
ADT2AMAS: Managing Agents in Attack-Defence Scenarios
Demonstration Track

Jaime Arias
LIPN, CNRS UMR 7030,
Université Sorbonne

Paris Nord
Villetaneuse, France

arias@lipn.univ-paris13.fr

Wojciech Penczek
Institute of Computer

Science, Polish Academy
of Sciences

Warsaw, Poland
penczek@ipipan.waw.pl

Laure Petrucci
LIPN, CNRS UMR 7030,
Université Sorbonne

Paris Nord
Villetaneuse, France

petrucci@lipn.univ-paris13.fr

Teofil Sidoruk
1Institute of Computer

Science, PAS
2Warsaw University

of Technology
t.sidoruk@ipipan.waw.pl

ABSTRACT
Expressing attack-defence trees (ADTrees) in a multi-agent setting
allows for studying a new aspect of security scenarios, namely how
the number of agents and their task assignment impact the per-
formance of attacking and defending strategies executed by agent
coalitions. Our tool ADT2AMAS allows for transforming ADTrees
into extended asynchronous multi-agent systems and computing
an optimal schedule with the minimal number of agents. ADT2AMAS
is integrated within the graphical verification platform CosyVerif,
but can also be run standalone.

KEYWORDS
asynchronousmulti-agent systems; scheduling; attack-defence trees
ACM Reference Format:
Jaime Arias, Wojciech Penczek, Laure Petrucci, and Teofil Sidoruk. 2021.
ADT2AMAS: Managing Agents in Attack-Defence Scenarios: Demonstration
Track. In Proc. of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS,
3 pages.

1 INTRODUCTION AND MOTIVATIONS
Security of safety-critical multi-agent systems [24] is one of the
major challenges. Attack-defence trees (ADTrees) [8, 15] have been
developed to evaluate the safety of systems and to study interac-
tions between attacker and defender parties. They provide a simple
graphical formalism, where nodes represent possible attacks against
a system and defences employed to protect it. However, the defend-
ers might forgo a costly defence, or a defence could take too much
time and thus fail. The attack to be achieved is the root one, which
requires all (for the AND nodes) or part (for the OR nodes) of those
in its subtrees to be successful.

Recently, it has been proposed to model ADTrees in the formal-
ism of asynchronous multi-agent systems (AMAS) extended with
certain ADTree characteristics [4, 21]. In this setting, one can rea-
son about attack/defence scenarios considering agent distributions
over the tree nodes and their impact on the feasibility and perfor-
mance (quantified bymetrics such as time and cost) of attacking and
defending strategies executed by specific agent coalitions. Both the
number of agents available and their distribution over the ADTree
nodes affect these performance metrics. Hence, there arises the

This work is supported by the IEA project PARTIES and FNR/NCBiR project STV.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

problem of an optimal scheduling, that is, obtaining an assignment
that guarantees the lowest possible execution time while using the
minimum number of agents required for an attack to be feasible.
The tool ADT2AMAS implements the algorithm of [7] that finds such
an assignment for a given ADTree. As the ADTree formalism in-
troduces unique caveats, our approach differs from that of classical
process scheduling [18, 19, 22]; to the best of our knowledge, this
is the first work dealing with agents in this context. Notably, the
scheduling algorithm optimises both the number of agents and the
attack time, and runs in quadratic time wrt. the number of nodes.
However, it is applied to a number of models that is exponential in
the number of OR and defence nodes.

2 FORMAL BACKGROUND
A well-known formalism [10, 11, 14, 16, 17, 20, 23], ADTrees model
security scenarios as an interplay between two opposing parties. Fig-
ure 1 depicts basic constructs, [4] gives a comprehensive overview.
Attacking and defending actions are depicted in red and green,

𝑎

(a) leaf
(attack)

𝐴

𝑎1 𝑎𝑛· · ·

(b) AND

𝐴

𝑎1 𝑎𝑛· · ·

(c) OR

𝐴

𝑎1 𝑎𝑛· · ·

(d) SAND

𝑑

(e) leaf
(defence)

𝐴

𝑎 𝑑

(f) CAND

𝐴

𝑎 𝑑

(g) NODEF

𝐴

𝑎 𝑑

(h) SCAND

Figure 1: Basic ADTree gates (or nodes)

respectively. The leaves represent individual actions at the highest
level of granularity. Different types of gates (available in both attack
or defence types) allow for modeling increasingly broad interme-
diary goals, all the way up to the root, which corresponds to the
overall objective. OR and AND gates are defined analogously to their
logical counterparts. SAND is a sequential variant of the latter, i.e. the
entire subtree 𝑎𝑖 needs to be completed before handling 𝑎𝑖+1. Coun-
tering actions can be expressed using gates CAND (counter defence;
successful iff 𝑎 succeeds and 𝑑 fails), NODEF (no defence; successful
iff either 𝑎 succeeds or 𝑑 fails), and SCAND (failed reactive defence;
sequential variant of CAND, where 𝑎 occurs first). ADTree nodes
may have numerical attributes, e.g. the time needed to perform an
attack, or its financial cost. Conditions are boolean functions over
the attributes, used as constraints to counter-defence nodes.

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1749



ADT2AMAS (C++)

Model 
Loader

ADTree

EAMAS 
Translator

Minimal 
Scheduling

EAMAS DAG Scheduling 
Table

IMITATOR 
Export

LaTeX 
Export

ASCII 
Export

. i mi . t ex . t xt

. t xt

(a) Architecture of ADT2AMAS

Web Application Architecture

Users

Backend

Database
File 

System

REST API

Alligator

ADT2AMAS
Service

Service

Authentication

Nodejs

C++

...

Frontend

CosyDraw

What the user sees 
and interacts with

HTML, CSS, Javascript

Request

Response

Design Model

Display Results

(b) Architecture of the web-based application (c) treasure hunters ADTree in CosyDraw

Figure 2: Graphical Interface for ADT2AMAS

The translation of ADTrees to extended asynchronous multi-
agent systems (EAMAS, [4, 12, 13]), called also models, was pro-
posed in [4, 21]. To that end, the semantics of an asynchronous MAS
of [12, 13] was extended to account for the node attributes and con-
ditional constraints. Each ADTree node corresponds to a separate
automaton, with specific patterns used for different types of nodes.
Transitions are decorated with actions and the following elements:
(i) a message 𝑓𝑀 (𝑡) ∈ ({!, ?} ×𝑀) ∪ {⊥} indicating whether there
is a synchronisation on a message or the action is local; (ii) a guard
𝑓𝐺 (𝑡) ∈ Guards constraining the transition; (iii) an update function
𝑓𝑡 : AT𝑡 → EXP (AT , FUN ) expressing how the transition modifies
the attributes. In this setting, groups of agents working for the
attacking and defending parties can be considered. Note that the
feasibility of an attack is not affected by the number or distribution
of agents over ADTree nodes, while some performance metrics,
such as time, clearly depend on both factors (e.g. a lone agent can
sequentially handle all the actions, albeit usually much slower). Fur-
thermore, the success or failure of particular defence nodes results
in a number of unique configurations, leading to multiple model
variants to be analysed. Consequently, the optimal distribution of
agent coalitions is of vital importance for both parties, allowing
them to prepare for multiple scenarios, depending on how many
agents they can afford to recruit. Thus, synthesising an assignment
that achieves a minimal execution time using the least possible
number of agents is a problem of high interest and importance.

3 ARCHITECTURE AND TECHNOLOGY
ADT2AMAS [5] is an open source tool written in C++17. It allows for:
(1) translating an ADTree into an EAMAS, and (2) computing a
minimal scheduling with a minimal number of agents to make the
root node’s task successful. The ADTree can be specified using the
provided API, or loaded from a simple-syntax text file (Figure 2a).

For (1), the tool generates a LATEX file of the EAMAS, and an .imi
file containing its specification, which can be read by the model-
checker IMITATOR [3] in order to run automatic verifications. For
(2), ADT2AMAS generates a LATEX file of each tree transformation
needed to compute the minimal assignment, and an ASCII table of
the minimal scheduling. Compiling LATEX to PDF provides a visual
feedback of the EAMAS and of the scheduling algorithm’s steps.

ADT2AMAS is also integrated within the CosyVerif formal speci-
fication and verification environment [2], thus providing a multi-
platform, user-friendly, zero-configuration tool (Figure 2b). Its Java-
Script web interface, CosyDraw, allows for designing formal models

extensible via FML (Formalism Markup Language) and GrML (Graph
Markup Language) specifications. Furthermore, it supports any tool
providing a SOAP web service. In our case, we extended the graphi-
cal interface with the ADTree elements (Figure 2c) and implemented
a web service offering the algorithms supported by ADT2AMAS [6].
The tool can be accessed at https://cosyverif.lipn.univ-paris13.fr,
and its video demonstration at https://youtu.be/DGLtUSP-ao8.

4 EXPERIMENTS
Selected experimental results are provided in Table 1, with addi-
tional ones available on the tool web page [1]. Subsequent columns
denote: (1) the case study, (2) the number of possible defence config-
urations, which influence the number of models to consider, (3) the
number of a model variant; note that some combinations of de-
fences result in the same model, or do not allow for a successful
attack, (4) the minimal number of agents obtained by our schedul-
ing algorithm, (5) the minimal attack time. The tool also provides a
corresponding schedule of agents’ actions (not shown here), and
generates the resulting EAMAS (currently, for 1 agent only), which
can then be passed to the IMITATOR model checker. This allows
for the verification of other desired properties (e.g. a model with a
higher attack time might be preferable due to its far lower cost).

Table 1: Experimental results on case studies

case study # def. no. of model # agents time
treasure 2 1 2 125 min
forestall 1 1 43 days

4 2 1 54 days
3 1 53 days

iot-dev 4 1 2 694 min
gain-admin 1 1 2942 min

16 2 1 4320 min
3 1 5762 min

scaling 1 1 6 5 min

5 FUTUREWORK
Currently, model specifications (.imi files) including more than
one agent are prepared by hand. We plan to improve the integration
of ADT2AMAS with IMITATOR by a fully automatic generation of
EAMAS for an arbitrary number of agents. Furthermore, ADT2AMAS
can be integrated with other model checkers such as UPPAAL [9].

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1750

https://cosyverif.lipn.univ-paris13.fr
https://youtu.be/DGLtUSP-ao8


REFERENCES
[1] [n.d.]. ADT2AMAS Minimal Scheduling. https://depot.lipn.univ-paris13.fr/

parties/publications/minimal-scheduling.
[2] [n.d.]. CosyVerif. https://www.cosyverif.org.
[3] [n.d.]. IMITATOR. https://www.imitator.fr.
[4] Jaime Arias, Carlos E. Budde, Wojciech Penczek, Laure Petrucci, Teofil Sidoruk,

and Mariëlle Stoelinga. 2020. Hackers vs. Security: Attack-Defence Trees as
Asynchronous Multi-agent Systems. In 22nd International Conference on Formal
Engineering Methods, ICFEM 2020, Singapore, Singapore, March 1-3, 2021 (LNCS),
Vol. 12531. Springer, 3–19. https://doi.org/10.1007/978-3-030-63406-3_1

[5] Jaime Arias, Wojciech Penczek, Laure Petrucci, and Teofil Sidoruk. [n.d.].
ADT2AMAS. https://depot.lipn.univ-paris13.fr/parties/tools/adt2amas.

[6] Jaime Arias, Wojciech Penczek, Laure Petrucci, and Teofil Sidoruk. [n.d.].
ADT2AMAS Alligator Service. https://depot.lipn.univ-paris13.fr/cosyverif/
services/service-adt2amas.

[7] Jaime Arias, Laure Petrucci, Wojciech Penczek, and Teofil Sidoruk. 2021. Minimal
Schedule with Minimal Number of Agents in Attack-Defence Trees. https:
//arxiv.org/abs/2101.06838

[8] Zaruhi Aslanyan and Flemming Nielson. 2015. Pareto Efficient Solutions of
Attack-Defence Trees. In Proceedings of the 4th Conference on Principles of Security
and Trust, POST 2015, London, UK, April 11-18, 2015. Springer, 95–114.

[9] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Håkansson,
Paul Pettersson, Wang Yi, and Martijn Hendriks. 2006. UPPAAL 4.0. In Third
International Conference on the Quantitative Evaluation of Systems (QEST 2006),
11-14 September 2006, Riverside, California, USA. IEEE Computer Society, 125–126.

[10] Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, and Jan Willemson.
2006. Rational Choice of Security Measures Via Multi-parameter Attack Trees.
In Critical Information Infrastructures Security. Springer, 235–248.

[11] Barbara Fila and Wojciech Widel. 2020. Exploiting Attack-Defense Trees to Find
an Optimal Set of Countermeasures. In Proceedings of the 33rd IEEE Computer
Security Foundations Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020.
IEEE, 395–410.

[12] Wojciech Jamroga,Wojciech Penczek, Piotr Dembinski, andAntoniMazurkiewicz.
2018. Towards Partial Order Reductions for Strategic Ability. In Proceedings of
the 17th International Conference on Autonomous Agents and Multi-agent Systems,
AAMAS ’18, Stockholm, Sweden, July 10-15, 2018. ACM, 156–165.

[13] Wojciech Jamroga, Wojciech Penczek, Teofil Sidoruk, Piotr Dembinski, and An-
toni W. Mazurkiewicz. 2020. Towards Partial Order Reductions for Strategic
Ability. J. Artif. Intell. Res. 68 (2020), 817–850. https://doi.org/10.1613/jair.1.11936

[14] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Rolando
Trujillo-Rasua. 2015. Attack Trees with Sequential Conjunction. In ICT Sys-
tems Security and Privacy Protection. Springer, 339–353.

[15] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patric Schweitzer. 2011.
Foundations of Attack-Defense Trees. In FAST 2010 (LNCS), Vol. 6561. Springer,
80–95.

[16] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. 2014. DAG-
based Attack and Defense Modeling: Don’t Miss the Forest for the Attack Trees.
Computer Science Review 13-14 (2014), 1–38.

[17] Rajesh Kumar, Stefano Schivo, Enno Ruijters, BuǧraMehmet Yildiz, DavidHuistra,
Jacco Brandt, Arend Rensink, and Mariëlle Stoelinga. 2018. Effective Analysis of
Attack Trees: A Model-Driven Approach. In Fundamental Approaches to Software
Engineering. Springer, 56–73.

[18] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors. ACM Computing Surveys
31, 4 (1999), 406–471.

[19] Michele Lombardi, Michela Milano, Martino Ruggiero, and Luca Benini. 2010. Sto-
chastic allocation and scheduling for conditional task graphs in multi-processor
systems-on-chip. J. Sched. 13, 4 (2010), 315–345.

[20] Sjouke Mauw and Martijn Oostdijk. 2006. Foundations of Attack Trees. In
ICISC 2005. Springer, 186–198.

[21] Laure Petrucci, Michal Knapik, Wojciech Penczek, and Teofil Sidoruk. 2019.
Squeezing State Spaces of (Attack-Defence) Trees. In 24th International Conference
on Engineering of Complex Computer Systems, ICECCS 2019, Guangzhou, China,
November 10-13, 2019. IEEE, 71–80.

[22] Khushboo Singh, Mahfooz Alam, and Sushil Kumar. 2015. A Survey of Static
Scheduling Algorithm for Distributed Computing System. International Journal
of Computer Applications 129 (11 2015), 25–30.

[23] Chris Slater, O. Sami Saydjari, Bruce Schneier, and Jim Wallner. 1998. Toward
a Secure System Engineering Methodolgy. In NSPW’98. ACM, 2–10. https:
//doi.org/10.1145/310889.310900

[24] Michael J. Wooldridge. 2002. An Introduction to Multiagent Systems. John Wiley
& Sons.

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1751

https://depot.lipn.univ-paris13.fr/parties/publications/minimal-scheduling
https://depot.lipn.univ-paris13.fr/parties/publications/minimal-scheduling
https://www.cosyverif.org
https://www.imitator.fr
https://doi.org/10.1007/978-3-030-63406-3_1
https://depot.lipn.univ-paris13.fr/parties/tools/adt2amas
https://depot.lipn.univ-paris13.fr/cosyverif/services/service-adt2amas
https://depot.lipn.univ-paris13.fr/cosyverif/services/service-adt2amas
https://arxiv.org/abs/2101.06838
https://arxiv.org/abs/2101.06838
https://doi.org/10.1613/jair.1.11936
https://doi.org/10.1145/310889.310900
https://doi.org/10.1145/310889.310900

	Abstract
	1 Introduction and motivations
	2 Formal background
	3 Architecture and technology
	4 Experiments
	5 Future work
	References



