
Partial Disclosure of Private Dependencies
in Privacy Preserving Planning∗

Extended Abstract

Rotem Lev Lehman
Information Systems Engineering
Ben Gurion University, Israel

levlerot@post.bgu.ac.il

Guy Shani
Information Systems Engineering
Ben Gurion University, Israel

shanigu@bgu.ac.il

Roni Stern
Palo Alto Research Center, USA
Ben Gurion University, Israel

sternron@post.bgu.ac.il,rstern@parc.com

KEYWORDS
Privacy; Multi-agent; Planning

ACM Reference Format:
Rotem Lev Lehman, Guy Shani, and Roni Stern. 2021. Partial Disclosure of
Private Dependencies in Privacy Preserving Planning: Extended Abstract.
In Proc. of the 20th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
Designing autonomous agents that act collaboratively to achieve
a common set of goals has been a major goal for Artificial Intel-
ligence research for many years. Collaborative Privacy-Preserving
Planning (cppp) is a multi-agent planning task in which agents
need to achieve a common set of goals without revealing certain
private information [2]. In particular, in cppp an individual agent
may have a set of private facts and actions that it does not share
with the other agents. cppp has important motivating examples,
such as planning for organizations that outsource some of their
tasks, and has recently received considerable attention from the
academic community [1, 4, 7, 8, 10, 12].

When planning, agents either explicitly or indirectly publish
dependencies between the public actions [6]. For example, in a mul-
tiagent Mars Rover scenario, the need to take a camera from a base
station before sending an image, incurs a private dependency be-
tween these public actions. In both single search and a two-level
approach some private dependencies are revealed during planning.

In many cases, however, the agents can construct a plan requir-
ing only a small portion of the private dependencies. It may be
preferable to reveal only a part of the dependencies, intuitively
reducing the amount of disclosed private information. This raises
the challenge of how to choose which private dependencies to
share and which not to. We suggest 4 different heuristic methods
for deciding which dependencies should be published first, and
compare them experimentally on standard benchmarks from the
cppp literature. Our results show that in many domains using our
heuristics allows computing a plan while publishing only a small
portion of the private dependencies. We also analyze the makespan
cost of the plans, showing that publishing fewer dependencies may
not increase the plan cost significantly.

∗A complete version of this paper can be found in [5].

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

Figure 1: A rovers domain, with 2 base stations𝑏1 and𝑏2, and
2 rovers, 𝑟1 and 𝑟2, taking measurements of a rock.

2 PRIVACY PRESERVING PLANNING
Let 𝑝𝑢𝑏𝑙𝑖𝑐 (𝑃) be the set of public facts in 𝑃 , and let 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖 (𝑃)
be the set of variables that are private to agent 𝑖 . Similarly, let
𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖 (𝑃) and 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖 (𝐴𝑖) be the set of variables and actions,
respectively, that are private to agent 𝑖 . When a public action is
executed, all agents are aware of its execution, and view the public
effects of the action. The goals can be public, but can also be private
to a single agent. An agent is aware only of its local view of the
problem, that is, its private actions and facts, its public actions, the
public facts, and the public projection of the actions of all other
agents. That is, for public actions of other agents, the agent’s local
view contains only the public preconditions and effects of these
actions.

Figure 1 illustrates a cppp problem from the Rovers domain with
2 Mars Rovers. The Rovers need to perform sensor measurements
on rocks, and, due to limited carriage capacity, can only carry 2
sensors at a time. Unused sensors are stored in base stations, and
can be taken and returned to the base stations as needed. The
public facts in this problem are the sensors located in bases, and the
current condition of the target rock. The public actions are taking
and returning sensors to the base stations, putting collected rock
samples at the base stations, and performing various examination
actions on rocks, such as taking an image, mining a mineral, or
collecting a sample. The sensors held by a rover and its position
are private, and the private actions are movement actions.

There are two main approaches for cppp: single search and two-
level search. Single search algorithms, such as mafs [8] run a dis-
tributed forward search in which each agent searches for a plan
using its own action space. Whenever an agent expands a state that
was generated by applying a public action, it also broadcasts this
state to all other agents, revealing a private dependency. Two-level
search planners compute a public plan, known as a coordination
scheme [3, 8, 11], and then each agent independently extends the
public plan into a complete plan by adding private actions. In the

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1575

Figure 2: Local perspective of agent 1 private dependen-
cies in the Rovers domain. Each node 𝑛 is marked with a
unique identifier colored red. 𝑟1 = 𝑟𝑜𝑣𝑒𝑟1, 𝑐1 = 𝑐𝑎𝑚𝑒𝑟𝑎1, 𝑏𝑖 =

𝑏𝑎𝑠𝑒𝑖 ,𝑚𝑑1 =𝑚𝑖𝑛𝑒𝑟𝑎𝑙_𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟1

Dependency Projection Planner (DPP) [7], the agents compute to-
gether a single agent projection of the cppp problem that captures
the dependencies between public actions.

3 PARTIAL DISCLOSURE OF DEPENDENCIES
We now present the main contribution of this paper — reducing the
amount of disclosed private dependencies and hence, the amount
of disclosed information.

Figure 2 shows the local perspective of the private dependencies
of agent 1 in the Rovers domain. Black nodes in the first and third
columns represent public actions, purple nodes in the fourth column
represent public facts, and blue nodes in the second column denote
artificial facts that capture private dependencies between public
actions. The public actions on the first column generate the artificial
facts while the public actions on the third column require them as
preconditions, and generate the public facts. Our methods always
publish one of the black edges in the graph, between a public action
and an artificial fact that it can generate. The blue and purple edges
(artificial preconditions and public effects) are always known.

We suggest 4 different methods for selecting which dependen-
cies to publish first. We take an iterative approach — all agents
publish one artificial effect of one public action at each iteration.
Our methods assign a heuristic score to each dependency. The de-
pendency with the highest score is published at each iteration. If
the public projection cannot be solved, all agents recompute the
heuristic scores, and publish the next dependency.

Our first method,𝑚1, publishes dependencies that are used as
preconditions in as many public actions as possible. The score of
a dependency is set to the out-degree of the artificial fact (blue
node). The second method, 𝑚2, publishes an effect that enables
the achievement of as many public facts as possible, denoted by
outgoing purple edges in Figure 2. The third method,𝑚3, maximizes
the amount of public actions that can be executed. That is, instead of
publishing the dependency that provides a precondition for several
actions, we publish the dependency that enables as many public
actions as possible. The last method,𝑚4, is similar to𝑚3, but focuses
on the public effects (purple nodes), not on the public actions. To
avoid choosing to publish the same effect at the next iteration, the
heuristic always measures the amount of new artifacts that will be
disclosed at the next iteration.

(a) Elevators (b) Blocksworld

(c) Legend.

Figure 3: Number of solved problems for each amount of
published dependencies in the Joint projection method.

4 RESULTS AND DISCUSSION
We evaluate our methods using standard benchmarks [9]. For each
problem in each domain, we ran the projection-based solver with
a growing number of revealed dependencies. Figure 3 shows the
number of problems that were solved on two domains given the
number of revealed dependencies by each agent. We also compute a
“Hindsight value”, the number of private dependencies in the final
plan, and a random ranking (averaged over 10 executions).

𝑚3, which prioritizes enabling additional public actions, per-
forms the best in all domains. The rest of the methods vary in their
performance. On Blocksworld,𝑚4, that prioritizes achieving addi-
tional public facts, is the best together with𝑚3, but on Elevators
𝑚4 performs the worst. On Elevators, arguably the domain with
the highest amount of required collaboration, differences between
methods are most pronounced. On some domains, not shown here,
the heuristic methods performed only slightly better than random,
but in most of the domains, they outperformed random selection.

An interesting phenomenon occur in, e.g., BlocksWorld and
Rovers, where some problems are solved when many dependencies
are unavailable, but cannot be solved when more dependencies
are published. This is because the projection method may produce
a public plan that cannot be extended into a complete plan. Our
methods often publish first dependencies that resulted in plans
that could be extended. Later, additional dependencies confused
the planner to choose plans that could not be extended.

These results show that choosing which dependencies to reveal
have an impact on solvability. While our heuristic methods perform
on many domains much better than random, there is clearly much
room for improvement. It is also interesting to study, given the
domain features, which method will be appropriate for that domain.

Finally, we consider the makespan cost of the generated public
plan. Even when a plan could be obtained without revealing any
dependency, better plans may be obtained by collaboration, reveal-
ing some dependencies. Thus, agents may trade off some privacy
for increased efficiency. In our experiments, however, on average,
the improvement between the cost of the first plan found to the
best plan found is only about 20%. That is, our heuristics chose de-
pendencies that not only allowed for a solution, but also generated
non-optimal, but relatively low cost plans.

ACKNOWLEDGMENTS
This work is partially funded by BSF grant #2018684 and ISF grant
210/17 to Roni Stern, and by ISF grant # 1210/18 to Guy Shani.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1576

REFERENCES
[1] Ronen I. Brafman. 2015. A Privacy Preserving Algorithm for Multi-Agent Plan-

ning and Search. In IJCAI. 1530–1536.
[2] Ronen I Brafman and Carmel Domshlak. 2008. From One to Many: Planning for

Loosely Coupled Multi-Agent Systems. In ICAPS. 28–35.
[3] Ronen I. Brafman and Carmel Domshlak. 2013. On the complexity of planning for

agent teams and its implications for single agent planning. Artificial Intelligence
198 (2013), 52–71.

[4] Patrick Caspari, Robert Mattmuller, and Tim Schulte. 2020. A Framework to
Prove Strong Privacy in Multi-Agent Planning. In Distributed and Multi-Agent
Planning (DMAP) workshop at ICAPS.

[5] Rotem Lev Lehman, Guy Shani, and Roni Stern. 2021. Partial Disclosure of
Private Dependencies in Privacy Preserving Planning. arXiv e-prints, Article
arXiv:2102.07185 (Feb. 2021), arXiv:2102.07185 pages. arXiv:2102.07185 [cs.MA]

[6] Shlomi Maliah, Guy Shani, and Roni Stern. 2016. Stronger Privacy Preserving Pro-
jections for Multi-Agent Planning. In the International Conference on Automated

Planning and Scheduling (ICAPS). 221–229.
[7] Shlomi Maliah, Guy Shani, and Roni Stern. 2018. Action dependencies in privacy-

preserving multi-agent planning. Autonomous Agents and Multi-Agent Systems
32, 6 (2018), 779–821.

[8] Raz Nissim and Ronen I. Brafman. 2014. Distributed Heuristic Forward Search
for Multi-agent Planning. JAIR 51 (2014), 293–332.

[9] Michal Štolba, Antonın Komenda, and Daniel L Kovacs. 2015. Competition of
Distributed and Multiagent Planners (CoDMAP). The International Planning
Competition (WIPC-15) (2015), 24.

[10] Alejandro Torreño, Eva Onaindia, Antonín Komenda, and Michal Štolba. 2017.
Cooperative multi-agent planning: A survey. Comput. Surveys 50, 6 (2017), 1–32.

[11] Alejandro Torreno, Eva Onaindia, and Oscar Sapena. 2014. FMAP: Distributed
cooperative multi-agent planning. Applied Intelligence 41, 2 (2014), 606–626.

[12] Jan Tozicka, Michal Štolba, and Antonín Komenda. 2017. The Limits of Strong
Privacy Preserving Multi-Agent Planning. In ICAPS.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1577

https://arxiv.org/abs/2102.07185

	1 Introduction
	2 Privacy Preserving Planning
	3 Partial Disclosure of Dependencies
	4 Results and Discussion
	Acknowledgments
	References

