actually

consists in a unary encoding of the number of clean and muddy

children. As for the largest number challenge, the disappearance

relation is regular, and we successfully verify the rewritten formula:

φ ≡ {∀i,¬mi+1 → ¬mi !} {∃i :mi !} {∃i :mi ∧ ⟨i⟩¬mi !}
∗ ⊥

7 RELATED AND FUTUREWORK
Related Work. Finite-state model checkers for various epistemic

logics are available, e.g., MCMAS [26], DEMO [39, 44], SMCDEL [38],

and MCK [14]. Kouvaros and Lomuscio [19] have studied cutoff
techniques for ACTL*K\X, a temporal-epistemic logic combining S5

and temporal logic ACTL* \ X, which is used in MCMAS. Roughly

speaking, a cutoff exists for a parameterized system when the be-

havior of any instance of the system can be simulated (using an

appropriate notion of simulation) by the behavior of systems of a

fixed computable parameter-size k , which would allow us to reduce

the parameterized model checking problem into finite-state model

checking (up to parameter of size k). This cutoff technique — as is

the case with most cutoff methods (see [9, 45]) — needs to be spe-

cially tuned to different subclasses of parameterized systems. We

are not aware of the existence of such cutoff values for the systems

that we consider in this paper. Our regular model checking method

is complementary to such cutoff methods. The method is fully au-

tomatic, but it might not terminate in general (albeit we provide

also termination guarantees). To the best of our knowledge, our

method provides the first automatic solution to the parameterized

verification problem for the muddy children puzzle, the Russian

card puzzle [40], and the large number challenge, all of which have

been studied in the finite-state case (e.g. see [26, 38, 39, 44]).

Future Work. Natural extensions of PPAL∗ include the support of
dynamic properties, enabling the specification and verification of

richer communication protocols, where the communication pattern

is non-deterministic [26]. The study of the disappearance relation

revealed that the chosen encoding is crucial for termination. The

counting abstraction sketched for the Muddy children case would

benefit from a systemic approach. Once the symmetries have been

detected in the automatic structure, which can be implemented [22]

with transducer techniques, a lossless Parikh image [30] could be

computed in terms of a Presburger formula [32]. As the PPAL se-

mantics involves only boolean, synchronous product and morphism

operations, the computation could be performed in this domain. As

another future direction, we would like to study cutoff methods

of [19] for the examples that we consider in this paper.

ACKNOWLEDGMENTS
This work was supported by the ERC Starting Grant 759969 (AV-

SMP) and Max-Planck Fellowship.

Main Track AAMAS 2021, May 3-7, 2021, Online

1261



REFERENCES
[1] Parosh Aziz Abdulla. 2012. Regular model checking. Int. J. Softw. Tools Technol.

Transf. 14, 2 (2012), 109–118. https://doi.org/10.1007/s10009-011-0216-8
[2] Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Holík. 2016. Parameterized

verification through view abstraction. STTT 18, 5 (2016), 495–516.

[3] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Mayank Saksena. 2004.

A Survey of Regular Model Checking. In CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004, Proceedings
(Lecture Notes in Computer Science), Philippa Gardner and Nobuko Yoshida (Eds.),

Vol. 3170. Springer, 35–48. https://doi.org/10.1007/978-3-540-28644-8_3

[4] Michael H. Albert, Robert E. L. Aldred, Mike D. Atkinson, Hans P. van Ditmarsch,

and Chris C. Handley. 2005. Safe communication for card players by combinatorial

designs for two-step protocols. Australas. J Comb. 33 (2005), 33–46. http://ajc.
maths.uq.edu.au/pdf/33/ajc_v33_p033.pdf

[5] Benjamin Aminof, Aniello Murano, Sasha Rubin, and Florian Zuleger. 2016. Auto-

matic Verification of Multi-Agent Systems in Parameterised Grid-Environments.

In Proceedings of the 2016 International Conference on Autonomous Agents & Mul-
tiagent Systems, Singapore, May 9-13, 2016, Catholijn M. Jonker, Stacy Marsella,

John Thangarajah, and Karl Tuyls (Eds.). ACM, 1190–1199. http://dl.acm.org/

citation.cfm?id=2937098

[6] Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples.

Inf. Comput. 75, 2 (Nov. 1987), 87–106. https://doi.org/10.1016/0890-5401(87)

90052-6

[7] Krzysztof R. Apt and Dexter Kozen. 1986. Limits for Automatic Verification

of Finite-State Concurrent Systems. Inf. Process. Lett. 22, 6 (1986), 307–309.

https://doi.org/10.1016/0020-0190(86)90071-2

[8] Francesco Belardinelli and Alessio Lomuscio. 2009. Quantified epistemic logics

for reasoning about knowledge in multi-agent systems. Artif. Intell. 173, 9-10
(2009), 982–1013. https://doi.org/10.1016/j.artint.2009.02.003

[9] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut

Veith, and Josef Widder. 2015. Decidability of Parameterized Verification. Morgan

& Claypool Publishers. https://doi.org/10.2200/S00658ED1V01Y201508DCT013

[10] A. Blumensath. 1999. Automatic Structures. Master’s thesis. RWTH Aachen.

[11] A. Blumensath and E. Grädel. 2004. Finite Presentations of Infinite Structures:

Automata and Interpretations. Theory Comput. Syst. 37, 6 (2004), 641–674.
[12] Yu-Fang Chen, Chih-Duo Hong, Anthony W. Lin, and Philipp Rümmer. 2017.

Learning to prove safety over parameterised concurrent systems. In 2017 Formal
Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6,
2017. 76–83.

[13] Ronald Fagin, Joseph Y. Halpern, YoramMoses, and Moshe Vardi. 1995. Reasoning
about Knowledge. MIT Press.

[14] Peter Gammie and Ron van der Meyden. 2004. MCK: Model Checking the Logic

of Knowledge. In Computer Aided Verification, 16th International Conference, CAV
2004, Boston, MA, USA, July 13-17, 2004, Proceedings. 479–483. https://doi.org/10.
1007/978-3-540-27813-9_41

[15] Nina Gierasimczuk and Jakub Szymanik. 2011. A Note on a Generalization of

the Muddy Children Puzzle. In Proceedings of the 13th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK XIII). Association for Computing Ma-

chinery, New York, NY, USA, 257–264. https://doi.org/10.1145/2000378.2000409

[16] Malte Isberner, Falk Howar, and Bernhard Steffen. 2015. The Open-Source Learn-

Lib. In Computer Aided Verification, Daniel Kroening and Corina S. Păsăreanu

(Eds.). Springer International Publishing, Cham, 487–495.

[17] Michael J. Kearns and Umesh V. Vazirani. 1994. An Introduction to Computa-
tional Learning Theory. MIT Press. https://mitpress.mit.edu/books/introduction-

computational-learning-theory

[18] Panagiotis Kouvaros and Alessio Lomuscio. 2013. Automatic verification of

parameterised multi-agent systems. In International conference on Autonomous
Agents and Multi-Agent Systems, AAMAS ’13, Saint Paul, MN, USA, May 6-10,
2013, Maria L. Gini, Onn Shehory, Takayuki Ito, and Catholijn M. Jonker (Eds.).

IFAAMAS, 861–868. http://dl.acm.org/citation.cfm?id=2485057

[19] Panagiotis Kouvaros and Alessio Lomuscio. 2016. Parameterised verification

for multi-agent systems. Artificial Intelligence 234 (2016), 152 – 189. https:

//doi.org/10.1016/j.artint.2016.01.008

[20] Daniel Kroening and Ofer Strichman. 2008. Decision Procedures. Springer.
[21] Ondrej Lengál, Anthony Widjaja Lin, Rupak Majumdar, and Philipp Rümmer.

2017. Fair Termination for Parameterized Probabilistic Concurrent Systems. In

Tools and Algorithms for the Construction and Analysis of Systems - 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, Part I. 499–517. https://doi.org/10.1007/978-3-662-54577-5_29

[22] Anthony W. Lin, Truong Khanh Nguyen, Philipp Rümmer, and Jun Sun. 2016.

Regular Symmetry Patterns. In Verification, Model Checking, and Abstract In-
terpretation, Barbara Jobstmann and K. Rustan M. Leino (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 455–475.

[23] Anthony W. Lin and Philipp Rümmer. 2016. Liveness of Randomised Param-

eterised Systems under Arbitrary Schedulers. In Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II. 112–133.

[24] Anthony W. Lin and Philipp Rümmer. 2021. Regular Model Checking Revisited.

To appear in Bengt Jonsson’s 60 Festschrift (2021). https://arxiv.org/abs/2005.00990
[25] Alessio Lomuscio and Edoardo Pirovano. 2020. Parameterised Verification of

Strategic Properties in Probabilistic Multi-Agent Systems. In Proceedings of the
19th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’20, Auckland, New Zealand, May 9-13, 2020, Amal El Fallah Seghrouchni,

Gita Sukthankar, Bo An, and Neil Yorke-Smith (Eds.). International Foundation

for Autonomous Agents and Multiagent Systems, 762–770. https://dl.acm.org/

doi/abs/10.5555/3398761.3398852

[26] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2017. MCMAS: An

Open-Source Model Checker for the Verification of Multi-Agent Systems. Int. J.
Softw. Tools Technol. Transf. 19, 1 (Feb. 2017), 9–30. https://doi.org/10.1007/s10009-
015-0378-x

[27] Joseph S. Miller and Lawrence S. Moss. 2005. The Undecidability of IteratedModal

Relativization. Stud Logica 79, 3 (2005), 373–407. https://doi.org/10.1007/s11225-
005-3612-9

[28] Marvin Minsky. 1967. Computation: Finite and Infinite Machines. Prentice Hall
International.

[29] Daniel Neider and Nils Jansen. 2013. Regular Model Checking Using Solver Tech-

nologies and Automata Learning (Lecture Notes in Computer Science), Guillaume

Brat, Neha Rungta, and Arnaud Venet (Eds.).

[30] Rohit J. Parikh. 1966. On Context-Free Languages. J. ACM 13, 4 (Oct. 1966),

570–581. https://doi.org/10.1145/321356.321364

[31] Jan Plaza. 2007. Logics of public communications. Synth. 158, 2 (2007), 165–179.
https://doi.org/10.1007/s11229-007-9168-7

[32] Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. 2004.

Counting in Trees for Free. In Automata, Languages and Programming, Josep Díaz,
Juhani Karhumäki, Arto Lepistö, and Donald Sannella (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 1136–1149.

[33] Michael Sipser. 1997. Introduction to the Theory of Computation. PWS Publishing

Company.

[34] Daniel Stan and Anthony W. Lin. 2021. MCPPAL: Regular Model

Checking for Parametric Public Announcement Logic (Artifact).

https://zenodo.org/record/4507467. (2021). https://doi.org/10.5281/zenodo.

4507467 Source https://arg-git.informatik.uni-kl.de/ds/mcppal.

[35] Daniel Stan and Anthony Widjaja Lin. 2021. Regular Model Checking

Approach to Knowledge Reasoning over Parameterized Systems. (2021).

arXiv:cs.FL/2102.04361

[36] Anthony Widjaja To. 2009. Model Checking FO(R) over One-Counter Processes

and beyond. In Computer Science Logic, Erich Grädel and Reinhard Kahle (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 485–499.

[37] Anthony Widjaja To and Leonid Libkin. 2010. Algorithmic Metatheorems for

Decidable LTL Model Checking over Infinite Systems. In FoSSaCS. 221–236.
https://doi.org/10.1007/978-3-642-12032-9_16

[38] Johan van Benthem, Jan van Eijck, Malvin Gattinger, and Kaile Su. 2018. Symbolic

model checking for Dynamic Epistemic Logic - S5 and beyond. J. Log. Comput.
28, 2 (2018), 367–402. https://doi.org/10.1093/logcom/exx038

[39] Hans Van Dimarsch and Ji Ruan. 2007. Model Checking Logic Puzzles. (Nov.

2007). https://hal.archives-ouvertes.fr/hal-00188953 working paper or preprint.

[40] Hans P. van Ditmarsch. 2003. The Russian Cards Problem. Stud Logica 75, 1

(2003), 31–62. https://doi.org/10.1023/A:1026168632319

[41] Hans P. van Ditmarsch, Ji Ruan, and L. C. Verbrugge. 2005. Model Checking

Sum and Product. In AI 2005: Advances in Artificial Intelligence, 18th Australian
Joint Conference on Artificial Intelligence, Sydney, Australia, December 5-9, 2005,
Proceedings (Lecture Notes in Computer Science), Shichao Zhang and Ray Jarvis

(Eds.), Vol. 3809. Springer, 790–795. https://doi.org/10.1007/11589990_82

[42] Hans P. van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. 2008. Dynamic
Epistemic Logic. Springer.

[43] Hans P. van Ditmarsch, Wiebe van der Hoek, Ron van der Meyden, and Ji Ruan.

2006. Model Checking Russian Cards. Electron. Notes Theor. Comput. Sci. 149, 2
(2006), 105–123. https://doi.org/10.1016/j.entcs.2005.07.029

[44] J. van Eijck. 2014. DEMO-S5. (2014). Tech. rep., CWI.

[45] Tomas Vojnar. 2007. Cut-offs and Automata in Formal Verification of Infinite-

State Systems. (2007). Habilitation Thesis, Faculty of Information Technology,

Brno University of Technology.

[46] Lenore D. Zuck and Amir Pnueli. 2004. Model checking and abstraction to the aid

of parameterized systems (a survey). Computer Languages, Systems & Structures
30, 3-4 (2004), 139–169. https://doi.org/10.1016/j.cl.2004.02.006

Main Track AAMAS 2021, May 3-7, 2021, Online

1262

https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.1007/978-3-540-28644-8_3
http://ajc.maths.uq.edu.au/pdf/33/ajc_v33_p033.pdf
http://ajc.maths.uq.edu.au/pdf/33/ajc_v33_p033.pdf
http://dl.acm.org/citation.cfm?id=2937098
http://dl.acm.org/citation.cfm?id=2937098
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.1016/j.artint.2009.02.003
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1145/2000378.2000409
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
http://dl.acm.org/citation.cfm?id=2485057
https://doi.org/10.1016/j.artint.2016.01.008
https://doi.org/10.1016/j.artint.2016.01.008
https://doi.org/10.1007/978-3-662-54577-5_29
https://arxiv.org/abs/2005.00990
https://dl.acm.org/doi/abs/10.5555/3398761.3398852
https://dl.acm.org/doi/abs/10.5555/3398761.3398852
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s11225-005-3612-9
https://doi.org/10.1007/s11225-005-3612-9
https://doi.org/10.1145/321356.321364
https://doi.org/10.1007/s11229-007-9168-7
https://doi.org/10.5281/zenodo.4507467
https://doi.org/10.5281/zenodo.4507467
https://arg-git.informatik.uni-kl.de/ds/mcppal
https://arxiv.org/abs/cs.FL/2102.04361
https://doi.org/10.1007/978-3-642-12032-9_16
https://doi.org/10.1093/logcom/exx038
https://hal.archives-ouvertes.fr/hal-00188953
https://doi.org/10.1023/A:1026168632319
https://doi.org/10.1007/11589990_82
https://doi.org/10.1016/j.entcs.2005.07.029
https://doi.org/10.1016/j.cl.2004.02.006

	Abstract
	1 Introduction
	2 Preliminaries
	3 Our Framework
	3.1 Parameterized Public Announcement Logic
	3.2 Regular Kripke Structures

	4 Regular Model Checking of PPAL
	5 Disappearance Relation
	5.1 Unique Characterization
	5.2 Learning Procedure
	5.3 Effective and Uniform Regularity
	5.4 Application to PPAL*

	6 Experiments
	6.1 Russian Card Problem
	6.2 Highest Number
	6.3 Muddy Children: Bounded Case
	6.4 Muddy Children: Unbounded Case

	7 Related and future work
	Acknowledgments
	References



