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ABSTRACT

Institutions and investors face the constant challenge of making
accurate decisions and predictions regarding how best they should
distribute their endowments. The problem of achieving an opti-
mal outcome at minimal cost has been extensively studied and
resolved using several heuristics. However, these works fail to ad-
dress how an external decision maker can target different types of
fair behaviour and how limited information can shape this complex
interplay. Here, we consider the well-known Ultimatum game in a
spatial setting and propose a hierarchy of interference mechanisms
based on the amount of information available to the external de-
cision maker and desired standards of fairness. Our key findings
show that asymmetric interactions have drastically different dy-
namics when compared to symmetric games, such as the Prisoner’s
Dilemma, and discuss why gathering information about the agents’
behaviour allows for the most efficient investment strategies.
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1 INTRODUCTION

The problem of how collective behaviours such as cooperation,
coordination, safety compliance and fairness among self-interested
agents emerge in evolving, dynamical systems has fascinated re-
searchers frommany disciplines, including Biology, Economics, and
Computer Science [1, 11, 13, 15, 16, 23, 26, 28]. Several mechanisms
that are responsible for promoting the emergence of cooperation
have been proposed, including direct reciprocity [23, 25], kin selec-
tion [10] and network reciprocity [19] (for review, see [17, 28]). In
these works, the evolution of desired collective behaviour is typi-
cally shaped by the combined actions of agents within the systems.

This paper contributes to advancing the state-of-the-art on opti-
mal interference in evolving, dynamical systems [2, 3, 12, 14, 27]
by analysing such interference in a spatial Ultimatum Game (UG),
a popular bargaining game for investigating fairness in decision
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making [5, 5ś9, 22]. In a standard UG, players have different roles,
proposer and receiver (or responder), with different bargaining
powers (See Section 2 for a detailed description). We consider the
spatial version of the game [20] where players are distributed on a
network in order to examine how to exploit the roles’ asymmetry
in both global and local interference strategies [12].

The main motivation of research on the UG arises from the gap
between theoretical predictions, in which proposers keep most of
the endowment and responders accept any positive proposition
however small it may be, and experiments, in which individuals
propose 40% to 50% of their endowment (and often get punished if
they propose less) [9]. That said, previous works have investigated
how fairness can evolve in models of UG, wherein several mecha-
nisms promoting the emergence of fairness have been identified.
We note that we align our definition of fairness with these previous
works, where generous proposers are deemed as fair, regardless of
their behaviour when acting in the role of the responder.

2 MODELS AND METHODS

Agents’ interaction is modelled using the one-shot UltimatumGame
(UG) [18, 20]. In the UG, two players are offered a chance to win
a certain sum of money, normalised to 1, which they must divide
between each other. One player is elected proposer, and suggests
how to split the sum, while the other, the receiver can accept or
reject the deal. If the deal is rejected, both players receive zero. As
in [18, 20], we assume that a player is equally likely to perform in
one of the roles. As we focus in this paper on the effect of having
multiple roles on interference decision making, we consider a mini-
mal UG model where proposers have two possible strategic offers,
a low (L, with 𝑝 = 𝑙) and a high (fair) (H, with 𝑝 = ℎ) one, where
𝑙 < ℎ ∈ [0, 1]. On the other hand, receivers have two options, a
low threshold (L, with 𝑞 = 𝑙) and a high threshold (H, with 𝑞 = ℎ).
Thus, overall, there are four possible strategies HH, HL, LH and LL.
For example, HL would denote proposing high and accepting any
offers.

We consider a population of agents on a square lattice of size
𝑍 = 𝐿 × 𝐿 with periodic boundary conditionsÐ a widely adopted
population structure in evolutionary games [24]. For a full descrip-
tion, see [4].

We aim to study how one can efficiently interfere in a structured
population to achieve high levels of fairness while minimising the
cost of interference. Naturally, the level of fairness is measured by
the fraction of fair offers in the population [21], which is the total
of HH and HL frequencies. An investment decision consists of a
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Table 1: Most cost-efficient scheme to reach aminimum fair-

ness of proposals for different mutation rates (population-

based, stochastic update). There exists no schemeswhich sat-

isfy the higher minimum fairness requirements in the case

of very high mutation rate, written as ‘ś’ in the table.

Mut. rate Min. fairness Target Threshold 𝜃 Cost

10−4 75% HH 0.3 0.1 530
10−4 90% HH 0.3 0.1 530
10−4 99% HH 0.3 0.4 999
10−2 75% HH 0.3 0.3 750
10−2 90% HH 0.3 0.7 1747
10−2 99% HH 1 0.1 487514
0.2 75% HH 0.6 0.2 358089
0.2 90% ś ś ś ś
0.2 99% ś ś ś ś

cost 𝜃 > 0 to the external decision maker and this value 𝜃 is added
as surplus to the payoff of each suitable candidate [3, 14].

We examine and compare different approaches of interference to
induce fairness, based on ensuring fairness for either role or both
roles, leading to different desirable behaviours to be targeted

(i) ensure all proposals are fair, thus investing in HH and HL
(Target: HH, HL);

(ii) ensure only fair offers are accepted, thus investing in HH
and LH (Target: HH, LH);

(iii) ensure both (i) and (ii), i.e. investing in HH only (Target:
HH).

In the population-based approach, a decision to invest is based
on the current composition of the population. We denote 𝑥 𝑓 the
fraction of individuals in the population with a desirable behaviour,
given a targeting approach at hand, i.e. (i), (ii) or (iii) as defined
above. Namely, investment is made if 𝑥 𝑓 is less or at most equal
to a threshold 𝑝 𝑓 (i.e. 𝑥 𝑓 ≤ 𝑝 𝑓 ), for 0 ≤ 𝑝 𝑓 ≤ 1. They do not
invest otherwise (i.e. 𝑥 𝑓 > 𝑝 𝑓 ). The value 𝑝 𝑓 describes how rare
the desirable behaviours should be to trigger external support.

3 RESULTS AND CONCLUSION

An external agent must consider several factors when investing in
a population of individuals in an effort to ensure some form of de-
sirable outcome. Among these, we consider and aim to resolve the
questions regarding what sort of behaviour they should invest in,
how large the individual endowment must be, but also what an in-
vestor can do when information about the population is incomplete,
or even unknown. As such, we consider that the simplest form of
information gathering measures fairness on average, as opposed to
fine-grained observations on individual neighbourhoods. Likewise,
we consider that ensuring all proposals are fair (i.e. investing in
HH or HL) is less demanding on an external decision maker than
ensuring that only fair offers are accepted (i.e. investing in HH and
LH), which is, in turn, a simpler endeavour than for both the former
and latter to be strictly enforced (choosing to invest in HH only). In
this way, we can conceptualise a hierarchy of investment strategies
in terms of complexity, some of which may simply be impossible for
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Figure 1: Proportion of unfair proposers as a function of

average cost of interference for different targeting scheme

(population-based, 𝜇 = 0.01, stochastic update). The size and
colour of the circles correspond to investment amount and

threshold of investment, respectively.We note that themost

desirable outcomes are closest to the origin.

an investor to follow, merely due to lack of information, funding,
or a combination of the two.

We consider that there exists aminimal level of fairnesswhich the
external decision maker aims to enforce [3, 14]. We determine the
least expensive investment strategies for different targeted levels
of acceptable fairness. Table 1 highlights the least costly targets for
investment for varying mutation (or behavioural exploration) rates
[23], showing that the strictest target (HH) consistently produces
the most cost-effective outcome, regardless of the mutation rates,
when considering population-level information. A full analysis
of several investment strategies including those based on local
neighbourhood information, is provided in [4].

If the requirements, in terms of cost-effectiveness, are relaxed, an
external investor might choose to invest in other roles with positive
results, as well. In Figure 1, we present the Pareto efficiency of all
the investment targets for varying individual investment amount, as
well as the threshold for investment. Invariably, the fairest outcomes
are achieved by selecting a high threshold for interference (i.e. never
allowing the frequency of the investment targets to drop below
a specific amount, typically a high threshold). Correspondingly,
we show that fairness does not emerge when the threshold is low,
regardless of endowment size.

To conclude, we have shown that when an external decision
maker is limited to themacroscopicmetrics associatedwith population-
based interference, interference is characterised by its strictness.
To elaborate, information gathering should be the main goal for
the investor, as ensuring that proposals and responses are simulta-
neously fair (i.e. targeting HH) is the optimal outcome. Moreover,
the individual investment amount can be reduced which, coupled
with a high enough threshold for investment, reduces overall accu-
mulated costs. This finding is pervasive regardless of the frequency
of behavioural exploration.
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