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ABSTRACT
Expressing attack-defence trees (ADTrees) in a multi-agent setting
allows for studying a new aspect of security scenarios, namely how
the number of agents and their task assignment impact the per-
formance of attacking and defending strategies executed by agent
coalitions. Our tool ADT2AMAS allows for transforming ADTrees
into extended asynchronous multi-agent systems and computing
an optimal schedule with the minimal number of agents. ADT2AMAS
is integrated within the graphical verification platform CosyVerif,
but can also be run standalone.
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1 INTRODUCTION AND MOTIVATIONS
Security of safety-critical multi-agent systems [24] is one of the
major challenges. Attack-defence trees (ADTrees) [8, 15] have been
developed to evaluate the safety of systems and to study interac-
tions between attacker and defender parties. They provide a simple
graphical formalism, where nodes represent possible attacks against
a system and defences employed to protect it. However, the defend-
ers might forgo a costly defence, or a defence could take too much
time and thus fail. The attack to be achieved is the root one, which
requires all (for the AND nodes) or part (for the OR nodes) of those
in its subtrees to be successful.

Recently, it has been proposed to model ADTrees in the formal-
ism of asynchronous multi-agent systems (AMAS) extended with
certain ADTree characteristics [4, 21]. In this setting, one can rea-
son about attack/defence scenarios considering agent distributions
over the tree nodes and their impact on the feasibility and perfor-
mance (quantified bymetrics such as time and cost) of attacking and
defending strategies executed by specific agent coalitions. Both the
number of agents available and their distribution over the ADTree
nodes affect these performance metrics. Hence, there arises the
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problem of an optimal scheduling, that is, obtaining an assignment
that guarantees the lowest possible execution time while using the
minimum number of agents required for an attack to be feasible.
The tool ADT2AMAS implements the algorithm of [7] that finds such
an assignment for a given ADTree. As the ADTree formalism in-
troduces unique caveats, our approach differs from that of classical
process scheduling [18, 19, 22]; to the best of our knowledge, this
is the first work dealing with agents in this context. Notably, the
scheduling algorithm optimises both the number of agents and the
attack time, and runs in quadratic time wrt. the number of nodes.
However, it is applied to a number of models that is exponential in
the number of OR and defence nodes.

2 FORMAL BACKGROUND
A well-known formalism [10, 11, 14, 16, 17, 20, 23], ADTrees model
security scenarios as an interplay between two opposing parties. Fig-
ure 1 depicts basic constructs, [4] gives a comprehensive overview.
Attacking and defending actions are depicted in red and green,
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Figure 1: Basic ADTree gates (or nodes)

respectively. The leaves represent individual actions at the highest
level of granularity. Different types of gates (available in both attack
or defence types) allow for modeling increasingly broad interme-
diary goals, all the way up to the root, which corresponds to the
overall objective. OR and AND gates are defined analogously to their
logical counterparts. SAND is a sequential variant of the latter, i.e. the
entire subtree 𝑎𝑖 needs to be completed before handling 𝑎𝑖+1. Coun-
tering actions can be expressed using gates CAND (counter defence;
successful iff 𝑎 succeeds and 𝑑 fails), NODEF (no defence; successful
iff either 𝑎 succeeds or 𝑑 fails), and SCAND (failed reactive defence;
sequential variant of CAND, where 𝑎 occurs first). ADTree nodes
may have numerical attributes, e.g. the time needed to perform an
attack, or its financial cost. Conditions are boolean functions over
the attributes, used as constraints to counter-defence nodes.
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Figure 2: Graphical Interface for ADT2AMAS

The translation of ADTrees to extended asynchronous multi-
agent systems (EAMAS, [4, 12, 13]), called also models, was pro-
posed in [4, 21]. To that end, the semantics of an asynchronous MAS
of [12, 13] was extended to account for the node attributes and con-
ditional constraints. Each ADTree node corresponds to a separate
automaton, with specific patterns used for different types of nodes.
Transitions are decorated with actions and the following elements:
(i) a message 𝑓𝑀 (𝑡) ∈ ({!, ?} ×𝑀) ∪ {⊥} indicating whether there
is a synchronisation on a message or the action is local; (ii) a guard
𝑓𝐺 (𝑡) ∈ Guards constraining the transition; (iii) an update function
𝑓𝑡 : AT𝑡 → EXP (AT , FUN ) expressing how the transition modifies
the attributes. In this setting, groups of agents working for the
attacking and defending parties can be considered. Note that the
feasibility of an attack is not affected by the number or distribution
of agents over ADTree nodes, while some performance metrics,
such as time, clearly depend on both factors (e.g. a lone agent can
sequentially handle all the actions, albeit usually much slower). Fur-
thermore, the success or failure of particular defence nodes results
in a number of unique configurations, leading to multiple model
variants to be analysed. Consequently, the optimal distribution of
agent coalitions is of vital importance for both parties, allowing
them to prepare for multiple scenarios, depending on how many
agents they can afford to recruit. Thus, synthesising an assignment
that achieves a minimal execution time using the least possible
number of agents is a problem of high interest and importance.

3 ARCHITECTURE AND TECHNOLOGY
ADT2AMAS [5] is an open source tool written in C++17. It allows for:
(1) translating an ADTree into an EAMAS, and (2) computing a
minimal scheduling with a minimal number of agents to make the
root node’s task successful. The ADTree can be specified using the
provided API, or loaded from a simple-syntax text file (Figure 2a).

For (1), the tool generates a LATEX file of the EAMAS, and an .imi
file containing its specification, which can be read by the model-
checker IMITATOR [3] in order to run automatic verifications. For
(2), ADT2AMAS generates a LATEX file of each tree transformation
needed to compute the minimal assignment, and an ASCII table of
the minimal scheduling. Compiling LATEX to PDF provides a visual
feedback of the EAMAS and of the scheduling algorithm’s steps.

ADT2AMAS is also integrated within the CosyVerif formal speci-
fication and verification environment [2], thus providing a multi-
platform, user-friendly, zero-configuration tool (Figure 2b). Its Java-
Script web interface, CosyDraw, allows for designing formal models

extensible via FML (Formalism Markup Language) and GrML (Graph
Markup Language) specifications. Furthermore, it supports any tool
providing a SOAP web service. In our case, we extended the graphi-
cal interface with the ADTree elements (Figure 2c) and implemented
a web service offering the algorithms supported by ADT2AMAS [6].
The tool can be accessed at https://cosyverif.lipn.univ-paris13.fr,
and its video demonstration at https://youtu.be/DGLtUSP-ao8.

4 EXPERIMENTS
Selected experimental results are provided in Table 1, with addi-
tional ones available on the tool web page [1]. Subsequent columns
denote: (1) the case study, (2) the number of possible defence config-
urations, which influence the number of models to consider, (3) the
number of a model variant; note that some combinations of de-
fences result in the same model, or do not allow for a successful
attack, (4) the minimal number of agents obtained by our schedul-
ing algorithm, (5) the minimal attack time. The tool also provides a
corresponding schedule of agents’ actions (not shown here), and
generates the resulting EAMAS (currently, for 1 agent only), which
can then be passed to the IMITATOR model checker. This allows
for the verification of other desired properties (e.g. a model with a
higher attack time might be preferable due to its far lower cost).

Table 1: Experimental results on case studies

case study # def. no. of model # agents time
treasure 2 1 2 125 min
forestall 1 1 43 days

4 2 1 54 days
3 1 53 days

iot-dev 4 1 2 694 min
gain-admin 1 1 2942 min

16 2 1 4320 min
3 1 5762 min

scaling 1 1 6 5 min

5 FUTUREWORK
Currently, model specifications (.imi files) including more than
one agent are prepared by hand. We plan to improve the integration
of ADT2AMAS with IMITATOR by a fully automatic generation of
EAMAS for an arbitrary number of agents. Furthermore, ADT2AMAS
can be integrated with other model checkers such as UPPAAL [9].
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