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ABSTRACT
We study the problem of learning helpful behavior, specifically,
learning to cooperate with differently-skilled and diverse partners
in the context of two-player, cooperative Atari games. We show
robust performance of these so-called Helper-AIs when paired with
different kinds of partners (both human and artificial agents), in-
cluding partners that they have not previously encountered during
training. In particular, while pairing an expert AI with a non-expert
AI leads to performance that is worse than when pairing the non-
expert AI with a copy of itself, these Helper-AIs provide a substan-
tial boost in joint performance.
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1 INTRODUCTION
We advance the study of cooperative behavior through applied
research in the domain of two-player Atari games. There is already
a rich tradition of using Atari to drive advances in AI [10, 11]. Atari
games are designed to be fun for people to play, challenging enough
to test AI methods, and have been well-studied in single-player
settings (e.g., [17]). While Atari games can support multi-player
modes (e.g., [16]), to the best of our knowledge, there have only been
a few works that use Atari as a test-bed for studying cooperative
behavior [8, 15]. These papers mainly focus on emergent behavior
and social dilemmas in AI-AI interaction in Pong.

In our research, we are studying AI-AI and AI-human cooper-
ation in the context of two-player Atari games that have richer
game dynamics than Pong. In this extended abstract, we present
results for two-player Space Invaders, modified here to make it a
cooperative environment. In particular, we configure the game so
that players maximize the joint score and to remove the bonus for
loss of life of the other player.

Our main interest is to understand whether reinforcement learn-
ing can be used to achieve helpful behavior— where one agent is
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trained to follow a policy that will help a second, partner agent. We
want to understand whether this can be done in a robust way: can
the same helpful AI cooperate effectively with a diverse set of partners,
both artificial and human?

For our human-subject experiments, we recruit participants on
Amazon Mechanical Turk and make use of a new web-based frame-
work, introduced in this paper. All experiments are conducted sub-
ject to oversight by Harvard’s IRB. The Javatari Learning Environ-
ment (JLE) framework allows human subjects to interact with AIs
through in-browser Atari emulators. The JLE framework makes use
of a modified version of Javatari [13] to support in-browser Atari
play by humans, enabling easy crowdsourcing of game trajectories.

We use the ACKTR [17] algorithm for reinforcement learning (as
provided as a part of OpenAI Baselines [5]), together with OpenAI
Gym [2] and the Arcade Learning Environment (ALE) [1, 9]. ALE
is built around the Stella Atari 2600 emulator. We modify OpenAI
Gym and ALE to accommodate two players, and modify OpenAI
Gym to allow for deploying “frozen policies" alongside policies that
are still being trained. We also extend ALE by adding functionality
to write to the Atari emulator’s RAM, using this, for example, to
give players random start positions. Our Atari framework therefore
complements similar multi-agent Atari extensions (e.g., [16]); it
introduces novel cooperative modes of existing games (e.g., Space
Invaders), and it includes the JLE framework.

This work relates to earlier research that has studied different
aspects of joint decision making in settings of two-agent collab-
oration, including: steering policies [6], online adaptation to the
behavior of another agent (e.g., [7, 14]), repeated interactions in
human-AI collaboration [4, 12], and the utility of human modeling
in a collaborative game [3]. We differ in that the focus here is on
studying the robustness of helper behaviors to misspecifications of
partner agents.

2 CONCEPTS AND TERMINOLOGY
In explaining our results it is helpful to introduce a few different
concepts and terminology. First, to train regular agents, that is play-
ers that are not explicitly designed to obtain helpful behaviors, we
use ACKTR to learn to control both players, and extract and freeze
single-agent policies (from a double-headed policy) at different
points along a training curve. We denote these agents as S1 through
S4, corresponding to increasing skills (S1 is novice, and S4 is expert
level, representing training ACKTR until converged). Once trained,
these agents can be evaluated in different configurations; i.e., they
can be paired with self, e.g., S2 − S2, or paired with another type
of agent, e.g., S2 − S3. We also use reward modifications to Atari
games to train agents with diverse behaviors; i.e., agents that prefer
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The Behavior of the Partner AI Agent Human Partner

S1 S2 S2-close S2-distant S3
Performance with self 878 1,134 1,111 1,141 2,141 ...with S2 704
... with expert-skill agent (S4) 694 963 457 711 1,826 ...with S4 545
with Helper-AI trained for
different target behaviors
H (S1) 1, 701 2,294 1,185 1,449 3,538 -
H (S2) 1,587 2, 434 1,227 1,548 3,792 ...with H (S2) 1, 547
H (S2-close) 1,254 1,836 1, 932 1,405 2,733 -
H (S2-distant) 1,414 2,197 1,210 2, 375 3,838 -
H (S3) 1,282 2,204 1,220 1,670 3, 844 -

bH (S2) (a bounded helper) 1,337 2,148 1,193 1,550 3,009 ...with bH (S2) 1,083

Table 1: Two Player, Cooperative Space Invaders. Game score, averaged over 100 games, of pairing a partner agent (columns)
with different agents (rows): whether another copy of itself, a higher-skilled agent, or a Helper-AI (both on-target and off-
target). While the strongest performance comes from on-target Helper-AIs, and the worst performance comes frommatching
with an expert-skill agent S4, the Helper-AI continues to provide a decisive advantage for all pairings. The Bounded-Helper-AI
also provides a consistent advantage over self-pairing. The decisive performance advantage of the Helper-AIs, compared with
pairing with either S2 or S4, holds up in transferring to this human environment.

to be close to each other or prefer to be distanced. These agents are
respectively denoted by S2-distant and S2-close.

We train helpful agents (Helper-AIs) by training agents to best-
respond to specific, target behaviors. For example,H (S2) is a Helper-
AI that is trained to best-respond to S2. Given this, H (S2) − S3 rep-
resents the configuration in which this Helper-AI is deployed along
with partner S3. Whereas Helper-AIs such as H (S2) are trained to
convergence, we also train helper agents for a smaller number of
episodes (Bounded-Helper-AIs). bH (S2), for example, results from
learning to best-respond to S2, but limiting training to the same
number of episodes that are used to train S2. In this way, bH (S2)−S2
is comparable in training effort to S2 − S2.

3 MAIN RESULTS
We summarize our main experimental results for Helper-AIs in the
context of two-player, cooperative Space Invaders in Table 1.

In overview, we see that for all partner agents, the “with self"
performance is worse than the performance with any of the Helper-
AIs, and including the Bounded-Helper-AI and the off-target Helper-
AIs, and typically substantially so. Considering human subjects,
the H (S2) Helper-AI, which is trained to provide helpful behavior
with a medium-skilled AI agent (S2) also provides a substantial
performance relative to pairing people with either the medium-
skill AI S2 or the expert-skill AI S4. In some more detail, we can
observe the following from these results.

Helpful behavior vs. expert behavior. Whereas pairing an
agent with an expert-skill agent consistently reduces performance
relative to self-pairing, there is a decisive and consistent perfor-
mance improvement from pairing anAIwith its on-target Helper-AI.
When expressed as the percentage of score increase, the improve-
ment from on-target Helper-AIs averages 94% across the different

partner AIs, and ranges from 74% for S2-close to 115% for S2. For
example, H (S2) − S2 scores 2, 434, S2 − S2 scores 1, 134, and S4 − S2
scores 963.

Robust helpful behavior. There is a consistent improvement
in performance when pairing an AI with an off-target Helper-AI
than compared to the performance from self-pairing. For example,
H (S3) − S2 scores 2, 204 and H (S1) − S2 scores 2, 294, compared to
just 1, 134 for S2 − S2.

Robust helpful behavior, bounded helpers. The Bounded-
Helper-AI, bH (S2), provides a consistent improvement in perfor-
mance for partner agents relative to self-pairing. For example,
bH (S2)−S2 scores 2, 148 compared to 1, 134 for S2−S2, andbH (S2)−
S2-distant scores 1, 550 compared to 1, 141 for S2-distant in self-
pairing. This demonstrates that effective, helpful behavior that
transfers to environments with off-target AIs can be learned quickly.

Robust human transfer. Helper-AIs and Bounded-Helper-AIs
trained for target behavior S2 improve performance when paired
with human subjects, relative to pairing humans with medium-
or high-skill non-helper AIs (e.g., H (S2) − Human is better than
S2 − Human). Also, pairing with the expert-level AI (S4) actually
degrades performance relative to pairing with a lower-skill AI (S2).
We ran these experiments with ten human subjects.
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