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ABSTRACT
Search has played a fundamental role in computer game research

since the very beginning. And while online search has been com-

monly used in perfect information games such as Chess and Go,

online search methods for imperfect information games have only

been introduced relatively recently. This paper addresses the ques-

tion of what is a sound online algorithm in an imperfect information

setting of two-player zero-sum games? We argue that the fixed-

strategy definitions of exploitability and epsilon-Nash equilibria

are ill suited to measure the worst-case performance of an online

algorithm. We thus formalize epsilon-soundness, a concept that

connects the worst-case performance of an online algorithm to

the performance of an epsilon-Nash equilibrium. Our definition

of soundness and the consistency hierarchy finally provide appro-

priate tools to analyze online algorithms in repeated imperfect

information games. We thus inspect some of the previous online

algorithms in a new light, bringing new insights into their worst

case performance guarantees.
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1 INTRODUCTION
Online methods for approximating Nash equilibria in sequential

imperfect information games appeared only in the last few years [2–

4, 7, 8]. We thus investigate what it takes for an online algorithm

to be sound in imperfect information settings. While it has been

known that search with imperfect information is more challenging

than with perfect information [5, 7], the problem is maybe more

complex than previously thought. Online algorithms “live” in a

fundamentally different setting, and they need to be evaluated

appropriately.
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We introduce a framework for evaluating the performance of an

online algorithm. Within this framework, we introduce the defini-

tion of a sound and 𝜖-sound algorithm. Like the exploitability of a

strategy in the offline setting, the soundness of an algorithm is a

measure of if its performance against a worst case adversary. Impor-

tantly, this notion collapses to the previous notion of exploitability

when the algorithm follows a fixed strategy profile.

We then introduce a consistency framework, a hierarchy that

allows us to formally state in what sense an online algorithm plays

“consistently” with an 𝜖-equilibrium. This allows to state multi-

ple bounds on the soundness of the algorithm, based on the 𝜖-

equilibrium and the type of consistency. The stronger the consis-

tency in our hierarchy, the stronger the bounds.

A complete version of this paper can be found on arXiv [9].

2 MOTIVATIONAL EXAMPLE
Consider a simple online algorithm for (r)ock (p)aper (s)cissors

game that simply produces the sequence (𝑟, 𝑝, 𝑠, 𝑟, 𝑝, 𝑠, . . .). While

this algorithm is clearly highly exploitable, the worst-case perfor-

mance of this algorithm can only be properly analysed through the

repeated game settings as no offline policy captures the dynamics

of this algorithm.

3 BACKGROUND
We present our results using the recent formalism of factored-

observations games [6], where factored-observations game is a

tuple G = ⟨N ,W,𝑤𝑜 ,A,T ,R,O⟩

3.1 Online Settings
The repeated game 𝑝 consists of a finite sequence of 𝑘 individual

matches𝑚 = (𝑧1, 𝑧2, . . . , 𝑧𝑘 ), where each match 𝑧𝑖 ∈ Z is a se-

quence of world states and actions 𝑧𝑖 = (𝑤0

𝑖
, 𝑎0

𝑖
, 𝑤1

𝑖
, 𝑎1

𝑖
. . . , 𝑎

𝑙𝑖−1
𝑖

,

𝑤
𝑙𝑖
𝑖
). An online algorithm Ω then simply maps an information state

observed during a match to a strategy, while possibly using its

internal algorithm state (Def. 1).

Given two players Ω1,Ω2, we use 𝑃
𝑘
Ω1,Ω2

to denote the distri-

bution over all the possible repeated games𝑚 of length 𝑘 when

these two players face each other. The average reward of 𝑚 is

R𝑛 (𝑚) = 1/𝑘∑𝑘
𝑖=1 𝑢𝑛 (𝑧𝑖 ) and we denote E

𝑚∼𝑃𝑘
Ω
1
,Ω
2

[R𝑛 (𝑚)] to be

the expected average reward when the players play 𝑘 matches.
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Definition 1. Online algorithmΩ is a functionS𝑛×Θ ↦→ Δ(A𝑛 (𝑠𝑛))×
Θ, that maps an information state 𝑠𝑛 ∈ S𝑛 to the strategy 𝜎𝑛 (𝑠𝑛) ∈
Δ(A𝑛 (𝑠𝑛)), while possibly making use of algorithm’s state 𝜽 ∈ Θ
and updating it.

4 SOUNDNESS OF ONLINE ALGORITHM
Exploitability / 𝜖-equilibrium considers the expected utility of a

fixed strategy against a worst-case adversary in a single match. We

thus define a similar concept for the settings of an online algorithm

in a repeated game: (𝑘, 𝜖)-soundness. Intuitively, an online algo-

rithm is (𝑘, 𝜖)-sound if and only if it is guaranteed the same reward

as if it followed a fixed 𝜖-equilibrium after 𝑘 matches.

Definition 2. For an (𝑘, 𝜖)-sound online algorithm Ω, the expected
average reward against any opponent is at least as good as if it fol-
lowed an 𝜖-Nash equilibrium fixed strategy 𝜎 for any number of
matches 𝑘 ′:

∀𝑘 ′ ≥ 𝑘 ∀Ω2 : E
𝑚∼𝑃𝑘′

Ω,Ω
2

[R(𝑚)] ≥ E
𝑚∼𝑃𝑘′

𝜎,Ω
2

[R(𝑚)] . (1)

If algorithm Ω is (𝑘, 𝜖)-sound for ∀𝑘 ≥ 1, we say the algorithm is
𝜖-sound.

5 CONSISTENCY HIERARCHY
As the (𝑘, 𝜖)-soundness can often be infeasible to compute, we

introduce the concept of consistency. This allows to formalize that

an algorithm plays “consistently” with an 𝜖-equilibrium, directly

bounding the (𝑘, 𝜖)-soundness.

5.1 Local Consistency
Local consistency simply guarantees that every time we query the

online algorithm, there is an 𝜖-equilibrium that has the same local

behavioral strategy 𝜎 (𝑠) for the queried state 𝑠 .

Definition 3. Algorithm Ω is locally consistent with 𝜖-equilibria if

∀𝑘 ∀𝑚 = (𝑧1, 𝑧2, . . . , 𝑧𝑘 ) ∀ℎ ∈ H (𝑧𝑘 ) ∃𝜎 ∈ NE𝜖
𝑛

holds that Ω (𝑧1, ..., 𝑧𝑘−1) (𝑠 (ℎ)) = 𝜎 (𝑠 (ℎ)) .

We then show that this link has different implication for perfect

and imperfect information games.

Theorem 4. An algorithm that is locally consistent with 𝜖-equilibria
might not be (𝑘, 𝜖)-sound.

Theorem 5. In perfect information games, an algorithm that is
locally consistent with a subgame perfect equilibrium is sound.

A particularly interesting example of an algorithm that is only

locally consistent is Online Outcome Sampling [7] (OOS). In the

full paper version [9] we show that although this algorithm was

previously considered to be sound, it can produce highly exploitable

strategies in imperfect information games.

5.2 Global Consistency
Local consistency guaranteed consistency only for individual states.

Global consistency is a stronger criterion that guarantees consis-

tency with some equilibria for all the states in combination.

Definition 6. Algorithm Ω is globally consistent with 𝜖-equilibria if

∀𝑘 ∀𝑚 = (𝑧1, 𝑧2, . . . , 𝑧𝑘 ) ∃𝜎 ∈ NE𝜖
𝑛 ∀ℎ ∈ H (𝑧𝑖 )

holds that Ω (𝑧1, ..., 𝑧𝑖−1) (𝑠 (ℎ)) = 𝜎 (𝑠 (ℎ)) for ∀𝑖 ∈ {1, . . . , 𝑘}.

However:

Theorem 7. An algorithm that is globally consistent with 𝜖-equilibria
might not be 𝜖-sound.

But what if the algorithm keeps on playing the repeated game?

While the global consistency with equilibria does not guarantee

soundness, it guarantees that the expected average reward con-

verges to the game value in the limit.

Theorem 8. For an algorithm Ω that is globally consistent with
𝜖-equilibria,

∀𝑘 ∀Ω2 : E
𝑚∼𝑃𝑘

Ω,Ω
2

[R(𝑚)] ≥ 𝑢∗ − 𝜖 −
��S1

��Δ
𝑘

. (2)

Corollary 9. An algorithm Ω that is globally consistent with 𝜖-
equilibria is (𝑘, 𝜖)-sound as 𝑘 → ∞.

5.3 Strong Global Consistency
Strong global consistency additionally guarantees that the game-

play itself is generated consistently with an equilibrium; and as

in global consistency, the partial strategies for this game-play also

correspond to an 𝜖-equilibrium. In otherwords, the online algorithm

simply exactly follows a predefined equilibrium.

Definition 10. Online algorithm Ω is strongly globally consistent
with 𝜖-equilibrium if

∃𝜎 ∈ NE𝜖
𝑛 ∀𝑘 ∀𝑚 = (𝑧1, 𝑧2, . . . , 𝑧𝑘 ) ∀ℎ ∈ H (𝑧𝑘 )

holds that Ω (𝑧1, ..., 𝑧𝑘−1) (𝑠 (ℎ)) = 𝜎 (𝑠 (ℎ)) .

Theorem 11. Online algorithm Ω that is strongly globally consis-
tent with 𝜖-equilibrium is 𝜖-sound.

Canonical examples of strongly globally consistent online algo-

rithms are DeepStack/Libratus. In general, an algorithm that uses a

notion of safe (continual) resolving is strongly globally consistent

as it essentially re-solves some 𝜖-equilibrium (albeit an unknown

one) that it follows. Another, more recent example is ReBeL [1],

as it essentially imitates CFR-D iterations in conjunction with a

neural network at a test time.

6 REGRET AND (𝑘, 𝜖)-SOUNDNESS
Finally, the introduced notion of soundness has tight connection to

the popular concept of regret when a regret minimizer is used as

the online algorithm.

Corollary 12. Any regret minimizer with a regret bound of 𝑅𝑘
is (𝑘, 𝑅𝑘

2𝑘
)-sound.
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