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ABSTRACT
We present a novel model-based algorithm, Cooperative Prioritized
Sweeping, for sample-efficient learning in large multi-agent Markov
decision processes. Our approach leverages domain knowledge
about the structure of the problem in the form of a dynamic decision
network. Using this information, our method learns a model of
the environment to determine which state-action pairs are the
most likely in need to be updated, significantly increasing learning
speed. Batch updates can then be performed which efficiently back-
propagate knowledge throughout the value function. Our method
outperforms the state-of-the-art sparse cooperative Q-learning and
QMIX algorithms, both on the well-known SysAdmin benchmark,
randomized environments and a fully-observable variation of the
well-known firefighter benchmark from Dec-POMDP literature.
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1 INTRODUCTION
Consider a control problem where multiple agents must learn to
cooperate to achieve a common goal in an environment with un-
known and complex dynamics, such as robot soccer [14], warehouse
commissioning [7], and traffic light control [39]. Such problems
cannot be solved optimally in general even if the dynamics of the
environment are known in advance, due to the size of both state
and action spaces being exponential in the number of agents [27].
Large environments also require increasingly large amounts of data
to learn effectively, which are often impractical to obtain in real-life
scenarios.

An effective way to improve sample-efficiency is to perform
batch updates on the value function in between interactions with
the environment. The data required to perform these updates can
be sampled from an existing pool, with experience replay being a
well-known example of this technique [18]. Alternatively, the data
can be generated on the fly from a learned model, as it is done in
the Dyna-Q algorithm [33]. Whatever the approach, it is important
that updates focus the value function where it does not follow
the data, as performing updates randomly in high-dimensional
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spaces can result in significant waste of resources. This is one of the
reasons of the recent success of prioritized experience replay [28].
Unfortunately, this algorithm is limited by its model-free approach
in its identification of good state-action pairs to update. Instead,
learning a model of the environment can make it possible to reason
much more efficiently about the importance of any given update,
before actually paying the cost of performing it.

Prioritized sweeping (PS) is a discrete, single-agent, model-based
algorithm that exemplifies this idea. PS improves sample-efficiency
by sorting the state-action pairs to update using a priority queue,
where each pair’s priority is proportional to the likelihood that their
update will significantly affect the value function [22]. The key idea
is that if the value of a given state has changed significantly, then
the Bellman equation suggests that it is likely that the value of its
parents will have to be updated as well. This insight allows PS to
efficiently update the value function, as it selectively samples and
updates the pairs that are expected to lead to large changes in the
value function, and by extension the agent’s policy. This can often
significantly reduce the amount of data required to learn a policy, as
information is propagated through the value function much more
quickly than would otherwise be possible.

The main drawback is that PS does not readily extend to large
environments, and in particular to the multi-agent domain [1].
As the priority queue increases in size, the computational cost of
bookkeeping rapidly becomes unsustainable, making the approach
impractical. In large environments PS can also update states that
will not be experienced again, reducing efficiency.

In this paper we propose cooperative prioritized sweeping (CPS),
a novel algorithm that generalizes the ideas of PS to large scale,
discrete multi-agent environments. In order to keep the problem
tractable, we exploit domain knowledge in the form of coordination
graphs. Coordination graphs describe the conditional dependen-
cies between agents and state features. Such graphs are often used
in multi-agent settings, and can be assessed by domain experts
or learned from data [1, 3, 9, 15, 17, 23, 30, 36, 37]. Exploiting the
structure of a coordination graph is central to our approach, as it
allows CPS to reason locally about the dynamics of the environ-
ment. Using this information, CPS is able to compute priorities for
subsets of joint state-action pairs, avoiding the curse of dimension-
ality. We show that using CPS can significantly increase learning
speed, even in states which were previously unseen by the agents,
in environments with hundreds of agents. We demonstrate that
CPS beats state-of-the-art algorithms SCQL and QMIX in several
benchmark settings, both in terms of sample-efficiency and policy
performance. Where possible, we empirically show that the policies
learned with CPS perform close to the theoretical optimum, even
though convergence is not guaranteed.
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Figure 1: A simple DDN with 2 agents and 3 state features.
The incoming arrows represent the conditional dependen-
cies in the transition function, between the state features in
the next timestep and the current state features and agent
actions.

The rest of this paper is organized as follows. Section 2 gives
a formal definition of the setting and our main assumptions. Sec-
tion 3 describes our main contributions: the mechanism used to
efficiently prioritize updates within our model-based setting, and
the full CPS algorithm for sample-efficient RL. Section 4 describes
our experimental setup and our benchmarks, the empirical results
and associated discussion. Section 5 contains several references
pointing to similar work. Finally, Section 6 summarizes the results
and presents future work.

2 PROBLEM FORMULATION
A multi-agent Markov decision process (MMDP) is described as a
tuple ⟨S,A,𝑇 , 𝑅,𝛾⟩, where:
• S = 𝑆1 × · · · × 𝑆𝑁 is the joint state space, which is the
Cartesian product of 𝑁 state features.
• A = 𝐴1 × · · · × 𝐴𝐾 is the joint action space, which is the
Cartesian product of the action spaces of 𝐾 agents.
• 𝑇 (s′ | s, a) is the transition function which describes the en-
vironment’s dynamics.
• 𝑅 is the reward function associating rewards to joint state-
action pairs, ⟨s, a⟩.
• 𝛾 ∈ [0, 1) is the discount factor representing the importance
of future rewards.

In an MMDP, the interactions between the state factors and
agents are assumed to be sparse, such that they can be represented
using coordination graphs. In particular, we describe these dynam-
ics using Dynamic Decision Networks (DDN) [9, 23], i.e. Bayesian
networks where the action nodes are not random variables. A DDN
can be graphically represented in a compact form as a directed
graph where each edge marks the direct influence of one variable
over another. An example DDN is shown in Figure 1. We assume
that the DDN structure is provided to the agents prior to any learn-
ing.

Using the DDN formulation, we can describe the transition func-
tion of an MMDP in a factored manner:

𝑇 (s′ | s, a) =
∏
𝑖

𝑇𝑖 (𝑠 ′𝑖 | s
i , a i ) (1)

where we use the symbol i to denote the parent nodes of 𝑆 ′
𝑖
in the

DDN graph. For example, in Figure 1, 𝑆 2 = {𝑆2, 𝑆3}, and 𝐴 2 =

{𝐴1, 𝐴2}.
We assume that the reward function has the same structure as

𝑇 , such that 𝑅(s, a) = ∑
𝑖 𝑅𝑖 (s i , a i ) where each 𝑅𝑖 has the same

domain (S i ,A i ) as𝑇𝑖 . Given this structure, we assume that rewards
are sampled, both from the environment and from the model, as
vectors with 𝑁 elements.

This representation is somewhat different from what some other
multi-agent RL algorithms use (e.g., [15]), which is to consider
rewards on a per-agent basis, rather than on a per-state factor basis.
In other words, they consider reward samples to be vectors with
𝐾 entries, i.e., one per agent. However, it is always possible to
represent an agent-based reward function as a state-based one by
simply adding one additional state factor per agent to convey the
rewards.

3 COOPERATIVE PRIORITIZED SWEEPING
Here we describe cooperative prioritized sweeping (CPS), a novel
model-based approach for MMDPs that generalizes the ideas of PS
to the multi-agent setting.

3.1 Motivation
The main idea behind prioritized sweeping is that sample-efficiency
can be improved by increasing the speed at which the value function
incorporates agent experience. Recall the Bellman equation for the
optimal value function:

𝑉★(𝑠) = 𝑅(𝑠, 𝑎★) + 𝛾
∑
𝑠′
𝑇 (𝑠 ′ | 𝑠, 𝑎★)𝑉★(𝑠 ′) (2)

During learning, after each interaction with the environment we
obtain new experience that can be used to update the value function.
Equation 2 suggests that after each update for a particular state
𝑠 ′, it is likely that the values for all its predecessor states 𝑠 should
be changed as well. The magnitude of the change for 𝑠 will be
proportional to (i) the temporal difference (TD) error of the initial
update for 𝑠 ′, and (ii) the probability of the transition 𝑇 (𝑠 ′ | 𝑠, 𝑎).

Ideally, one would recursively update the value function until
it satisfied Equation 2; this is equivalent to planning and would
guarantee maximum sample efficiency, as all the experienced in-
formation would always be fully reflected in the value function.
However, this approach is unfortunately computationally infeasible.

Instead, it makes sense to perform the largest updates to the
value function first, as they are the most likely to influence our
learned policy. We can then limit the number of recursive updates
depending on available resources, and still maximize the informa-
tion extracted from the data.

3.2 Multi-agent priorities
Single-agent PS identifies those state-action pairs where the current
estimates of the value-function are more likely to be incorrect, such
that they can be updated. This is done by associating each pair with
a priority𝜓 (𝑠, 𝑎):

𝜓 (𝑠, 𝑎) = |Δ𝑠′ |𝑇 (𝑠 ′ | 𝑠, 𝑎) (3)

where Δ𝑠′ represents the last obtained TD error for state 𝑠 ′. Each
priority represents a backward step in the chain of causality: if the
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Figure 2: The structure of the DDN allows to approximate
the priority function𝜓 with a set of𝜓𝑖 , one for each 𝑆 ′𝑖 node.
The domain of each𝜓𝑖 corresponds to the parents of the cor-
responding 𝑆 ′

𝑖
node.

value for 𝑠 ′ has changed, then all state-action pairs that can lead
to 𝑠 ′ likely need to be updated as well. PS stores the priorities in
a priority queue, from which it extracts the state-action pairs that
maximize𝜓 as the most likely to lead to improvements in the value
function.

We could naively apply this approach in MMDP settings, by
working directly with joint state-action pairs:

𝜓 (s, a) = |Δs′ |𝑇 (s′ | s, a) (4)

However, since the number of joint state and actions in an MMDP
increases exponentially with the number of agents, maintaining
such a list is generally infeasible.

Our insight is that we can exploit the DDN structure of the
MMDP to factorize the priorities into an approximate but much
more compact representation. Instead of computing a priority for
each joint state-action pair, we can do it for each local parent set in
the DDN, such that:

𝜓 (s, a) = |Δs′ |𝑇 (s′ | s, a) (5)

=
∑
𝑖

|Δ𝑖 |
∏
𝑖

𝑇𝑖 (𝑠 ′𝑖 | s
i , a i ) (6)

≈
∑
𝑖

|Δ𝑖 |𝑇𝑖 (𝑠 ′𝑖 | s
i , a i ) (7)

=
∑
𝑖

𝜓𝑖 (s i , a i ) (8)

where Δ𝑖 = Δ𝑠′
𝑖
represents the TD error attributed to the 𝑖-th com-

ponent of the joint state. We leverage the underlying assumption
of sparse interactions of an MMDP so that each 𝜓𝑖 can be repre-
sented explicitly, as its domain is relatively small. Note that this
factorization is similar to the one we perform on the Q-function in
Section 3.3.

A simple example of the factorization of𝜓 can be seen in Figure
2. For each 𝑆 ′

𝑖
node, we construct a𝜓𝑖 function with domain equal

to the parent nodes of 𝑆 ′
𝑖
, i.e. the nodes in ⟨S,A⟩ that directly point

to 𝑆 ′
𝑖
. Note how each 𝜓𝑖 has a domain smaller than the full joint

state-action spaces. In this way, the space complexity required to
represent the priorities is limited by the density of the underly-
ing DDN, allowing us to easily scale to large environments, with
possibly hundreds of agents.
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Figure 3: An example of the maximization of the full pri-
ority function from Figure 2. At each update, depending on
the current priorities stored in each𝜓𝑖 , we want to select the
joint state-action pair that maximizes their sum. Note how
the selected entries must be compatible, meaning their argu-
ments for the same variables must match.

3.3 Learning Priorities
In Equation 7, we can learn each𝑇𝑖 by maintaining estimates of the
proportion that a state 𝑠 ′

𝑖
is reached after performing a local joint

action a i in a local joint state s i [1]:

𝑇𝑖 (𝑠 ′𝑖 | s
i , a i ) =

𝑁s i ,a i ,𝑠′
𝑖
+ 𝑁 0

s i ,a i ,𝑠′
𝑖∑

𝑠′′
𝑖
∈𝑆𝑖 𝑁s i ,a i ,𝑠′′

𝑖
+ 𝑁 0

s i ,a i ,𝑠′′
𝑖

(9)

where the 𝑁s i ,a i ,𝑠′
𝑖
are the counts for the observed transitions, and

the 𝑁 0
s i ,a i ,𝑠′′

𝑖

are the priors on the model before interaction begins.
This is the maximum likelihood estimate of the transition model
with Laplace smoothing, or equivalently the maximum-a-posteriori
estimate under a Dirichlet prior.

The local TD errors in Equation 7 need to be computed after each
update to the value function to provide up-to-date estimates of the
priorities. Unfortunately, as each Δ𝑖 refers to a specific state feature,
it can be challenging to assign TD errors to each component exactly.
However, we can obtain fairly good approximations by leveraging
factored value functions [4, 9, 10, 15, 25]. Factored value functions
have been empirically shown to perform well in multi-agent en-
vironments, as they significantly simplify the representation of
large-dimensional value functions without significant losses. We
approximate the Q-function as the sum of lower-dimensional com-
ponents:

𝑄 (s, a) =
∑
𝑥

𝑄𝑥 (s x , a x ) (10)

where each 𝑥 ⊂ {𝑖 | 𝑖 ∈ S} is a subset of indices of the state variables,
selected in advance by the user. We call these basis domains. Note
that basis domains can overlap, and their selection affects the ability
of the Q-function to represent correlations between state variables.

Given the factorization in Equation 10, each update of the value
function naturally induces a set of TD errors Δ𝑥 , i.e. changes in
values for each Q-function component 𝑄𝑥 . We can transform these
into a set of component-wise TD errors Δ𝑖 by simple redistribution:

Δ𝑖 =
∑
𝑥

𝐼 (𝑆𝑖 ∈ S x ) Δ𝑥|S x | (11)
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Using Equations 9 and 11 we can finally compute priorities for
each parent set, i.e.𝜓𝑖 (s i , a i ). Since our goal is to determine where
to update the value function as to maximize our sample-efficiency,
we must construct a structure that, much like a priority queue, can
determine the joint state-action pair that maximizes𝜓 . Note that
as we have assigned priorities to partial state-action pairs, we need
to select a set of parents that are compatible, i.e. where their values
match. Figure 3 shows an example of this selection process across
a set of already computed priorities. We can see that each𝜓𝑖 is not
maximized independently, as we need to select a single joint state-
action pair that maximizes their sum𝜓 . Unfortunately, performing
this maximization exactly is equivalent to the maximum-weight
independent set problem (MWIS), which is NP-hard in the general
case [6, 13].

Note that while the joint state-action pair that maximizes the
overall priority is the best place to update the value function, any
pair with a priority greater than zero still improves on random
selection — given our current information. Therefore, we can settle
for a lower priority pair and use heuristics to avoid the NP-hard
selection. We (randomly) traverse all𝜓𝑖 , greedily extracting from
each the highest valued state-action pair that is compatible with all
previously selected entries, using data structures similar to radix
trees to efficiently guide the search. If, at the end of this procedure,
some elements of the joint state-action pair have not been assigned,
we uniformly sample their values from their respective domains.

These techniques allow to efficiently prioritize updates even in
extremely large state-action spaces, and can remarkably select joint
state-action pairs which have never been seen by the agents before,
but that are likely to lead to improvements across multiple joint
states. This allows us to significantly improve sample-efficiency at
a moderate computational cost.

3.4 Model-based Reinforcement Learning
In order to demonstrate the advantages of prioritized updates in
multi-agent settings, we integrate them into a fully functional
model-based algorithm, completing our main contribution: the CPS
algorithm.

Wemaintain a discrete factored Q-function as shown in Equation
10, which is updated after every interaction with the environment
using an experience tuple ⟨s, a, s′, r⟩.

In previous work, single-agent PS updates the Q-function using
either full or small backups of the value function [12, 35, 38], i.e. one-
step planning using the learnedmodel. Unfortunately, this approach
is extremely computationally expensive when using factored value
functions, as each backup requires solving a full linear program [9].

Instead, we update the Q-function directly using real and syn-
thetic experience, with the latter being sampled from the learned
model. Our update step takes inspiration from the work proposed
by Sparse Cooperative Q-learning, a Q-learning variant for multi-
agent environments [15].

We can show how to derive our update rule from single-agent
Q-learning:

𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼
(
𝑟 + 𝛾𝑄 (𝑠 ′, 𝑎′★) −𝑄 (𝑠, 𝑎)

)
(12)

where 𝛼 is the learning rate parameter.

Algorithm 1: Cooperative Prioritized Sweeping

1: while True do
2: a← Select action for state s following policy 𝜋
3: ⟨s′, r⟩ ← Execute action a in state s
4: Update 𝑇, 𝑅 using ⟨s, a, s′, r⟩ (see Eq. 9)
5: a′★← argmaxa′★ 𝑄 (s′, a′★) using VE
6: Δ𝑥 ← Compute using ⟨s, a, s′, a′★⟩ (see Eq. 14)
7: 𝑄 (s, a) ← Update using Δ𝑥 (see Eq. 15)
8: for each state feature 𝑖 do
9: Δ𝑖 ← Compute from Δ𝑥 (see Eq. 11)
10: for each pair ⟨¤s i , ¤a i ⟩ do
11: 𝜓𝑖 (¤s i , ¤a i ) ← 𝜓𝑖 (¤s i , ¤a i ) + |Δ𝑖 |𝑇 (𝑠 ′𝑖 = 𝑠𝑖 | ¤s

i , ¤a i )
(see Eq. 7)

12: end for
13: end for
14: for each batch update do
15: ⟨¤s, ¤a⟩ ← argmax¤s,¤a𝜓 (¤s, ¤a) (approximate)
16: for each pair ⟨¤s i , ¤a i ⟩ do
17: 𝜓𝑖 (¤s i , ¤a i ) ← 0
18: end for
19: ⟨¤s′, ¤r⟩ ← Sample from 𝑇, 𝑅 using ¤s i and ¤a i

20: Perform steps 5 to 13 using ⟨¤s, ¤a, ¤s′, ¤r⟩
21: end for
22: end while

In our setting, we need to adjust Equation 12 to update each
𝑄𝑥 component individually, while preserving the credit assign-
ment information carried by the reward vector r regarding which
state component produced which reward. Thus, we first decompose
Equation 12 per state component, for each computing a target that
takes into account only its associated Q factors:

𝛿𝑖 = 𝑟𝑖 +
∑
𝑥

𝐼 (𝑆𝑖 ∈ S x )𝛾𝑄𝑥 (s
′ x , a′★ x ) −𝑄𝑥 (s x , a x )

|S x | (13)

where 𝐼 is the indicator function, which we use to select only the Q
factors with domain over 𝑆𝑖 . Computing a′★ requires maximizing
the whole factored Q-function, which can be done efficiently using
variable elimination (VE) [9].

From these 𝛿𝑖 we can compute the individual TD errors for each
Q-function factor by simple redistribution:

Δ𝑥 = 𝛼

(∑
𝑖

𝐼 (𝑆𝑖 ∈ S x ) 𝛿𝑖

|{𝑥 : 𝑖 ∈ 𝑥}|

)
(14)

We can finally update the Q-function, one factor at a time:

𝑄𝑥 (s x , a x ) = 𝑄𝑥 (s x , a x ) + Δ𝑥 (15)

CPS then recomputes the priorities using the new TD errors, as
shown in Section 3.3.

Using Q-learning-like updates allows us to efficiently perform
batch updates by sampling new experience data from the learned
model, rather than performing full backups of the value function.
We use the queue to select a joint state-action pair, and sample
a next state and reward with the learned 𝑇 and 𝑅 functions. The
priorities of the selected parents are set to zero, to mark that their
values have been successfuly updated. Note that 𝑅 can be learned
using maximum-likelihood estimates similar to how 𝑇 is learned
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𝐴1 𝐴2 𝐴3
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Figure 4: In the SysAdmin ring setting, each machine is di-
rectly connected to its two adjacent neighbors to form a ring,
while each agent directly controls the actions of each ma-
chine (a). In the modified shared control setting, the connec-
tions between the machines are left unchanged. However,
each agent is associated not with a machine but with a con-
nection. The operations each machine performs depend on
the joint action of the two adjacent agents (b).

in Equation 9. A pseudocode description of the full algorithm is
shown in Algorithm 1.

4 EMPIRICAL RESULTS
We evaluate the empirical performance of CPS against 4 bench-
marks: a random policy as a naive approach, the factored LP plan-
ning algorithm on the ground truth MMDP model as the upper
bound [9], Sparse Cooperative Q-learning (SCQL) with and without
randomized experience replay [15], and QMIX [25] as competing al-
gorithms. The algorithms were implemented using the AI-Toolbox
[2] and PYMARL [26] frameworks.

The factored LP planning algorithm is trained in advance, and
we show the performance of the final optimal policy. As its name
implies, this algorithm solves a factored linear program that is
designed to project the true optimal value function to the clos-
est representable factored Q-function. Note that the factored LP
algorithm is provided with the true model of the environment,
and performs planning, which guarantees optimal performance
within the bounds of the approximated Q-function. Therefore, the
LP results should be interpreted as the upper bound of what is
reachable with the given factorization only. Unfortunately, plan-
ning is computationally intensive, and can only be performed on
simple environments with few agents.

QMIX was trained over 300 episodes, with 1000 timesteps per
episode, and we report the best results after hyperparameter opti-
mization. We did not test QMIX on the larger environments, due to
the excessive memory requirements (400 GB and 3600 GB for the
100 and 300 agents settings respectively).

SCQL and CPS use a constant learning rate of 0.3, and an 𝜀-
greedy policy with 𝜀 linearly decreasing from 0.9 to 0. Additionally,
they use optimistic initialization to improve exploration. CPS, SCQL
and the LP approach all use the same Q-function factorization. CPS
has no prior knowledge about the transition and reward functions
at the beginning of each run, i.e. all 𝑁 0 in Equation 9 are equal

𝐴1 𝐴2 𝐴3

𝐴4 𝐴5 𝐴6

Figure 5: A representation of the firefighter setting. Houses
are set in a toroidal grid. Every timestep, each agent goes to
one of its 4 adjacent houses. The risk of fire for each house is
determined by the number of firefighters at that house and
by the average fire level in neighboring houses.

to zero, and performs 50 batch updates per timestep. When using
experience replay, SCQL performs 50 batch updates from randomly
selected previous experiences.

The training results for SCQL and CPS are shown in the line
plots of Figure 6, and report the immediate rewards obtained at each
timestep during a single, uninterrupted episode. The training results
for QMIX are shown in Figure 7 and report average immediate
reward for each training episode. The training results are shown in
separate figures due to the significant time frame differences when
learning, and because for QMIX the environment is reset after each
episode, in contrast to the uninterrupted episode of CPS and SCQL.
The histograms of Figure 6 report the performance of the trained
policies for all algorithms. All results are averaged over 100 runs.

4.1 SysAdmin
The SysAdmin setting simulates a set of interconnected machines
that need to complete abstract jobs [9]. These jobs are obtained
randomly when the machines are idle, and each job has a chance
to complete at each timestep, which awards the associated agent
a single reward point. Additionally, each machine has a chance
to fail, which lowers the chance of completing jobs, or shutdown,
which locks the machine completely. The failure of a machine
also increases the chance of failing of its direct neighbors. Each
machine can perform a binary action: keep working, or reboot,
which recovers from failure and shutdown, but drops the current
job if one is present.

We additionally introduce a modified ring setting with shared
control, where each machine is controlled jointly by agents that are
associatedwith the edges to its neighbors. The actions for the agents
remain the same, i.e. work and reboot, but if the two adjacent agents
send conflicting commands then a reboot is performed randomly.
This setting requires a higher level of coordination than the original
task, as agents must cooperate to control machines effectively.

We test on three different topologies: a ring with 300 agents,
a torus with 100 agents in a 10×10 grid, and the modified shared
control ring setting with 12 machines. A visualization of the two
grid settings is shown in Figure 4. We select each machine’s state
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(d) Random setting with 3 agents.
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(e) Random setting with 15 agents.
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(f) Firefighter setting with 6 agents.

Figure 6: Histograms show average per-timestep reward over 1000 timesteps for all policies, after training. Line plots show
the mean and standard error of per-timestep reward of CPS and SCQL during training, compared against a random policy and
the LP planning upper bound. All data is averaged over 100 runs. Higher is better.

and load pair as the basis domains for the Q-function factorization,
which is equivalent to the single basis proposed in [9].

4.2 Random
We randomly generate MMDPs by connecting each 𝑆 ′

𝑖
with 𝑆𝑖 ,

plus a random number of state and action nodes (maximum 3)
locally close to 𝑖 . For example, 𝑆 ′1 might depend on 𝑆3, but it will
not depend on 𝑆9. All state and action variables have 3 possible
values, i.e. |𝑆𝑖 | = |𝐴𝑘 | = 3, and the number of agents 𝐾 is 3/4 of the
number of state features 𝑁 . The transition function is constructed
using uniformly sampled transition vectors. We generate sparse
reward functions containing random values in {−1, 0, 1} for the
parents of random nodes 𝑆 ′

𝑖
, selected with probability 0.3. We select

𝑥 = {𝑖, 𝑖 + 1} as basis domains for the Q-function.

4.3 Firefighters
We modify the firefighter setting from Dec-POMDP literature [23,
24] by increasing the difficulty of coordination and removing partial
observability. In our setting, houses are set in a toroidal grid, and we
associate a single firefighter to each intersection. At each timestep,
each firefighter agent must decide where it should go, selecting
between one of the 4 buildings adjacent to it. Each house has a fire
level from 0 to 2, which can increase or lower stochastically at every
timestep. This probability depends on how many firefighters have
selected that house and the average fire level of adjacent houses.

At each timestep, each house returns a penalty equal to its negative
fire level, so that higher fires correspond to negative reward.

We have designed and tuned the dynamics of the environment
so that it is impossible to behave optimally without coordination
between agents, as to make learning especially challenging. This
was done by enforcing diminishing returns with respect to the
number of firefighters in a single house, i.e. all firefighters going
to the house with the highest fire level cannot result in optimal
behavior. A visualization of the firefighting problem is shown in
Figure 5. The basis domains in this setting are composed of all pairs
of adjacent houses, to ensure that the Q-function can represent
coordinating policies.

4.4 Discussion
In all performed experiments the sample-efficiency when learning
using prioritized updates was consistently higher than for the other
methods. The complexity of the underlying MMDP, i.e. the density
of the DDN graph, and the amount of coordination required be-
tween the agents strongly affected the number of timesteps needed
for the learning process to stabilize. This is expected in general as
agents require more information to learn more challenging prob-
lems. As an example, learning with a fully-connected DNN, where
all agents directly coordinate together, must always consider the
entire exponential joint action-space, which requires more data.
Conversely, a fully-disconnected DDN is equivalent to independent
agents, which greatly simplifies coordination.
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Figure 7: Best QMIX performance during training in all its
environments, across hyperparameters. Both y-axes report
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Because convergence to the optimal policy is not guaranteed
when learning with approximate factored value functions, it is not
surprising that CPS and SCQL end up on different greedy poli-
cies. In particular, both SCQL and CPS converge to lower quality
policies than the best possible policy planned by the factored LP
upper bound. In the shared control ring setting (Figure 6a), SCQL,
SCQL-ER and CPS achieve 76%, 82% and 88% of the upper bound,
respectively, while in the smaller random setting (Figure 6d), they
achieve 59%, 94% and 96% of the upper bound. These two problems
were the only settings small enough to determine the upper bound
with the LP planning method. However, the policies trained by CPS
consistently outperform the ones trained by SCQL, with larger mar-
gins in the more complex environments. Experience replay does
somewhat improve SCQL’s performance, but the random sampling
is unable to improve learning significantly in the more complex
environments. This suggests that prioritizing updates is not only
speeding up learning, but that the faster learning itself can have a
positive influence on the final policies.

We experimented with different threshold for the linear decay
of the exploration probability 𝜀. Longer exploration phases resulted
in better policies, but not significantly so. The number of batch
updates for CPS significantly affected learning speed, with more
updates resulting in faster convergence times. However, the quality
of the policy would often slightly degrade with more updates per
timestep. This is due to the fact that we update our value function
with data sampled from the training model. Since during the initial
phase of training this model is highly approximate, the resulting
updates can negatively influence the value function in the long run.
Further tests confirmed that this issue can be resolved by generating
new data using a ground truth environment, such as a simulator,
rather than by a learned model.

The firefighter setting, shown in Figure 6f, is interesting as CPS
is the only method that was able to converge to the optimal policy,

where no house is ever on fire. This setting is particularly challeng-
ing as the probability of fires increases as the average fire levels
increase, requiring strong cooperation to extinguish fires when all
houses are burning. QMIX does marginally better than the random
policy, but its failure to improve is likely due to its inherent inabil-
ity to represent non monotonic value functions and its per-agent
Q-function factorization, which hinders cooperation. On the other
hand, SCQL learns a policy which is worse than random selection,
even when left exploring for a significant time. As the firefighter
setting requires consistently good and coordinated actions to avoid
negative reward, it is possible that SCQL is unable to learn fast
enough to discover and retain the optimal policy. If it is left explor-
ing for more, the exploratory actions result in negative rewards
that get diffused in the factored Q-function, preventing the method
from improving.

While less important, we remark that the use of factored value
functions and priorities make CPS computationally and memory
efficient. This turns out to be convenient when scaling to method
to extremely large coordination tasks.

5 RELATEDWORK
It is well-known that prioritizing updates using TD errors can have
a significant impact on performance. Eligibility traces [32, 34, 38]
collect a set of recent experiences, which can be used to propagate
TD errors more quickly through the value function. Alternatively,
all experiences can be stored and later presented again to the agent,
in what is now famously referred to as experience replay [18].
While experience replay is mostly known for randomly replaying
experiences [21], it was originally posited that replaying them
in a specific order would significantly improve the propagation
of information through the value function. Prioritized experience
replay [28] showed this to be true, improving sample-efficiency by
scoring experiences using already computed TD errors.

Model-based algorithms that leverage TD errors have been ex-
plored less, due to their increased complexity. Dyna-Q [33] and
Dyna2 [29] use learned models to perform random backups on
the value function that are used to speed up learning. Prioritized
sweeping [1, 22] introduced the idea of sorting updates by priority
to decrease the computational costs associated with random sam-
pling. Although farther removed, the use of UCT in Monte-Carlo
based methods can be seen as prioritizing state-action pairs based
on trajectories extracted from a generative model [8].

The use of low rank and factored value functions approxima-
tions has seen particular success in the past in discrete settings
[9, 10, 15], and has more recently received increased attention due
to the reduced computational costs and good empirical performance
in deep multi-agent reinforcement learning [5, 11]. VDN [31] can
learn a simple factorization of the Q-function, with a single compo-
nent per agent. QMIX [25] improves upon this by adding a mixing
network that allows to combine each factor in non-linear ways.
More recently, DCG [4] has shown promising results by learning
payoff functions for each pair of agents, leveraging parameter shar-
ing. While CPS and DCG share similarities in their representation
of the value function, our focus with CPS is to maximize sample-
efficiency by improving the exploitation of experience data using
domain knowledge. At the same time, we believe that the ideas in
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CPS could enhance learning in deep methods, which is a topic to
explore in future research.

In this paper, we make use of variable elimination [9] to select
the optimal joint action given w.r.t. an approximate value function.
Such joint action selection can also be done approximately, e.g., via
max-plus [16], AND/OR tree search [20], or variational methods
[19]. We note that this is orthogonal to our contributions and can
be added easily if the complexity of the chosen graphical structure
of the value function requires it.

6 CONCLUSIONS
We have presented a new model-based algorithm, cooperative pri-
oritized sweeping. CPS exploits domain knowledge in the form of
a DDN, improving sample-efficiency in large-scale multi-agent RL
tasks by detecting the best joint state-action pairs where to update
the value function. CPS exploits the structure of a coordination
graph in an MMDP to efficiently compute and store priorities for
partial state-action pairs, and uses heuristics to quickly select the
best update candidates.

We have demonstrated the effectiveness of these prioritized up-
dates in an RL setting by using a learnedmodel to generate new data
to update the value function, and comparing CPS’s performance
to current state-of-the-art algorithms in several settings. CPS is
computationally efficient and can be scaled to environments with
hundreds of agents.

While in our experiments CPS samples new data from a learned
model, we note that the same mechanism can be used to score
existing experience data for experience replay, performing a similar
job as prioritized experience replay [28] but in a more general way.

In future work we aim to extend the techniques presented here
to multi-agent continuous state-spaces, to allow for easier com-
parisons between CPS and deep learning methods. Additionally,
we believe that the input coordination graph does not need to cor-
respond exactly to the true structure of a problem for CPS to be
effective, as long as the data used for the updates is generated from
a ground truth source (for example, from a simulator). This would
allow the application of the model-based CPS even in real-world
complex environments that cannot be modeled exactly. We plan
to perform experiments in this direction to further validate this
approach.
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