
Robustness based on Accountability
in Multiagent Organizations

Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi

Università di Torino, Dipartimento di Informatica, Torino, Italy

firstname.surname@unito.it

ABSTRACT
Multiagent systemmodels do not typically encompass tools for tack-

ling abnormal or exceptional situations. When a critical situation

arises, and individual agents fail, the system as a whole usually fails,

too. For realizing robust distributed systems, conceived as agent

systems or organizations, it is necessary to keep a right level of sit-

uational awareness (of both agents and environment), through the

introduction of the means for gathering and propagating feedback,

upon which actions can be taken. This work proposes a notion of

accountability that encompasses both a normative dimension, and

a structural dimension, that serves for the purpose of robustness.

KEYWORDS
Accountability; Responsibility; Agent Organizations; Engineering

MAS; Robustness

ACM Reference Format:
Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi.

2021. Robustness based on Accountability in Multiagent Organizations.

In Proc. of the 20th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Agent organizations (e.g., [2]) are a well-known abstraction for

conceptualizing and developing distributed systems. The organi-

zation metaphor is, in fact, a useful mechanism for modularizing

code spread over different software components that are opaque

and independent of each other. Agent organizations show the same

kind of structure and of advantage that sociologist Dave Elder-Vass

explains for human organizations: an organization provides a struc-

ture of constraints that allow a system consisting of many parts

to act as a whole, with the aim of achieving goals that otherwise

would not be achievable (or not as easily) [25].

Many approaches to multiagent systems and organizations, e.g.

[10, 14, 20, 32], provide the means to design and realize the correct,

expected behavior of the system, capturing exactly what agents

should do to contribute to the achievement of the organizational

goal. For instance, many approaches rely on norms (rules, protocols,
etc.) to define what is expected of each agent and which sanction

is applied when an agent does not comply. Sanctions are intended

as deterrents to prevent norm violation, i.e., to keep the execution

oriented towards the achievement of the organizational goal.

The problem is that when the system faces an abnormal situation

(i.e., a perturbation) and some agent fails to achieve a goal, sanctions
are of little utility, if any [6, 9, 16]. In this case, in fact, the agent may

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

have earnestly tried its best to do what expected, but something

which is not under its control hindered the achievement. To have

an intuition, an agent may fail to deliver a parcel because a tree

that fell blocks the only way that allows to reach the recipient.

What is missing in the picture is some support for allowing

agents to provide an account on what happened, propagating it

through appropriately devised structure inside the organization,

for reaching those agents that are equipped with the means for

coping with them. Such a tool aims at making the organization

more robust, that is, capable to keep an acceptable behavior in spite

of unforeseen, abnormal, or stressful conditions. We see robustness
as a crucial property for scaling from agents to agent organizations,

and make a proposal that is based on the concepts of accountability
and responsibility.

Accountability is extremely important in the human world. The

kind of accountability we refer to is well-described in a report by the

United Nations Development Programme (UNDP) [26]. UNDP’s ac-

countability framework describes organization-wide processes for

monitoring, analyzing, and improving performance in all aspects

of the organization. The framework gives managers the means to

address recurring and systemic issues, and to incorporate lessons

learned into future activities. Inside the framework, accountability

is supported, among other things, by formally documented func-

tions, responsibilities, authority, management expectations, policies,

processes and instruments for improving performance.

Contribution. The main contribution of this paper is a formal

treatment of robustness in multiagent organizations (MAOs), that

permits the specification of a proper treatment of possible pertur-

bations. The proposal is independent of the specific organizational

model. We introduce the notion of accountability, along both its

normative and its structural dimensions, to express who is expected

to provide feedback to whom (and under which circumstances), and

to specify further requirements on how responsibilities should be

distributed in the system. Based upon accountability, we present a

formal treatment of robustness by introducing some key definitions

and properties, and by showing how accountability supports the

system to reaching a consistent state (an acceptable termination

point) despite perturbations. We illustrate the practical use of the

proposal in JaCaMo [12]. Even though we focus on abnormal situa-

tions, the proposal can be extended to reports concerning behavior

in positive cases, a feature that supports compliance to standards

and transparency [8, 9].

2 WORKFLOWS: BACKGROUND
Precedence logic [41], supplies the means for representing possi-

bily complex conditions, that are concerned in accountability. Such

conditions will amount to workflows to which agents participate,

Main Track AAMAS 2021, May 3-7, 2021, Online

142

and that are expected to take place. In general, precedence logic

defines (temporal) expressions that are suitable for describing possi-

ble execution runs of (distributed) system, and relies on the notion

of residuation for tracking the progression of these runs upon the

occurrence of system events. The logic has three primary operators:

‘∨’ (choice), ‘∧’ (interleaving), and ‘·’ (ordering). Ordering allows

constraining the order with which two events must occur, e.g., 𝑎 · 𝑏
means that 𝑎 must occur before 𝑏, but the two events do not need

to occur one immediately after the other. Instead, choice specifies
that at least one of the events should occur, while interleaving that

all should occur but the order is unimportant. The residual of a
workflow𝑢 with respect to an event 𝑒 , denoted as𝑢/𝑒 , is the remain-

der workflow that would be left over when 𝑒 occurs, and whose

satisfaction would guarantee the satisfaction of the workflow 𝑢.

Residual can be calculated by means of a set of rewrite rules. The

following equations are due to Singh (2003). Here, 𝑢 is a workflow,

𝑒 is an event or ⊤, and 𝑒 , the complement of 𝑒 , is also an event.

Initially, neither 𝑒 nor 𝑒 hold. On any run, either 𝑒 or 𝑒 may occur

but not both. Note that we assume that events are nonrepeating.

In practice, we can assume that timestamps differentiate multiple

instances of the same event. Below, Γ𝑢 is the set of literals and their

complements mentioned in 𝑢. Thus, for instance, Γ𝑒 = {𝑒, 𝑒} = Γ𝑒
and Γ𝑒 ·𝑓 = {𝑒, 𝑒, 𝑓 , 𝑓 }.

0/𝑒 � 0 ⊤/𝑒 � ⊤
(𝑟 ∧𝑢)/𝑒 � ((𝑟/𝑒) ∧ (𝑢/𝑒)) (𝑟 ∨𝑢)/𝑒 � ((𝑟/𝑒) ∨ (𝑢/𝑒))
(𝑒 · 𝑟)/𝑒 � 𝑟 , if 𝑒 ∉ Γ𝑟 𝑟/𝑒 � 𝑟 , if 𝑒 ∉ Γ𝑟
(𝑒′ · 𝑟)/𝑒 � 0, if 𝑒 ∈ Γ𝑟 (𝑒 · 𝑟)/𝑒 � 0

An event 𝑒 is relevant to a workflow 𝑢 if that event is involved

in 𝑢, i.e. 𝑢/𝑒 . 𝑢 [5]. We use the expression 𝑟/(𝑒1, . . . , 𝑒𝑛) as
a shortcut for ((𝑟/𝑒1)/. . .)/𝑒𝑛 . Finally, let 𝑤 = (𝑒1, . . . , 𝑒𝑘) and
𝑧 = (𝑒𝑘+1, . . . , 𝑒𝑛) be two sequences of events, 𝑤𝑧 is their con-

catenation (𝑒1, . . . , 𝑒𝑘 , 𝑒𝑘+1, . . . , 𝑒𝑛). We denote by 𝑢 [𝑟] the fact
that the workflow 𝑢 contains the sub-workflow 𝑟 . For example, if

𝑢 = 𝑎 ∧ (𝑏 · 𝑐), we can write 𝑢 [𝑏 · 𝑐] because of 𝑏 · 𝑐 is contained
in 𝑢. Of course, we have that ∀𝑢 : 𝑢 [𝑢]; i.e., a workflow is trivially

a sub-workflow of itself. Moreover, we denote by 𝑢 → 𝑢 ′ the fact
that for any (𝑒1, . . . , 𝑒𝑛) such that 𝑢/(𝑒1, . . . , 𝑒𝑛) = ⊤ we also have

that 𝑢 ′/(𝑒1, . . . , 𝑒𝑛) = ⊤.

Example 1 (Yoghurt production line). Let us consider an auto-

mated yoghurt production line: a robotic arm takes a cup from the

storage and places it on a conveyor belt while a filler is placed in

correspondence to the final position of the cup. The cup is, then,

filled and finally the lid is put on it. This workflow can be modeled

as: production =(takeCup ∧ enableFiller) · fillCup · putLid.

3 A MODEL OF ROBUST MAO
The notion of accountability has recently gained the attention of

many authors (see e.g., [3, 16, 19]), who see a powerful software

engineering tool in it. We agree and add that accountability is fun-

damental to design and realize robust, agent systems. Alderson and

Doyle (2010) say on robustness: “A [property] of a [system] is robust
if it is [invariant] with respect to a [set of perturbations].” Brackets
are original and emphasize that a formal treatment of robustness

requires a proper system specification. In other terms, robustness is

primarily a matter of good design, which in turn demands for proper

engineering tools. We see in accountability such a tool. Taking as

references the conceptual models of organizations and institutions

discussed in [12, 21–23, 27, 32, 43], we have distilled a minimal

conceptual model, in Figure 1, where white boxes represent the

concepts commonly underpinning social models.

3.1 Norms, Roles, Responsibilities, Sanctions,
Tasks

Following the cited works, where the society is shaped by a set of

norms, that create social expectations through, e.g., commitments,

authorizations, prohibitions [42], we introduce the concept of Norm.
Norms can yield obligations about the tasks that agents are held

to fulfill; they are, therefore, used to describe the ideal behavior of

agents in terms of their responsibilities, rights and duties [34]. Many

methodologies for agent organizations (e.g., [22, 32, 43]) hinge on

the concepts of Task and of Responsibility about some Task. So,
in Gaia [43], the functionality of a role is defined by its responsibil-

ities. The OperA framework [22] is able to define the global aims

of an organization (tasks), and the objectives and responsibilities

of its participants. A similar idea recurs in other frameworks, such

as OMNI [23] and MOISE [32], where a functional decomposition

describes how a complex goal (task) can be achieved in a distributed

way. Agents joining the organization are expected to contribute by

achieving subgoals of such a decomposition, whenever obligations

are triggered by the organization toward them. In MOISE, agents

are held to explicitly commit to missions (i.e., subsets of goals), this

act implies an assumption of responsibility of the agents toward

their missions and, hence, the acceptance of the related obligations

that will be issued by the organization.

In short, all these frameworks see responsibility as duties that

an agent has to accomplish while in an organization, and use obli-

gations as a mechanism for telling agents how to discharge their

responsibilities, accomplishing their tasks. The agent autonomy

is preserved, since agents can reason about the normative system,

and hence can deliberate how to act to trigger obligations, or they

can even decide not to satisfy an obligation despite being possibly

sanctioned. Thus, norms originate responsibilities in organizations

[27], as well as in institutions [34], and responsibilities aggregate

the tasks that can be performed within the society. Norms are also

associated with Sanction, that can be imposed to agents when they

violate some norm. A Rolemodels, through norms, the powers and

duties of its players. An Agent can adopt/leave a Role, commit/leave

a Responsibility, and can achieve/fail a Task by internalizing it

as a goal of its own. We assume agents to be autonomous, thus, we

require them to explicitly commit to their responsibilities.
In the following, we model complex tasks as workflows, or pro-

cesses, expressed in precedence logic (see Section 2), and denote

as R(𝑥,𝑢) that 𝑥 has the responsibility for task 𝑢. By way of R(·) it
is possible to impose requirements on the distribution of responsi-

bilities among the agents that will constitute an organization. We

assume that each agent, taking part to a workflow, takes on the re-

sponsibility for the portion of the same workflow that it is expected

to execute. We assume responsibility to be invariant with respect to

the occurrence of events. R𝑢 denotes a distribution of responsibility

over a workflow 𝑢. It amounts to a set of responsibilities of form

R(𝑥,𝑢 ′), such that 𝑢 [𝑢 ′].

Main Track AAMAS 2021, May 3-7, 2021, Online

143

Agent LevelSociety Level

1

1

1

1

Request Spec
r: can-request-when

Accountability Spec
must-account-with

1 1
1

1

yield

0..1

1
u

1

0..1

yield

Treatment Task

Recovery
Strategy 1 1

commit/ leave

Sanction Accountability
Agreement

achieve/fail

adopt/leave

concept mapping

subgoal

Responsibility

Requesting Task

Accounting Task

Task

Internal Goal

AgentNorm

Role

Figure 1: The proposed conceptual model of robust multi-agent organizations.

Definition 1 (Simplest responsibility coverage). Given a
workflow 𝑢, we say that a responsibility distribution R𝑢 is a simplest
responsibility coverage of 𝑢 iff for each 𝑢 ′ such that 𝑢 [𝑢 ′] and 𝑢 ′ is
atomic there exists 𝑟 ∈ R𝑢 such that 𝑟 = R(𝑥,𝑢 ′) for some 𝑥 .

Intuitively, a simplest responsibility coverage over 𝑢 assures that

there is some agent who is in charge of each atomic step in 𝑢.

3.2 Recovery Strategies, Accountability
Agreements, Request and Account Specs

In the proposedmodel, robustness relies on the concept of Recovery
Strategy. Robustness is obtained by making the system tolerant

to perturbations for which an adequate treatment is known. A

Recovery Strategy connects the account for a perturbation with

a Treatment Task that can properly tackle it. Note that Treatment
Task may be optional in a recovery strategy. The rationale is that

it may not be necessary to treat all perturbations: in some situa-

tions, we just want to raise awareness of it. Since a Treament Task
is a Task, its related Responsibility can be assinged to a Role.
Consequently, obligations can be created concerning its execution.

Building upon sociology literature [24, 28, 39], in agent orga-

nizations (e.g., [3, 19]), accountability is often seen as a mutually

accepted social relationship between two parties such that (1) one

of the parties (“account taker” or a-taker) can legitimately demand,

under certain conditions, an account about a process of interest,

and (2) the other (“account giver” or a-giver) is legitimately re-

quired to provide the account. In accountability, we recognize two

dimensions:

• The normative dimension creates mutual expectations on the

behavior of the involved agents; it captures the legitimacy,
for the account taker, of asking (and the availability of the

account giver to provide) an account (the standing of the

account taker to demand an account).

• The structural dimension concerns the capability to produce

an account; for being held to account about a process, an

agent must exert control over the same process and must

have proper awareness of the situation it accounts for, possi-

bly by relying on other agents.

We will use the expression accountability agreement for talk-
ing about the normative dimension, while accountability structure

will refer to the structural dimension while accountability will en-

compass both dimensions. The former is captured by the concept

Accountability Agreement, while the latter, together with the

complete definition of accountability, will be introduced in Sec-

tion 4.1 by specifying structural properties that must hold.

Formally, we represent an Accountability Agreement as AA(𝑥,
𝑦, 𝑟,𝑢). Here, 𝑥 and 𝑦 are agents, while 𝑟 and 𝑢 are expressed in

precedence logic because they refer to workflows of tasks, that

are expected to occur during the interaction due to some social

norms. When 𝑟 holds, two conditions should be implied: (1) 𝑦 has

the claim-right to ask 𝑥 for an account about 𝑢; and (2) 𝑥 is actu-

ally in condition to provide substantive and authoritative accounts

about𝑢. This happens when 𝑥 can retrieve the necessary contextual

information about𝑢, either because the agent is directly responsible

for the execution of 𝑢, or because it can rely on other agents to

gather feedback on the execution of (all the parts of) 𝑢. While the

first condition is implied by the normative dimension of the ac-

countability, the second condition is only achieved by imposing an

adequate structure to the set of defined accountability agreements.

Note that an Accountability Agreement does not imply that 𝑥

will bring about 𝑢, but only that 𝑥 can produce an account about 𝑢,

possibly by relying on accounts provided by other agents.

The association between Accountability Agreement and Task
captures the object of the account. That is, the a-giver is expected

to produce an account that is relevant for the task indicated via

this association. In our formal representation of an agreement, this

corresponds to the process 𝑢, for which 𝑥 is capable of producing

accounts, as discussed.

RequestSpec specifies the kind of the request the a-taker can

make. It is characterized by a can-request-when field (mapping

condition 𝑟), that specifieswhen an account request is legitimate, i.e.,

when the a-taker has permission of asking for an account. The as-

sociation between Accountability Agreement and Requesting
Task specifies who will serve the purpose of being a-taker, that is,

the one who is responsible for the Requesting Task. Note that,
in some cases, an account request is the result of an internal delib-

eration of the a-taker: asking for an account is just a local goal of

the a-taker, and has not a corresponding task at the social level. In

other circumstances, instead, an agent might have the duty (i.e., an

Main Track AAMAS 2021, May 3-7, 2021, Online

144

obligation) to handle a situation of interest, and hence to ask for an

account about that condition.

The concept AccountSpec, characterized by a must-accoun-
t-with field, captures the type of knowledge that the a-giver feeds

back to the a-taker upon request. The association between Accoun-
tability Agreement and Accounting Task specifies who will

serve the purpose of being a-giver, that is, the one who is responsi-

ble for the Accounting Task.
We assume that accountability agreements are preserved at run-

time. Given AA(𝑥,𝑦, 𝑟,𝑢), we define its progression against the oc-

currence of an event 𝑒 as AA(𝑥,𝑦, 𝑟,𝑢)/𝑒 = AA(𝑥,𝑦, 𝑟/𝑒,𝑢). When

𝑟/𝑒 progresses to ⊤, 𝑦 is legitimated to ask 𝑥 for an account, and 𝑥

is required upon request, to provide 𝑦 with an account of 𝑢. On the

contrary, when 𝑟/𝑒 progresses to 0, the accountability agreement

is withdrawn. Notably, events make progress only 𝑟 , whereas 𝑢,

the object of the account, remains unchanged. The point is that

𝑟 determines when an account request is legitimate (or even no

longer possible). On the other hand, 𝑢, which is independent of 𝑟 ,

determines the set of possible accounts, including errors. The two

conditions, thus, have a substantially different nature.

Finally, accountability agreements and recovery strategies bring

along normative expectations that can be formulated according to

the normative layer (Norm). So, for instance, they can be grafted both
on top of approaches that rely on “permissions” and “obligations”,

like [11], and on top of frameworks that exploit social commitments

[16, 40]. To our aims, it is not necessary to make any assumption

on the selected realization, so we will stick to the abstraction level

of accountability agreements. Thus, we add at conceptual level a

dashed link between Accountability Agreement and Norm, to
underline that there exists a tight bound between agreements and

norms, but leave the choice of how to concretize agreements at the

implementation level.

4 ROBUSTNESS UPON ACCOUNTABILITY
Rephrasing Alderson and Doyle (2010), a process𝑢 is robust to some

perturbation, when 𝑢 includes some kind of recovery that allows 𝑢

to terminate smoothly despite the occurrence of the perturbation

(i.e., to terminate leaving the system in a “consistent” state). We will

see that, in order to allow recovery, agents will produce and return

accounts that witness what happened to disrupt the execution – e.g.,

the complement of some expected event occurred, or two events

occurred in the wrong order.

Definition 2 (Account). Given a workflow 𝑢:

• An account for 𝑢 is a sequence of events 𝑢 = (𝑒1, 𝑒2, . . . , 𝑒𝑛),
such that for each 𝑒𝑖 , 𝑢/𝑒𝑖 ≠ 𝑢 (the event 𝑒𝑖 is relevant for 𝑢).
• An account 𝑢! = (𝑒1, 𝑒2, . . . , 𝑒𝑛) witnesses a perturbation for 𝑢
when 𝑢/(𝑒1, 𝑒2, . . . , 𝑒𝑛) = 0.

We denote as←−𝑢! a recovery event based on the account 𝑢!.

With reference to the model,
←−𝑢! amounts to the outcome of the

Treatment Task, associated with the Recovery Strategy. Note
that an account is not the perturbation it witnesses; if needed,

perturbations could be identified by approaches like [36].

Robustness is a property that a system has, or has not. It concerns

a perturbation and requires the existence of appropriate handlers,
i.e., recovery strategies foreseen at an organizational level, which

the agent, receiving the perturbation account, should activate for

bringing the system to an acceptable state. Specifically, Proposi-

tion 1 (below) states that a workflow is robust to a perturbation,

when it includes a recovery strategy, that can deal with the per-

turbation account so as to bring the workflow to an acceptable

termination state. Formally, a recovery strategy for a workflow

𝑢 for a perturbation with account 𝑢! = (𝑒1, . . . , 𝑒𝑛) is the work-

flow ℎ(𝑢!) = 𝑒1 · . . . · 𝑒𝑛 · ←−𝑢! . If the workflow 𝑢 is perturbed with

the account 𝑢, the workflow 𝑢 ∨ ℎ(𝑢!) is not. More importantly,

𝑢 ∨ ℎ(𝑢!)/(𝑢!,←−𝑢!) = ⊤; that is, when a perturbation is followed by

an account describing its context and a suitable recovery event,

the system terminates in a consistent state. More generally, we can

prove the following proposition.

Proposition 1 (Robustness to a perturbation). Let 𝑢 be a
workflow such that 𝑢 [𝑣], where 𝑣 is perturbed with the account 𝑣!.
Let 𝑤 and 𝑧, be two sequences of events, such that 𝑢/𝑤𝑡𝑧 = ⊤ and
𝑣/𝑡 = ⊤, for some sequence 𝑡 . We have that (𝑢 ∨ ℎ(𝑣!))/𝑤𝑡 ′𝑧 = ⊤,
where 𝑡 ′ = (𝑣!,←−𝑣!).

Proof. The proof is by induction on the structure of 𝑢.

If 𝑢 ≡ 𝑣 , then 𝑤 and 𝑧 are empty, and we just need to prove

that (𝑣 ∨ ℎ(𝑣!))/𝑡 ′ = ⊤. This, however, follows directly from the

definition of recovery strategy since ℎ(𝑣!) = 𝑒1 · . . . · 𝑒𝑛 ·←−𝑣! = 𝑣! ·←−𝑣! ,
and 𝑡 ′ = (𝑣!,←−𝑣!) by hypothesis. Thus, (𝑣∨ℎ(𝑣!))/𝑡 ′ = 𝑣/𝑡 ′∨ℎ(𝑣!)/𝑡 ′;
the first disjunct progresses to 0 whereas the second to ⊤.

In the general case, 𝑣 . 𝑢, and 𝑢 [𝑣]. Suppose that 𝑢 = 𝑎 ∧ 𝑢 ′
and 𝑢 ′[𝑣]. By inductive hypothesis (𝑢 ′ ∨ ℎ(𝑣!))/𝑤 ′𝑡 ′𝑧 = ⊤, where
𝑤 = 𝑎𝑤 ′. By progression, we have (𝑎 ∧ 𝑢 ′ ∨ ℎ(𝑣!))/𝑎𝑤 ′𝑡 ′𝑧 =

(𝑎∧𝑢 ′)/𝑎𝑤 ′𝑡 ′𝑧 ∨ ℎ(𝑣!)/𝑎𝑤 ′𝑡 ′𝑧 = (𝑎/𝑎𝑤 ′𝑡 ′𝑧 ∧𝑢 ′/𝑎𝑤 ′𝑡 ′𝑧) ∨ ℎ(𝑣!)/
𝑎𝑤 ′𝑡 ′𝑧 = (⊤ ∧𝑢 ′/𝑤 ′𝑡 ′𝑧) ∨ℎ(𝑣!)/𝑤 ′𝑡 ′𝑧 =𝑢 ′/𝑤 ′𝑡 ′𝑧∨ℎ(𝑣!)/𝑤 ′𝑡 ′𝑧 =

(𝑢 ′∨ℎ(𝑒!))/𝑤 ′𝑡 ′𝑧. By inductive hypothesis (𝑢 ′∨ℎ(𝑣!))/𝑤 ′𝑡 ′𝑧 = ⊤.
The cases ∨ and · are similar. The proof can be generalized for

any workflow preceding and following 𝑢 ′ in 𝑢. □

It is worth noting that when the perturbation does not occur,

we still have that (𝑢 ∨ ℎ(𝑣!))/𝑤𝑡𝑧 = ⊤ because 𝑢/𝑤𝑡𝑧 = ⊤. In the

above proposition, we have made the simplifying assumption that

ℎ(𝑣!) is not pertubed by other perturbations. This assumption can

be relaxed by introducing further recovery strategies, one for each

perturbation affecting ℎ(𝑣!). This could be repeated indefinitely

specifying recovery strategies for perturbations affecting recovery

strategies. In practice the designer has to put a limit to the depth of

this chain of perturbation handlers.

4.1 Accountability
Wenow explain how, by relying on Proposition 1, accountability can

be used as an infrastructure for ensuring robustness against known

perturbations. First of all, we need to characterize the accounts.

Accountability, in fact, exists only when the agent providing an

account is aware of the process it is accounting for, and has access

to all the relevant information, possibly by gathering accounts

from others. We thus say that the account is sound. To guarantee

sound accounts, we define accountability on top of responsibility

statements R(·) by means of accountability structure (A-structure).

Definition 3 (A-structure). Let R be a responsibility distribu-
tion, an A-structure over R is a pair ⟨𝐴,𝑇 ⟩, where:

Main Track AAMAS 2021, May 3-7, 2021, Online

145

• 𝐴 is a set of accountability agreements {AA(𝑥1, 𝑦1, 𝑟1, 𝑢1), . . . ,
AA(𝑥𝑛, 𝑦𝑛, 𝑟𝑛, 𝑢𝑛)};
• 𝑇 is either:
– a set {R(𝑥1, 𝑢1), . . . ,R(𝑥𝑛, 𝑢𝑛)} ⊆ R, such that for each
accountability agreement AA(𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖 , 𝑢𝑖) ∈ 𝐴, there is a
corresponding responsibility R(𝑥𝑖 , 𝑢𝑖) ∈ 𝑇 . This kind of A-
structure is named A-leaf;

– a set of A-structures.

A-leaves represents one-step accounts: situations where the

agent providing an account about a workflow is also responsible

for the very same workflow, and this guarantees the provision of

a sound account. Accountability characterizes A-structures so as

to provide the same guarantee even when an agent accounts for

workflows for which it is not directly responsible. To this aim, we

define the following two operations upon A-structures.

Definition 4 (A-union). The A-union between two A-structures,
denoted by ⟨𝐴1,𝑇1⟩ ⊕ ⟨𝐴2,𝑇2⟩, is either:
• ⟨𝐴1 ∪ 𝐴2,𝑇1 ∪ 𝑇2⟩, if both the A-structures are A-leaves, or
none of them is an A-leaf;
• ⟨𝐴1∪𝐴2,𝑇1∪{⟨𝐴2,𝑇2⟩}⟩, if ⟨𝐴2,𝑇2⟩ is an A-leaf and ⟨𝐴1,𝑇1⟩
is not;
• ⟨𝐴1∪𝐴2,𝑇2∪{⟨𝐴1,𝑇1⟩}⟩, if ⟨𝐴1,𝑇1⟩ is an A-leaf and ⟨𝐴2,𝑇2⟩
is not.

Definition 5 (A-join). The A-join between two A-structures,
denoted by ⟨𝐴1,𝑇1⟩ ⊗ ⟨𝐴2,𝑇2⟩, is recursively defined as follows:
• ⟨𝐴1,𝑇1⟩ ⊕ ⟨𝐴2,𝑇2⟩, if ⟨𝐴1,𝑇1⟩ and ⟨𝐴2,𝑇2⟩ are A-leaves;
• ⟨𝐴1 ∪𝐴2, {𝑡𝑖 ⊗ 𝑡 𝑗 ,∀(𝑡𝑖 , 𝑡 𝑗) ∈ 𝑇1 ×𝑇2}⟩, otherwise.

We can define accountability as follows.

Definition 6 (Accountability). Let 𝑢 be a workflow and let R𝑢
be a distribution of responsibility, an accountability A(𝑥,𝑦, 𝑟,𝑢) over
R𝑢 is an A-structure ⟨{AA(𝑥,𝑦, 𝑟,𝑢)},𝑇 ⟩ defined as follow:
• 𝑇 is {R(𝑥,𝑢)}, such that R(𝑥,𝑢) ∈ R𝑢 ;
• A(𝑥,𝑦, 𝑟,𝑢) = AA(𝑥,𝑦, 𝑟,𝑢) + A(𝑧, 𝑥, 𝑟,𝑢);
• A(𝑥,𝑦, 𝑟,𝑢 ′ ∨ 𝑢 ′′) = A(𝑥,𝑦, 𝑟,𝑢 ′) ∨ A(𝑥,𝑦, 𝑟,𝑢 ′′);
• A(𝑥,𝑦, 𝑟,𝑢 ′ ∧ 𝑢 ′′) = A(𝑥,𝑦, 𝑟,𝑢 ′) ∧ A(𝑥,𝑦, 𝑟,𝑢 ′′);
• A(𝑥,𝑦, 𝑟,𝑢 ′ · 𝑢 ′′) = A(𝑥,𝑦, 𝑟,𝑢 ′) · A(𝑥,𝑦, 𝑟 · 𝑢 ′, 𝑢 ′′).

Where the operations +, ∨, ∧, and · on accountabilities are defined
as follows, supposing A(𝑥,𝑦, 𝑟,𝑢 ′) = ⟨𝐴𝑢′,𝑇𝑢′⟩, A(𝑥,𝑦, 𝑟,𝑢 ′′) =

⟨𝐴𝑢′′,𝑇𝑢′′⟩, A(𝑧, 𝑥, 𝑟,𝑢) = ⟨𝐴𝑢 ,𝑇𝑢⟩:
• AA(𝑥,𝑦, 𝑟,𝑢) + A(𝑧, 𝑥, 𝑟,𝑢) = ⟨{AA(𝑥,𝑦, 𝑟,𝑢)}, {⟨𝐴𝑢 ,𝑇𝑢⟩}⟩;
• A(𝑥,𝑦, 𝑟,𝑢 ′) ∨ A(𝑥,𝑦, 𝑟,𝑢 ′′) = ⟨{AA(𝑥,𝑦, 𝑟,𝑢 ′ ∨ 𝑢 ′′)},
{⟨𝐴𝑢′,𝑇𝑢′⟩ ⊕ ⟨𝐴𝑢′′,𝑇𝑢′′⟩}⟩;
• A(𝑥,𝑦, 𝑟,𝑢 ′) ∧ A(𝑥,𝑦, 𝑟,𝑢 ′′) = ⟨{AA(𝑥,𝑦, 𝑟,𝑢 ′ ∧ 𝑢 ′′)},
{⟨𝐴𝑢′,𝑇𝑢′⟩ ⊗ ⟨𝐴𝑢′′,𝑇𝑢′′⟩}⟩;
• A(𝑥,𝑦, 𝑟,𝑢 ′) · A(𝑥,𝑦, 𝑟 · 𝑢 ′, 𝑢 ′′) = ⟨{AA(𝑥,𝑦, 𝑟,𝑢 ′ · 𝑢 ′′)},
{⟨𝐴𝑢′,𝑇𝑢′⟩ ⊗ ⟨𝐴𝑢′′,𝑇𝑢′′⟩}⟩.

We use 𝐴𝑢 as a shortcut for a singleton set {AA(𝑥,𝑦, 𝑟,𝑢)} for some
agents 𝑥 and 𝑦, and some condition 𝑟 and workflow 𝑢.

Example 2. In the yoghurt production example, let’s consider re-

sponsibility distribution R = {R(𝑟𝑜𝑏𝑜𝑡𝑖𝑐𝐴𝑟𝑚, takeCup), R(𝑓 𝑖𝑙𝑙𝑖𝑛𝑔-
𝑆𝑒𝑛𝑠𝑜𝑟, enableFiller), R(𝑓 𝑖𝑙𝑙𝑒𝑟, fillCup), R(𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑟, putLid)}. We

define the accountability of the 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 agent towards a 𝑢𝑠𝑒𝑟𝐴-

𝑔𝑒𝑛𝑡 about yoghurt production, overR as:A(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟, 𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡,

⊤, production). By Definition 6, this amounts to 𝑎1 · 𝑎2 where 𝑎1 =
A(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟,𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡,⊤, (takeCup∧enableFiller) · fillCup) and
𝑎2 = A(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟, 𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡, (takeCup ∧ enableFiller) · fillCup,
putLid). Again by Definition 6, 𝑎1 can be decomposed as 𝑎3 · 𝑎4,
where 𝑎3 = A(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟, 𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡, ⊤, takeCup ∧ enableFiller),
and 𝑎4 = A(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟, 𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡, takeCup ∧ enableFiller, fill-
Cup). Focusing on 𝑎4, we have that 𝑎4 = AA(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟, 𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡,
takeCup∧ enableFiller, fillCup) + 𝑎5, where 𝑎5 is A(𝑓 𝑖𝑙𝑙𝑒𝑟, 𝑠𝑢𝑝𝑒𝑟 -
𝑣𝑖𝑠𝑜𝑟, takeCup ∧ enableFiller, fillCup). Here, the accountability

agreement between 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 and 𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡 w.r.t. fillCup is sup-

ported by 𝑎5, in which 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 is a-taker and 𝑓 𝑖𝑙𝑙𝑒𝑟 is a-giver.

Notice also that 𝑎5 is an A-leaf since 𝑎5 = ⟨{AA(𝑓 𝑖𝑙𝑙𝑒𝑟, 𝑠𝑢𝑝𝑒𝑟𝑣𝑖-
𝑠𝑜𝑟, takeCup ∧ enableFiller, fillCup)}, {R(𝑓 𝑖𝑙𝑙𝑒𝑟, fillCup)}⟩ thanks
to the initial responsibility distribution R. The structure of account-
ability ensures that 𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡 will be in condition to receive an

authoritative account about fillCup from the 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 . Despite

not being directly involved in the task, 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 can recursively

gather an account thanks to the 𝑓 𝑖𝑙𝑙𝑒𝑟 ’s accountability. The same

construction can be applied to the steps in the production workflow.

Definition 6 says accountability is a tree by construction, whose

nodes have form A(𝑥, 𝑦, 𝑟, 𝑢) =⟨{AA(𝑥, 𝑦, 𝑟, 𝑢)},𝑇𝑢⟩. AA(𝑥,𝑦, 𝑟,𝑢) is
an accountability agreement, and𝑇𝑢 is the structure through which

a sound account of 𝑢 can be delivered to 𝑥 . Grounding the tree

over responsibility statements (A-leaves), assures that each agent,

involved in the structure, has the means for gaining situational

awareness of the process it is concerned with. So, it can provide

sound accounts. We formalize this as a property of accountable

workflows.

Definition 7 (Feedback chain). A feedback chain is a sequence
of ⟨A(𝑥0, 𝑦0, 𝑟0, 𝑢0), . . . ,A(𝑥𝑛, 𝑦𝑛, 𝑟𝑛, 𝑢𝑛)⟩ such that for each 𝑖 = 1, . . .,
𝑛, we have that 𝑢𝑖−1 [𝑢𝑖], 𝑦𝑖 = 𝑥𝑖−1, and 𝑟𝑖 → 𝑟𝑖−1.

Proposition 2 (Accountable workflow). Let 𝑢 be a work-
flow and let A(𝑥,𝑦, 𝑟,𝑢) be an accountability over R𝑢 . There exists
a feedback chain ⟨A(𝑥,𝑦, 𝑟,𝑢), . . . ,A(𝑥 ′, 𝑦′, 𝑟 ′, 𝑢 ′)⟩ for any work-
flow 𝑢 ′ such that 𝑢 [𝑢 ′]. We call 𝑢 an accountable workflow through
A(𝑥,𝑦, 𝑟,𝑢) over R𝑢 .

Proof. Let us denote as 𝑆𝑇 (A(𝑥,𝑦, 𝑟,𝑢)) the syntax tree of the
workflow on A(𝑥,𝑦, 𝑟,𝑢). The proof is by induction on the depth

of the syntax tree 𝑆𝑇 (A(𝑥,𝑦, 𝑟,𝑢)).
In the case of depth 1, A(𝑥,𝑦, 𝑟,𝑢) is ⟨{AA(𝑥, 𝑦, 𝑟, 𝑢)}, {R(𝑥,𝑢)}⟩,

where 𝑢 is atomic, and the chain is given by ⟨A(𝑥,𝑦, 𝑟,𝑢)⟩.
If the depth is 𝑛. In case 𝑢 is 𝑢1 ∧ 𝑢2, then A(𝑥,𝑦, 𝑟,𝑢1 ∧ 𝑢2) =

A(𝑥,𝑦, 𝑟,𝑢1) ∧ A(𝑥,𝑦, 𝑟,𝑢2). Since by hypothesis 𝑢 [𝑢 ′], then we

have either𝑢1 [𝑢 ′] or𝑢2 [𝑢 ′]. Let us assume𝑢1 [𝑢 ′]. By inductive hy-
pothesis, for anyworkflow𝑢 ′ such that𝑢1 [𝑢 ′] there exists ⟨A(𝑥,𝑦, 𝑟 ,
𝑢1), . . . ,A(𝑥 ′, 𝑦′, 𝑟 ′, 𝑢 ′)⟩. Now, if we substitute the first element of

this chain with A(𝑥,𝑦, 𝑟,𝑢), we get again feedback chain. In fact,

by initial hypothesis A(𝑥,𝑦, 𝑟,𝑢) is an A-framework, and by con-

struction 𝑢 [𝑢1 [𝑢 ′]] holds. The cases ∨ and · are similar.

Finally, in caseA(𝑥,𝑦, 𝑟,𝑢) = AA(𝑥,𝑦, 𝑟,𝑢) +A(𝑧, 𝑥, 𝑟,𝑢), we have
by inductive hypothesis, for any workflow 𝑢 ′ such that 𝑢 [𝑢 ′] there
exists ⟨A(𝑧, 𝑥, 𝑟,𝑢), . . . ,A(𝑥 ′, 𝑦′, 𝑟 ′, 𝑢 ′)⟩. Thus, the sequence ⟨A(𝑥 ,
𝑦, 𝑟,𝑢), A(𝑧, 𝑥, 𝑟,𝑢), . . . ,A(𝑥 ′, 𝑦′, 𝑟 ′, 𝑢 ′)⟩ is again a feedback chain,

and this proves the proposition. □

Main Track AAMAS 2021, May 3-7, 2021, Online

146

Proposition 2 guarantees that, given a workflow 𝑢, it is possible

to define a proper set of feedback chains, from a-givers to the

corresponding a-takers, for every sub-workflow of 𝑢. Thanks to

responsibility, a-givers are the agents that are competent for each

subprocess of 𝑢, and hence can provide sound accounts.

Example 3. With reference to Example 2, thanks to A(𝑠𝑢𝑝𝑒𝑟𝑣𝑖-
𝑠𝑜𝑟, 𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡,⊤, production) overR, we can see that production is
an accountable workflow. For each subworkflow, due to the respon-

sibilities in R and to the structure imposed by the accountability, it

is possible to find a suitable feedback chain. For instance, for fillCup,
the feedback chain is: ⟨A(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟,𝑢𝑠𝑒𝑟𝐴𝑔𝑒𝑛𝑡,⊤, production),
A(𝑓 𝑖𝑙𝑙𝑒𝑟, 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟, takeCup ∧ enableFiller, fillCup)⟩.

Accountability is preserved at runtime with respect to the events

that occur during the execution.

Proposition 3 (Accoutability persistency). Let 𝑢 be a work-
flow and let R𝑢 be a responsibility distribution. Given A(𝑥,𝑦, 𝑟,𝑢)
over R𝑢 and an event 𝑒 such that 𝑟/𝑒 ≠ 0, we have that A(𝑥,𝑦, 𝑟/𝑒,𝑢)
holds over R𝑢 .

Proof. The proof is by induction on the structure ofA(𝑥,𝑦, 𝑟,𝑢).
In the base case,A(𝑥,𝑦, 𝑟,𝑢) is an A-leaf ⟨{AA(𝑥,𝑦, 𝑟,𝑢)}, {R(𝑥,𝑢)}⟩.
By definition of progression on AA(·), it follows that A(𝑥,𝑦, 𝑟,𝑢)/𝑒
= ⟨{AA(𝑥,𝑦, 𝑟/𝑒,𝑢)}, {R(𝑥,𝑢)}⟩ = A(𝑥,𝑦, 𝑟/𝑒,𝑢): the awareness of

the agent 𝑥 does not change after the progression of the context 𝑟

under the occurrence of event 𝑒 .

In the general case, we distinguish two situations. First, let A(𝑥,
𝑦, 𝑟, 𝑢) be A(𝑥, 𝑦, 𝑟, 𝑢 ′) 𝑜𝑝 A(𝑥,𝑦, 𝑟,𝑢 ′′) (where 𝑜𝑝 ∈ {∨,∧, ·}),
and by inductive hypothesis let A(𝑥,𝑦, 𝑟/𝑒,𝑢 ′) and A(𝑥,𝑦, 𝑟/𝑒,𝑢 ′′)
hold. It follows immediately that also A(𝑥,𝑦, 𝑟/𝑒,𝑢) holds. Second,
let A(𝑥,𝑦, 𝑟,𝑢) be AA(𝑥,𝑦, 𝑟,𝑢) + A(𝑧, 𝑥, 𝑟,𝑢), also in this case the

thesis follows directly by the inductive hypothesis AA(𝑥,𝑦, 𝑟/𝑒,𝑢)
and A(𝑧, 𝑥, 𝑟/𝑒,𝑢). □

4.2 Robustness through Accountability
Proposition 3 assures that accountability is preserved against pro-

gression. Thus, this is exactly the structure upon which a robustness

property can be put in effect. Intuitively, when a workflow is robust

to a perturbation with account 𝑣!, not only there exists a specific

recovery strategy ℎ(𝑣!) = 𝑣! · ←−𝑣! , but, thanks to accountability, it is

also guaranteed that the account of the perturbation will actually

be available. By providing the account 𝑣! we get two results: first, it

is possible to notify the repairing agent that something wrong has

occurred, and a repair is needed; second, it is possible to provide

the repairing agent with information that help understand how

to handle the situation. This is important when agents, as often

happens, do not have a complete view of events. The illustration

with JaCaMo, in the next section, exploits this feature.

Proposition 4 (Account Availability). Let 𝑢 = 𝑢 ′∨ℎ(𝑣!) be a
workflow such that 𝑢 ′[𝑣], and let 𝑣! be the account for a perturbation
on 𝑣 . Let R𝑢 be a distribution of responsibility, such that R(𝑦,𝑢)
belongs to R𝑢 . If 𝑢 ′ is an accountable workflow through A(𝑥,𝑦, 𝑟,𝑢 ′)
over R𝑢 , then the account is available to the agent 𝑦 in charge of the
recovery strategy for the perturbation.

Proof. The proof follows directly from propositions 1 and 2.

From Proposition 1, we have that a workflow 𝑢 ′ such that 𝑢 ′[𝑣]

is robust to a perturbation with account 𝑣! if a dedicated recovery

strategy ℎ(𝑣!) = 𝑣! · ←−𝑣! is activated instead of 𝑢 ′ when 𝑣! occurs. On
the other hand, the account 𝑣! must be generated somewhere in the

system. This is granted by Proposition 2: since 𝑢 ′ is an accountable

workflow, there is always the chance to generate an account for any

of its sub-workflow, including 𝑣 , even when it is perturbed. There

exists, in fact, a feedback chain ⟨A(𝑥,𝑦, 𝑟,𝑢 ′), . . . ,A(𝑥 ′, 𝑦′, 𝑟 ′, 𝑣)⟩,
where the account 𝑣! is first generated by 𝑥 ′ and then propagated

to 𝑦, responsible for the whole workflow 𝑢 = 𝑢 ′ ∨ ℎ(𝑣!). □

Example 4. Let us consider a perturbation outOfStock, concern-
ing putLid, and a corresponding recovery event orderProduct. We

can extend the responsibility distribution R so as to make the pro-

duction workflow robust by adding the responsibility R(𝑠𝑢𝑝𝑒𝑟𝑣𝑖-
𝑠𝑜𝑟, orderProduct) and turning the workflow into (production ∨
orderProduct) – 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 will also be in charge of the treatment.

Should a perturbation outOfStock occur, by way of the new respon-

sibilities, an account would be provided by 𝑓 𝑖𝑙𝑙𝑒𝑟 to 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ; this,

in turn, would exploit the account for activating a recovery strategy.

5 ILLUSTRATION IN JACAMO
JaCaMo [12] is a conceptual model and programming platform

that integrates agents (programmed in Jason [13]), environments

(programmed in CArtAgO [38]) and organizations (programmed

in Moise [32]). A Moise organization has three dimensions. The

structural dimension specifies roles, groups and links between roles

in the organization. The functional dimension is made of schemes,

which elicit how the global organizational goal is decomposed into

subgoals, and how subgoals are grouped in coherent sets, called

missions – to be distributed to the agents. The normative dimension

binds the two previous dimensions by specifying permissions and

obligations that are associated with each role. At the beginning of

the execution the agents, playing the different roles, are asked to

commit to certain missions, as specified by the norms. The organi-

zation will then issue obligations to achieve mission goals to the

committed agents to coordinate the distributed execution.

On this basis, similarly to what done in JaCaMo+ for commit-

ments [4], we map the concepts of Mission and Goal from JaCaMo

onto the concepts of Responsibility and Task of the proposed

conceptual model, Figure 1. We interpret the agent’s commitment

to a mission as an assumption of responsibility. Indeed, in JaCaMo

agents commit to missions before pursuing (part of) the organiza-

tional goal and, from that moment on, the organization can issue

obligations towards them to make them achieve the mission goals.

To fulfill an obligation about a mission goal, an agent maps it into

an internal goal, and tries to satisfy it. By accomplishing such an

internal goal, the agent carries out the task the organization de-

manded by issuing the obligation. Hence, achieving that internal

goal amounts to achieving the original mission goal.

In order to represent and interpret norms, JaCaMo uses the Nor-

mative Programming Language (NPL) [31] A norm in this language

has the following syntax: norm 𝑖𝑑 : 𝜑 -> 𝜓 , where 𝑖𝑑 is an iden-

tifier of the norm, 𝜑 is the activation condition of the norm, and

𝜓 is the consequence of the norm. A consequence can either be

the issue of an obligation, or a failure. The former is used to raise

obligations toward agents about goals to be achieved. The latter

is used to model regimented norms; e.g., conditions that are not

Main Track AAMAS 2021, May 3-7, 2021, Online

147

allowed. Intuitively, when 𝜙 is fail, any agent action that makes

𝜑 true will fail, too (and no change in the organization occurs).

We have seen that accountability A(𝑥,𝑦, 𝑟,𝑢) is a pair ⟨{AA(𝑥,
𝑦, 𝑟, 𝑢)}, 𝑇𝑢⟩ where the AA(.) captures an agreement, and amounts

to the normative dimension, while 𝑇𝑢 captures the structure sup-

porting the agreement. In order to introduce robustness through

accountability inside JaCaMo, we now map the normative dimen-

sion of accountability within the normative system of the organiza-

tion. For what concerns the structural dimension, this is a property

that can be verified by assessing whether, given a distribution of

responsibilities (i.e., a set of JaCaMo missions), it holds that for

each obligation that 𝑥 has about accounting on 𝑢, 𝑥 has the means

for generating an account either because it is directly responsible,

or thanks to other accounts that 𝑥 is legitimated to ask to other

agents, and so forth recursively. As explained, responsibility is not

directly represented in JaCaMo, but we can see the commitment to

a mission as a declaration of responsibility assumption.

Normative dimension. We can realize the normative dimension

of accountability by defining suitable norms in NPL. The obligation

to provide an account, induced by an accountability agreement

AA(𝑥,𝑦, 𝑟,𝑢), is generated by the following norm.

1 norm nAccountProduct ion :
2 a c c oun t ab i l i t yAg r e emen t (Request_u , Account_u , R) & R &
3 r e qu e s t (Request_u , Reques t i ng_goa l _u) &
4 account (Account_u , Account ing_goa l_u) &
5 done (S , Reques t ing_goa l_u , Y) &
6 mi s s i on_goa l (M1 , Reques t i ng_goa l _u) & committed (S ,M1 , Y) &
7 mi s s i on_goa l (M2 , Account ing_goa l_u) & committed (S ,M2 , X)
8 −> o b l i g a t i o n (X , enab l ed (S , Account ing_goa l_u) ,
9 done (S , Account ing_goa l_u , X) , . . .) .

The norm specifies that, when 𝑦 is legitimated to ask an ac-

count about 𝑢 to 𝑥 in 𝑟 , an obligation towards 𝑥 to achieve goal

Accounting_goal_u is issued. Accounting_goal_u will make 𝑥

provide 𝑦 with the requested account. Legitimation is due to the

fact that there exists a suitable accountability agreement for the

current context 𝑟 (Lines 2-4), 𝑦 asks for the account (Line 5), 𝑦’s

requesting goal is part of its mission (Line 6), and 𝑥 is competent

for producing an authoritative account about 𝑢 because this is part

of its mission (Line 7). Agent 𝑦 has the permission to ask for an ac-

count only when such a request is part of its mission, and condition

𝑟 holds. In NPL this can be expressed by means of the following

two norms: one that prohibits 𝑦 to ask for a report when the con-

text does not hold, and another that prohibits 𝑦 to ask when the

requesting goal does not belong to its mission.

1 norm nContextNotHold ing :
2 a c c oun t ab i l i t yAg r e emen t (Request_u , Account_u , R) & not R &
3 r e qu e s t (Request_u , Reques t i ng_goa l _u) &
4 done (S , Reques t ing_goa l_u , Y) &
5 mi s s i on_goa l (M, Reques t i ng_goa l _u) & committed (S ,M, Y))
6 −> f a i l (con tex tNotHo ld ing (Y , Request_u , R)) .

The argument of the fail operator, contextNotHolding(Y,
Request_u,R), represents the reason for the failure.

1 norm nRequestNotAl lowed :
2 a c c oun t ab i l i t yAg r e emen t (Request_u , Account_u , R) &
3 r e qu e s t (Request_u , Reques t i ng_goa l _u) &
4 done (S , Reques t ing_goa l_u , Y) &
5 not (m i s s i on_goa l (M, Reques t i ng_goa l _u) & committed (S ,M, Y))
6 −> f a i l (n o t L eg i t ima t eReque s t (Y , Request_u)) .

Robustness. In order to gain robustness, it is necessary that when

an agent𝑥 detects a perturbation about aworkflow 𝑣 it is responsible

for, 𝑥 send an account 𝑣!, about such a perturbation, to the agent

mandated the execution of a recovery strategy. Assuming to have

the accountability A(𝑥,𝑦, 𝑟, 𝑣), by Proposition 4 we introduce the

responsibilities R(𝑥, 𝑣) and R(𝑦,𝑢 ∨ ℎ(𝑣!)), where 𝑢 [𝑣]. The former

responsibility just denotes that 𝑥 is in charge of doing 𝑣 . (Note

that agent 𝑥 is also account giver towards 𝑦 about 𝑣 .) The latter

responsibility is attributed to 𝑦, and denotes that 𝑦 is in charge of

workflow 𝑢 including the recovery strategy handling the account

𝑣! in case a perturbation with such an account should affect 𝑣 . To

achieve this result in JaCaMo it is sufficient to define two missions,

one for agent 𝑥 and one for agent 𝑦, mentioning respectively, goal

𝑣 and goal 𝑢 ∨ ℎ(𝑣!), so that 𝑢 [𝑣]. And then, concretize A(𝑥,𝑦, 𝑟, 𝑣)
via a proper set of norms as explained above. The last step toward

robustness is to push 𝑦 to activate the recovery strategy when it

receives the corresponding account. This can be obtained by the

following norm.

1 norm nTreatAccount :
2 a c c oun t ab i l i t yAg r e emen t (Request_u , Account_u , R) &
3 r e qu e s t (Request_u , Reques t i ng_goa l _u) &
4 account (Account_u , Account ing_goa l_u) &
5 r e c o v e r y S t r a t e g y (Account_u , T rea tment_goa l_u) &
6 done (S , Reques t ing_goa l_u , Y) & done (S , Account ing_goa l_u , X) &
7 mi s s i on_goa l (M1 , Reques t i ng_goa l _u) & committed (S ,M1 , Y)) &
8 mi s s i on_goa l (M2 , Account ing_goa l_u) & committed (S ,M2 , X)) &
9 mi s s i on_goa l (M3 , Trea tment_goa l_u) & committed (S ,M3 , Y))

10 −> o b l i g a t i o n (X , enab l ed (S , T rea tment_goa l_u) ,
11 done (S , Treatment_goa l_u , Y) , . . .) .

In words, when a requested account is delivered to the a-taker,

and a recovery strategy is applicable to such an account (see Line 5),

the a-taker, by virtue of its responsibility regarding the associated

treatment task (Line 9), becomes obliged to activate that treatment

task. Such an obligation does not specify what the agent is actually

asked to do to tackle the perturbation. The treatment task is, in

fact, mapped into a local agent goal, as usual. Autonomy is, then,

preserved and the agent will be free to apply the recovery strategy

which suits best the provided account and its expertise.

It is worth noting that, although accountability is a directed re-

lationship between agents, it is realized in JaCaMo by means of

undirected obligations. This happens because in order to realize

accountability, we rely on the organization’s normative system, by

way of concepts like obligations and goals. In other approaches,

such as [6, 18] where agents establish their accountability agree-

ments by way of protocols, it would be possible gain robustness by

relying on social commitments, that differently from obligations,

are always directed from a debtor towards a creditor.

6 RELATEDWORKS AND CONCLUSION
Building upon suggestions from many works, we have defined a

constructive technical framework of accountability (Definition 6)

for supporting the realization of robust multiagent organizations,

and we have illustrated how the framework can be mapped onto

the JaCaMo agent platform. An accountability relationship grants

legitimacy to the a-taker to ask for an account, and to the a-giver

to provide a meaningful account. The legitimacy of the a-giver is

grounded on the structural dimension of accountability, that makes

it a reliable source about events of interest (e.g., perturbations).

Main Track AAMAS 2021, May 3-7, 2021, Online

148

This is the distinctive feature of accountability w.r.t. other social

relationships like business contracts and social commitments, which

only yield obligations to do something (normative dimension). The

proposal features a clear separation of concerns: accountability

agreements anticipate at design time the kinds of perturbation of

interest; how these are actually handled, however, depends on the

specific plans (or behaviors) implemented by the agents, playing

organizational roles (which are known only at runtime). Second,

our mechanism is useful to handle perturbations that cannot be

properly addressed by a single agent. In many cases, the agent that

detects a perturbation is not aware of the global context (e.g., how

the perturbation may indirectly affect tasks of other agents), and

has no power for fixing the problem. On the other hand, the agent

that could handle the perturbation has no access to the situation

where the perturbation has occurred. Accountability is the means

through which an account about a perturbation is reported to the

agent who is responsible for treating that perturbation. In some

way, accountability complements the plan failure mechanism of

JaCaMo (where failure is tackled by an agent locally) because it

enables a sort of escalation of a failure.

This work sets the ground for several future directions. First, it

represents a general schema that can be tailored to specific appli-

cations, e.g., to realize an exception handling mechanism in agent

organizations, by constraining the way in which agents produce

and consume accounts. The current proposal builds robustness on

top of a given distribution of responsibility but we mean to extend

the study to the cases where responsibilities may change along time,

either by effect of the received accounts or due to external circum-

stances; e.g., an agent leaving the organization or a bottleneck that

is identified and solved by splitting some responsibilities among

many agents. Another future direction of work concerns the realisa-

tion of tools that can support the work of actual organizations, like

the mentioned UNDP, by combining accountability frameworks

with oversight policies. This case is more general than the one we

have tackled because accounts will often concern achievements,

and will also allow taking advantage of opportunities.

In software engineering, robustness is considered a key property

of software systems [33], and is usually gained by ensuring (at

design time) that “exceptional” events will be reported to those soft-

ware components which have themeans for handling them properly.

As pinned out in [37], traditional exception handling approaches,

however, do not fit some key characteristics of multiagent systems,

like openness, heterogeneity, agent encapsulation, and distribution.

In particular, they usually assume that software components are

collaborative, and that their code can be inspected while handling

some given exception. But introspection is often impossible when

dealing with agents, and collaboration cannot be given for granted.

[37] suggests that an exception handling mechanism for multiagent

systems should leverage both on the proactivity of agents, and on

the environment in which agents are situated. Nevertheless, a few

authors faced the problem of modeling exceptions in an agent-based

system. Among them, [35] relies on commitment-based protocols,

while [29] proposes an obligation-based approach for exception

handling in interaction protocols.

In [15, 16] the authors explain how, within Socio-Technical Sys-

tems, accountability plays a fundamental role in balancing the

principals’ autonomy: a principal can decide to violate any expecta-

tion for which it is accountable, however, by way of accountability

the principal would be held to account about that violation.

Accountability is recognized as a value for developing software

also in [19], where a proposal complementary to ours is made.

There, the authors focus on answer production in presence of an ac-

countability relationship, tacking questions: how to properly define

the temporal window to consider? Which pieces of information are

relevant in this time interval? Which questions are suitable to be

asked in this setting? The account giving agent produces an answer

in terms of its internal mechanisms. The proposal, however, does

not provide the organizational view of the system of interacting

agents and does not tackle robustness and exceptions.

In [17], accountability enables the process of norms adaptation by

feeding outcomes back into the design-phase. In this approach, the

account is a justification of an agent’s norm-violating behavior. This

is a different understanding of accounts than ours because, for us,

account givers are not rule violators: they meet perturbations, and

provide information about the encountered situations. The account

takers, on their hand, will interpret the received accounts – possibly

combining them with further information provided by other agents

or that simply belongs to the callee’s level. The adaptation process

in [17], that consists in norm modification, however, can be seen

as a kind of robustness. Our objective is different: we do not target

norm modification, but the achievement of the organizational goal

despite the occurrence of perturbations. The two approaches are

not in contrast, rather, they complement each other. They are both

exemplifications of the perspective put forward in [1], for which a

property of a system is robust if it is invariant with respect to a set

of perturbations. The difference lies in the type of perturbations

the two approaches aim at.

Finally, MOCA [7] provides an information model of account-

ability, that captures the kind of facts that must be available to

allow the identification of account-givers in certain situation of

interest. The model is given in Object-Role Modeling (ORM) [30]

due to the relational nature of the represented concepts, and enables

automatic verification of consistency The information model is cen-

tered around two basic concepts: just expectation and control. Just
expectation is intended as the mutual awareness and acceptance of

an accountability relationships between the involved a-giver and

a-taker. Control, instead, is intended as the power, possibly exerted

indirectly by means of other agents, of achieving a condition of

interest. The normative and structural dimensions of accountabil-

ity, that characterize our proposal, respectively capture these two

features. Through the normative dimension, agents are aware of

the obligations they may be subjected as a-givers, and what per-

missions they have as a-takers. The structural dimension, instead,

grounds accountability relationships over an explicit assumption

of responsibility by the agents, that we interpret as a declaration of

direct control.

ACKNOWLEDGMENTS
We thank the reviewers for the constructive comments, prof. Olivier

Boissier for the discussions. Stefano Tedeschi is partially supported

by Progetto Talenti Società Civile Fondazione CRT, Fondazione G.

Goria.

Main Track AAMAS 2021, May 3-7, 2021, Online

149

REFERENCES
[1] David L. Alderson and John C. Doyle. 2010. Contrasting Views of Complexity

and Their Implications For Network-Centric Infrastructures. IEEE Trans. Systems,
Man, and Cybernetics, Part A 40, 4 (2010), 839–852. https://doi.org/10.1109/

TSMCA.2010.2048027

[2] Huib Aldewereld, Olivier Boissier, Virginia Dignum, Pablo Noriega, and Julian

Padget (Eds.). 2016. Social Coordination Frameworks for Social Technical Sys-
tems. Law, Governance and Technology Series, Vol. 30. Springer International

Publishing. https://doi.org/10.1007/978-3-319-33570-4

[3] Matteo Baldoni, Cristina Baroglio, Olivier Boissier, Katherine M. May, Roberto

Micalizio, and Stefano Tedeschi. 2018. Accountability and Responsibility in

Agents Organizations. In PRIMA 2018: Principles and Practice of Multi-Agent
Systems, 21st International Conference (Lecture Notes in Computer Science, 11224).
Springer, Tokyo, Japan, 403–419.

[4] Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Mical-

izio. 2018. Commitment-based Agent Interaction in JaCaMo+. Fundamenta
Informaticae 159, 1-2 (2018), 1–33.

[5] Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.

2018. Type Checking for Protocol Role Enactments via Commitments. Journal of
Autonomous Agents and Multi-Agent Systems 32, 3 (May 2018), 349–386.

[6] Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and

Stefano Tedeschi. 2018. Computational Accountability in MAS Organizations

with ADOPT. Applied Sciences 8, 4 (2018).
[7] Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and Ste-

fano Tedeschi. 2019. MOCA: An ORM MOdel for Computational Accountability.

Journal of Intelligenza Artificiale 13, 1 (2019), 5–20. https://doi.org/10.3233/IA-

180014

[8] Matteo Baldoni, Cristina Baroglio, and Roberto Micalizio. 2020. Fragility and

Robustness in Multiagent Systems. In Post-Proc. of the 8th International Workshop
on Engineering Multi-Agent Systems, EMAS 2020, Revised Selected Papers (LNAI,
12589), C. Baroglio, J. F. Hubner, and M. Winikoff (Eds.). Springer, Auckland, New

Zealand, 61–77. https://doi.org/10.1007/978-3-030-66534-0

[9] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2020.

Is Explanation the Real Key Factor for Innovation?. In Proceedings of the Italian
Workshop on Explainable Artificial Intelligence co-located with 19th International
Conference of the Italian Association for Artificial Intelligence, XAI.it@AIxIA 2020,
Online Event, November 25-26, 2020 (CEUR Workshop Proceedings, Vol. 2742),
Cataldo Musto, Daniele Magazzeni, Salvatore Ruggieri, and Giovanni Semeraro

(Eds.). CEUR-WS.org, 87–95.

[10] B. Bauer, J.P. Müller, and J. Odell. 2001. Agent UML: A formalism for specifying

multiagent software systems. Software Engineering and Knowledge Engineering
11, 3 (2001), 207–230.

[11] Guido Boella, Leendert W. N. van der Torre, and Harko Verhagen. 2007. Intro-

duction to Normative Multiagent Systems. In Normative Multi-agent Systems
(Dagstuhl Seminar Proceedings, Vol. 07122).

[12] Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and Andrea

Santi. 2013. Multi-agent oriented programming with JaCaMo. Science of Computer
Programming 78, 6 (2013), 747 – 761. https://doi.org/10.1016/j.scico.2011.10.004

[13] Rafael H. Bordini, Jomi Fred Hübner, andMichaelWooldridge. 2007. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons.

[14] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-

lopoulos. 2004. Tropos: An Agent-Oriented Software Development Methodol-

ogy. Autonomous Agents and Multi-Agent Systems 8, 3 (2004), 203–236. https:

//doi.org/10.1023/B:AGNT.0000018806.20944.ef

[15] Amit K. Chopra and Munindar P. Singh. 2014. The thing itself speaks: Account-

ability as a foundation for requirements in sociotechnical systems. In IEEE 7th
Int. Workshop RELAW. IEEE Computer Society. https://doi.org/10.1109/RELAW.

2014.6893477

[16] Amit K. Chopra and Munindar P. Singh. 2016. From social machines to so-

cial protocols: Software engineering foundations for sociotechnical systems. In

Proceedings of the 25th International Conference on World Wide Web. 903–914.
[17] Amit K. Chopra and Munindar P. Singh. 2018. Sociotechnical Systems and Ethics

in the Large. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, AIES 2018, New Orleans, LA, USA, February 02-03, 2018, Jason Furman,

Gary E. Marchant, Huw Price, and Francesca Rossi (Eds.). ACM, 48–53.

[18] Amit K. Chopra and Munindar P. Singh. 2020. Clouseau: Generating Communi-

cation Protocols from Commitments. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-20). AAAI Press, 7244–7252.

[19] Stephen Cranefield, Nir Oren, and Wamberto Weber Vasconcelos. 2018. Ac-

countability for Practical Reasoning Agents. In Agreement Technologies - 6th
International Conference, AT 2018, Bergen, Norway, December 6-7, 2018, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 11327), Marin Lujak (Ed.).

Springer, 33–48. https://doi.org/10.1007/978-3-030-17294-7_3

[20] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. 1993. Goal-directed

requirements acquisition. Science of Computer Programming 20, 1 (1993), 3 – 50.

https://doi.org/10.1016/0167-6423(93)90021-G

[21] Maiquel de Brito, Jomi Fred Hübner, and Olivier Boissier. 2017. Situated ar-

tificial institutions: stability, consistency, and flexibility in the regulation of

agent societies. Autonomous Agents and Multi-Agent Systems (2017), 1–33.

https://doi.org/10.1007/s10458-017-9379-3

[22] Virginia Dignum, Frank Dignum, and John-Jules Meyer. 2004. An agent-mediated

approach to the support of knowledge sharing in organizations. The Knowledge
Engineering Review 19, 2 (2004), 147–174.

[23] Virginia Dignum, Javier Vázquez-Salceda, and Frank Dignum. 2004. OMNI:

Introducing Social Structure, Norms and Ontologies into Agent Organizations.

In Programming Multi-Agent Systems, Second International Workshop ProMAS,
Selected Revised and Invited Papers (Lecture Notes in Computer Science, Vol. 3346).
Springer, 181–198.

[24] Melvin J. Dubnick and Jonathan B. Justice. 2004. Accounting for Accountability.

https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.

pdf Annual Meeting of the American Political Science Association.

[25] Dave Elder-Vass. 2011. The Causal Power of Social Structures: Emergence, Structure
and Agency. Cambridge University Press.

[26] Executive Board of the United Nations Development Programme and of the

United Nations Population Fund. 2008. The UNDP accountability system, Ac-
countability framework and oversight policy. Technical Report DP/2008/16/Rev.1.
United Nations.

[27] Christophe Feltus. 2014. Aligning Access Rights to Governance Needs with the
Responsability MetaModel (ReMMo) in the Frame of Enterprise Architecture. Ph.D.
Dissertation. University of Namur, Belgium.

[28] Harold Garfinkel. 1967. Studies in ethnomethodology. Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey.

[29] J. Octavio Gutierrez-Garcia, Jean-Luc Koning, and Félix F. Ramos-Corchado. 2009.

An Obligation Approach for Exception Handling in Interaction Protocols. In 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent
Agent Technology, Vol. 3. 497–500.

[30] Terry Halpin and Tony Morgan. 2008. Information Modeling and Relational
Databases. Morgan Kaufmann Publishers.

[31] Jomi F. Hübner, Olivier Boissier, and Rafael H. Bordini. 2011. A normative

programming language for multi-agent organisations. An. of Math. and Art. Intel.
62, 1 (2011), 27–53.

[32] Jomi F. Hubner, Jaime S. Sichman, and Olivier Boissier. 2007. Developing Organ-

ised Multiagent Systems Using the MOISE+ Model: Programming Issues at the

System and Agent Levels. Int. J. Agent-Oriented Softw. Eng. 1, 3/4 (2007), 370–395.
https://doi.org/10.1504/IJAOSE.2007.016266

[33] ISO/IEC/IEEE. 2017. Systems and software engineering — Vocabulary.

[34] Fabiola López y López andMichael Luck. 2003. Modelling Norms for Autonomous

Agents. In 4th Mexican International Conference on Computer Science (ENC 2003),
8-12 September 2003, Apizaco, Mexico. IEEE Computer Society, 238–245. https:

//doi.org/10.1109/ENC.2003.1232900

[35] Ashok U. Mallya and Munindar P. Singh. 2005. Modeling Exceptions via Com-

mitment Protocols. In Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’05). ACM, New York, NY,

USA, 122–129.

[36] Roberto Micalizio and Pietro Torasso. 2014. Cooperative Monitoring to Diagnose

Multiagent Plans. J. Artif. Intell. Res. 51 (2014), 1–70. https://doi.org/10.1613/jair.

4339

[37] Eric Platon, Nicolas Sabouret, and Shinichi Honiden. 2007. Challenges for Excep-

tion Handling in Multi-Agent Systems. In Software Engineering for Multi-Agent
Systems V. Springer, Berlin, Heidelberg, 41–56.

[38] Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini. 2009. Envi-
ronment Programming in CArtAgO. Springer US, Boston, MA, 259–288.

[39] Barbara S. Romzek and Melvin J. Dubnick. 1987. Accountability in the Public

Sector: Lessons from the Challenger Tragedy. Public Administration Review 47, 3

(1987).

[40] Munindar P. Singh. 1999. An Ontology for Commitments in Multiagent Systems.

Artif. Intell. Law 7, 1 (1999), 97–113.

[41] Munindar P. Singh. 2003. Distributed Enactment of Multiagent Workflows:

Temporal Logic for Web Service Composition. In The Second International Joint
Conference on Autonomous Agents & Multiagent Systems, AAMAS 2003, July 14-18,
2003, Melbourne, Victoria, Australia, Proceedings. ACM, 907–914.

[42] Munindar P. Singh. 2013. Norms as a basis for governing sociotechnical systems.

ACM TIST 5, 1 (2013), 21. https://doi.org/10.1145/2542182.2542203

[43] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. 2003. De-

veloping multiagent systems: The Gaia methodology. ACM Trans. Softw. Eng.
Methodol. 12, 3 (2003), 317–370. https://doi.org/10.1145/958961.958963

Main Track AAMAS 2021, May 3-7, 2021, Online

150

https://doi.org/10.1109/TSMCA.2010.2048027
https://doi.org/10.1109/TSMCA.2010.2048027
https://doi.org/10.1007/978-3-319-33570-4
https://doi.org/10.3233/IA-180014
https://doi.org/10.3233/IA-180014
https://doi.org/10.1007/978-3-030-66534-0
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1109/RELAW.2014.6893477
https://doi.org/10.1109/RELAW.2014.6893477
https://doi.org/10.1007/978-3-030-17294-7_3
https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.1007/s10458-017-9379-3
https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1109/ENC.2003.1232900
https://doi.org/10.1109/ENC.2003.1232900
https://doi.org/10.1613/jair.4339
https://doi.org/10.1613/jair.4339
https://doi.org/10.1145/2542182.2542203
https://doi.org/10.1145/958961.958963

	Abstract
	1 Introduction
	2 Workflows: Background
	3 A Model of Robust MAO
	3.1 Norms, Roles, Responsibilities, Sanctions, Tasks
	3.2 Recovery Strategies, Accountability Agreements, Request and Account Specs

	4 Robustness upon Accountability
	4.1 Accountability
	4.2 Robustness through Accountability

	5 Illustration in JaCaMo
	6 Related Works and Conclusion
	Acknowledgments
	References

