
HOAD: The Hanabi Open Agent Dataset
Extended Abstract

Aron Sarmasi, Timothy Zhang, Chu-Hung Cheng, Huyen Pham, Xuanchen Zhou, Duong Nguyen,
Soumil Shekdar, Joshua McCoy

University of California, Davis
{asarmasi,mtzh,chccheng,hdupham,xuczhou,mdnnguyen,sshekdar,jamccoy}@ucdavis.edu

ABSTRACT
In this work we present the Hanabi Open Agent Dataset (HOAD)—
meant to address the current lack of Hanabi datasets, HOAD is an
easily extensible, open-sourced, and comprehensive collection of
existing Hanabi playing agents, all ported to the Hanabi Learning
Environment (HLE). We give a description and analysis of each
agent’s strategy, and we also show cross-play performance between
all the agents, demonstrating both their high quality and diversity
of strategy. These properties make HOAD especially well suited
to studies involving meta-learning and transfer learning. Finally,
we describe in detail an easy way to add new agents to HOAD
regardless of the origin codebase of the agent and make our code
and dataset publicly available at https://github.com/aronsar/hoad.

KEYWORDS
Hanabi; dataset
ACM Reference Format:
Aron Sarmasi, Timothy Zhang, Chu-Hung Cheng, Huyen Pham, Xuanchen
Zhou, Duong Nguyen, Soumil Shekdar, Joshua McCoy. 2021. HOAD: The
Hanabi Open Agent Dataset: Extended Abstract. In Proc. of the 20th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2021), Online, May 3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
Hanabi [2] is a tabletop card game for 2-5 players1, notable for its
unique combination of partial observability, cooperation, stochastic-
ity, and implicit communication. Recently proposed as a challenge
domain [1] to provide a sophisticated yet well-defined set of chal-
lenges for artificial intelligence practitioners, the game is of rising
interest to the research community.

In a game of Hanabi, the players work together to assemble five
piles of cards, where each pile is a different color, and consists of
cards numbered 1 through 5, in that order. The defining feature of
the game is that players only see their teammates’ cards, and not
their own. On their turn, a player may either give a teammate a hint
about the color or value of their cards (a limited resource), discard
a card (doing so regains a hint, but there are a limited number of
copies of each card), or play a card they believe is playable. See [8]
for the complete rules. To be successful, a group of players must
correctly interpret each others’ explicit communication—through
hints—as well as each others’ implicit communication—through
1in this work we consider only the two-player scenario for simplicity, leaving 3-5
players to future work

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

Table 1: We recorded 500,000 games of each original agent
into the HLE representation, and then used them to learn
multilayer perceptron (MLP) imitators of each agent.

Agent Original Self
Play Score

Imitator Self
Play Score

Imitator Ac-
curacy

Simplebot 16.9 16.8 99.7
Valuebot 19.8 18.0 92.0
Holmesbot 20.8 14.7 90.3
Outer 14.5 14.1 66.7
Iggi 17.0 16.2 90.9
Piers 17.3 15.9 85.8
Rainbow 18.5 18.1 77.5
Van-Den-Bergh 14.0 10.5 81.2

playing cards, discarding, or even hinting (e.g. the finesse play [11]).
This results in a multiplicity of optimal and near-optimal strategies,
each corresponding to a communication schema.

This aspect of the game is one of the most interesting from a
research perspective. Indeed, it recently inspired the Ad-Hoc Chal-
lenge, [1], the crux of which is to figure out the communication
strategy of a held-out agent given only ten of its games, and then
successfully play games with it. However, to the best of our knowl-
edge, there does not exist a dataset of Hanabi playing agents that
can facilitate this kind of research. We thus propose the Hanabi
Open Agent Dataset (HOAD), a compilation of different agents
from different sources, most using conventions typically seen in
human play, and all operating within the same environment and
using a binarized game state representation specifically designed
for neural learning. The dataset allows pairwise play between any
two agents, offers an easy way to add additional agents from most
codebases, and also gives access to the Dopamine reinforcement
learning framework [4], which we plan to use in future work to
further improve and extend the HOAD agents.

2 THE HANABI OPEN AGENT DATASET
To create HOAD, we conducted a comprehensive review of existing
implementations of agents that play Hanabi and ported those that
met our criteria. We looked specifically for agents that had code-
bases available online, scored reasonably well in self-play (above
10 points), and employed strategies sufficiently different from one
another, such that when two different agents played one another
they performed significantly worse than either did in self-play. As
a result, the variation of strategy among the agents is ensured. This
disqualified a number of derivate works that were slight modifica-
tions on existing agents, as well as the Actor Critic Hanabi Agent

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1646



(ACHA) [6], which does not have a public codebase, and the agents
proposed by [3], which released their codebase concurrently to this
work. The FireFlower [10] and BAD [5] agents were also considered,
but were not included due to technical difficulties; we plan to add
them in future work.

Although some authors of Hanabi playing agents have published
multiple agents using the same framework, in general, two arbitrary
agents taken from different codebases will not be able to play one
another because of differences in implementation in how the agents
represent the game state. One naive way to enable agents from
multiple different codebases to play one another is to rewrite the
game logic of every agent using the same environment and game
state representation. This however is prohibitively time-consuming,
as some agents are comprised of several thousand lines of game
logic. Another method would be to observe the game states of each
agent in its native representation and save all the game states to
some common representation. In our experience, this was as difficult
as the first approach due to the variation in implementation among
authors and the size and complexity of the game state (there are
658 binary variables in the game state representation of a 2-player
game).

The workaround that made HOAD possible (and which is re-
sponsible for its ease of extensibility) is to observe the starting deck
order and the actions taken by agents in their native environments.
These observations are then used to recreate the games in the Han-
abi Learning Environment (HLE). Observing the starting deck order
and the actions taken is a much simpler task because the set of legal
actions is small (≤ 20 in a 2-player game), and the ordering of the
deck is typically known by the respective game engine at the start
of the game. Once replay data has been gathered for all the agents
in the HLE representation, it is possible to train a neural network to
imitate each of the original agents. The accuracy of these imitators
is presented in Table 1.

2.1 HOAD Agent Strategy Summaries
We present a summary of each agent in HOAD below, including
only necessary detail. A compilation of commonly employed strate-
gies, used both by human players and HOAD agents, can be found
at [11].
Simplebot [7] – Plays only cards which it has enough knowledge
about to know they are playable, and gives hints only about playable
cards, preferring color hints over value hints. It uses an oldest first
discarding strategy.
Valuebot [7] – Same as Simplebot, but before playing, checks to
see if the next player is about to discard a valuable card (i.e. the last
copy of a card).
Holmesbot [7] – Extends Valuebot by including the use of mulli-
gans and by adding additional inference capabilities. Specifically,
card knowledge from hints, the discard pile, and other players’
hands are used to make deductions about the agent’s hand.
Iggi [9] – Similar logic to Simplebot but prefers value hints over
color hints and prefers discarding unplayable cards over oldest first.
Outer [9] – Similar to Iggi, but prefers discarding over hinting, and
uses more randomness in its hinting and discarding logic; this re-
sults in significantly reduced imitation accuracy and is also likely
the reason for lower published score.

Table 2: Pairwise play scores are produced by playing each
MLP imitator agent with every other for 500 games.

First player Si
m
pl
eb
ot

Va
lu
eb
ot

H
ol
m
es
bo

t

O
ut
er

Ig
gi

Pi
er
s

Ra
in
bo

w

Va
n-
D
en
-B
er
gh

Simplebot 16.8 15.7 12.8 0.0 4.1 1.1 1.7 0.2
Valuebot 15.2 18.0 17.6 0.0 3.8 1.3 2.0 0.0
Holmesbot 11.2 18.3 14.7 0.0 1.4 0.6 0.5 0.0
Outer 0.0 0.0 0.0 14.1 1.0 4.1 6.2 9.0
Iggi 3.9 3.8 1.8 1.8 16.2 11.8 2.7 6.0
Piers 1.8 0.5 0.2 7.2 10.3 15.9 5.5 9.4
Rainbow 0.3 2.0 0.3 6.6 4.0 5.6 18.1 2.6
Van-Den-Bergh 0.0 0.2 0.0 10.6 4.7 8.3 2.7 10.5

Piers [9] – Extends Iggi by including the use of mulligans (but not
as deterministically as Holmesbot), and some additional logic to
avoid discarding valuable cards.
Van-der-bergh [9] – Makes some risky plays if they have high
likelihood of success and there are remaining mulligans. Prioritizes
discarding over hints, gives hints about useless cards, and attempts
to maximize transmitted information.
Rainbow [1] – This agent tends to hint for rank instead of color.
Conditional action probabilitiesmay be found in the appendix of [1].

2.2 Discussion of Imitator Agent Pairwise
Scores

Since the same observation can be passed in to any of the imitator
agents, the imitator agents make it possible to play games with
agents originating from two different codebases; this is necessary
to evaluate how different the players are from each other. Table 2
shows the average score of each imitator agent playing 500 games
with every other imitator agent. As expected, when an agent is
paired with itself, it typically achieves a much higher score than if
it were paired with any other agent—this corresponds to the high
scores on the diagonals and the relatively low scores on the off-
diagonals. This confirms the intuition that agents must use a similar
strategywhen paired with one another, else riskmiscommunicating,
losing all three lives, and scoring zero points.

An interesting feature of Table 2 warranting discussion is the
high scores achieved by certain combinations of agents. Two groups
of agents that play relatively successfully with each other are Sim-
plebot – Valuebot – Holmesbot, and Iggi – Piers – Outer – Van-
der-bergh – Rainbow. All the agents in each of these two groups
belong to the same codebase, so the high scores are likely due to the
authors of the two codebases reusing logic between their agents.
The exception to this is the Rainbow agent, which was produced
using reinforcement learning, and so it is surprising that it performs
so well with Walton-Rivers’ agents. Our best explanation is that
both agents reportedly prefer value hints and can presumably also
respond well to game states where value hints have been given.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1647



REFERENCES
[1] Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Fran-

cis Song, Emilio Parisotto, Vincent Dumoulin, SubhodeepMoitra, EdwardHughes,
Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc G. Bellemare, and Michael
Bowling. 2019. The Hanabi Challenge: A New Frontier for AI Research. Technical
Report. arXiv:1902.00506 http://arxiv.org/abs/1902.00506

[2] Antoine Bauza. 2010. Hanabi. https://www.boardgamegeek.com/boardgame/
98778/hanabi

[3] Rodrigo Canaan, Julian Togelius, Andy Nealen, and Stefan Menzel. 2019. Diverse
Agents for Ad-Hoc Cooperation in Hanabi. Institute of Electrical and Electronics
Engineers (IEEE), 1–8. https://doi.org/10.1109/cig.2019.8847944 arXiv:1907.03840

[4] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, Marc G
Bellemare, and Google Brain. 2018. Dopamine: A Research Framework For Deep
Reinforcement Learning. In unpublished. arXiv:1812.06110v1 https://github.com/
google/dopamine

[5] Jakob N Foerster, H Francis Song, Edward Hughes, Neil Burch, Iain Dunning,
Shimon Whiteson, Matthew M Botvinick, and Michael Bowling. 2019. Bayesian

Action Decoder for Deep Multi-Agent Reinforcement Learning. In Conference on
Machine Learning. arXiv:1811.01458v3

[6] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,
Tim Harley, Timothy P Lillicrap, David Silver, and Koray Kavukcuoglu. 2016.
Asynchronous Methods for Deep Reinforcement Learning. JMLR 48 (2016).
arXiv:1602.01783v2

[7] Arthur O’Dwyer. 2018. Github - quuxplusone/hanabi: Framework for writing
bots that play Hanabi. https://github.com/Quuxplusone/Hanabi

[8] Aron Sarmasi, Timothy Zhang, Chu-Hung Cheng, Huyen Pham, Xuanchen Zhou,
Duong Nguyen, and Soumil Shekdar. 2020. Hanabi Open Agent Dataset. https:
//github.com/aronsar/hoad

[9] Joseph Walton-Rivers, Piers R. Williams, Richard Bartle, Diego Perez-Liebana,
and Simon M. Lucas. 2017. Evaluating and Modelling Hanabi-Playing Agents. In
CEC. 1382 – 1389.

[10] D Wu. [n.d.]. GitHub - lightvector/fireflower: A rewrite of hanabi-bot in Scala.
https://github.com/lightvector/fireflower

[11] James Zamiell. [n.d.]. GitHub - Zamiell/hanabi-conventions: A list of Hanabi
strategies. https://github.com/Zamiell/hanabi-conventions

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1648

https://arxiv.org/abs/1902.00506
http://arxiv.org/abs/1902.00506
https://www.boardgamegeek.com/boardgame/98778/hanabi
https://www.boardgamegeek.com/boardgame/98778/hanabi
https://doi.org/10.1109/cig.2019.8847944
https://arxiv.org/abs/1907.03840
https://arxiv.org/abs/1812.06110v1
https://github.com/google/dopamine
https://github.com/google/dopamine
https://arxiv.org/abs/1811.01458v3
https://arxiv.org/abs/1602.01783v2
https://github.com/Quuxplusone/Hanabi
https://github.com/aronsar/hoad
https://github.com/aronsar/hoad
https://github.com/lightvector/fireflower
https://github.com/Zamiell/hanabi-conventions

	Abstract
	1 Introduction
	2 The Hanabi Open Agent Dataset
	2.1 HOAD Agent Strategy Summaries
	2.2 Discussion of Imitator Agent Pairwise Scores

	References



