
Distributing Responsibilities for Exception Handling in JaCaMo
Demonstration Track

Matteo Baldoni1, Cristina Baroglio1, Olivier Boissier2, Roberto Micalizio1, Stefano Tedeschi1
1 Università di Torino, Dipartimento di Informatica, Italy

2 Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol, MINES Saint-Etienne, France

ABSTRACT
We present an extension of the organizational model and infras-
tructure adopted in JaCaMo, that explicitly encompasses the notion
of exception. We propose an exception handling mechanism for
organization management in multi-agent systems. This mechanism
relies on abstractions that are seamlessly integrated with organiza-
tional concepts, such as responsibilities, goals and norms.

KEYWORDS
Exception Handling; Multiagent Organizations; JaCaMo

ACM Reference Format:
Matteo Baldoni1, Cristina Baroglio1, Olivier Boissier2, Roberto Micalizio1,
Stefano Tedeschi1. 2021. Distributing Responsibilities for Exception Han-
dling in JaCaMo: Demonstration Track. In Proc. of the 20th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2021),
Online, May 3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
A software is robust when it is able to keep an acceptable behavior
in presence of abnormal execution conditions, like unavailability
of system resources, communication failures, invalid or stressful
inputs [13]. One specific mechanism that supports robustness is
exception handling which, roughly speaking, amounts to equipping
the systemwith the capabilities needed to tackle classes of abnormal
situations, identified at design time. An exception is an “event that
causes suspension of normal program execution” [1]. Therefore,
the purpose of an exception handling mechanism is to provide the
tools to (i) identify when an exception occurs, and (ii) apply suitable
handlers, capable of treating the exception and recover.

The need of exceptions emerges from the desire of structuring
and modularizing software, separating concerns into components
that interact. Following the seminal work of Goodenough on ex-
ceptions in programming languages [14–16], exceptions permit the
user of an operation to extend the operation’s domain (the set of
inputs for which effects are defined) or its range (the effects ob-
tained when certain inputs are processed). They allow tailoring an
operation’s results or effects to the purpose in using the operation,
and they also allow generalizing operations, making them usable
in a wider variety of contexts than would otherwise be the case.
Consequently, an exception’s full significance is known only outside
the detecting operation: the operation is not permitted to deter-
mine unilaterally what is to be done after an exception is raised.
The invoker controls the response to the exception that is to be
activated. This increases the generality of an operation because

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

the appropriate “fixup" will vary from one use of the operation to
the next. To this aim, an invoker must be given enough informa-
tion about the failure. This differentiates exception handling from
the simple detection of norm violation or like contrary-to-duties
[28], which do not systematically encompass the responsibilities of
raising and dealing with the exception, see [2–4, 8, 9].

Multiagent organizations (MAOs) are widely used for the de-
sign and development of distributed, non-centralized, autonomous
systems. Key features of many organizational models (see e.g., [5–
7, 10, 19]), are a functional decomposition of the organizational
goal and a normative system. Norms shape the scope of the respon-
sibilities that agents take when joining the organization, capturing
what they should do to contribute to the achievement of the organi-
zational goal [12, 26, 27]. In particular, they allow to coordinate the
distributed execution notifying agents when something must be
done to discharge their responsibilities as members of the organi-
zation. This demonstration shows how exception handling can be
grafted inside the normative system of a MAO and, consequently,
how the normative system can be used to gain robustness in the
execution. Specifically, we introduced exception handling in the
well-known JaCaMo multi-agent platform [6], integrating it both
at a conceptual level, within the high-level abstractions that are
provided by the model of JaCaMo’s organizational component, and
at a software level, by enriching its infrastructure.

2 RESPONSIBILITY IN EXCEPTION
HANDLING

Multi-agent systems bring software structuring, modularization,
and separation of concerns to an extreme. Here, autonomous agents
cooperate and rely on one another to pursue their aims. However,
exceptions handling (besides a few attempts) has never been ap-
plied as postulated in the work by Goodenough. What explained
in the first paragraph brings forward two important aspects of ex-
ception handling. First, it always involves two parties: a party that
is responsible for raising an exception, and another party that is
responsible for handling it. Second, it captures the need for some
information/account from the former to the latter that allows cop-
ing with the exception. Since MAOs, in essence, are built upon
responsibilities, we claim that MAOs are naturally suited to encom-
pass an exception handling mechanism. Indeed, in a MAO, each
agent has only a partial view of the organizational goal, whose
achievement is distributed among the agents. From this perspec-
tive, we can interpret an exception as an event which denotes the
impossibility, for some agent, to fulfill one of its responsibilities –
e.g. the failure in the achievement of a goal or a missed deadline. As
a consequence, the distributed achievement of the organizational
goal will be suspended.

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1752



In the context of MAO, we propose to leverage on responsibility
not only to model the duties of the agents in relation to the organi-
zational goal, but also to enable agents to report about exceptions,
occurring within the organization operation, and to identify those
agents entitled for handling them. When agents join an organiza-
tion, they will be asked to take on the responsibilities not only for
the organizational goals, but also: 1) for providing accounts about
the context where exceptions are detected while pursuing organi-
zational goals, and 2) if appointed, for handling such exceptions
once the needed information is available. Responsibilities, thus,
define the scope of the exceptions, expressed with respect to the
organizational state, that agents ought to raise or treat.

Related works. Differently than the approach by Platon et al. [22–
25], where exception handling is seen as a tool that the individual
agent can activate internally, to preserve control on itself despite the
occurrence of exceptions, the proposal leverages on the distributed
nature of exception handling, typical of programming languages
and of the actor model [17], and suited to distributed systems made
of cooperative parties, like MAO. In [11, 20, 21], an approach is
proposed, that is based on a shared exception handling service. The
service provides sentinels, that are equipped with handlers (inspired
by research on management), to be plugged into existing agent
systems. The service actively looks for exceptions in the system and
prescribes specific interventions from a body of general procedures.
Sentinels communicate with agents using a predefined language for
querying about exceptions and for describing exception resolution
actions. Agents, for their part, are required to implement a minimal
set of interfaces to report on their own behavior and modify their
actions according to the prescriptions given by the sentinels. As a
difference, our proposal seamlessly integrates exception handling
into the agents themselves, without centralizing it. In this way, it
accommodates Goodenough’s recommendation that appropriate
“fixup" will vary from one use of the operation to the next.

3 EXTENDING JACAMO
JaCaMo [6] is a conceptual model and programming platform that
integrates agents, environments and organizations. Moise [18, 19]
implements the organizational programming model. It comprises
a structural dimension, a functional dimension, including a set of
schemes that captures how the organizational goals are decomposed
into subgoals, grouped into missions, and a normative dimension
binding the other two. Agents, in fact, are held to explicitly commit
to missions, i.e., taking responsibility for mission goals.

We propose to enrich the schemes and missions of the functional
specification of a organization with the following new concepts1.
Recovery Strategy encodes when and how a given exception is to
be raised and handled within the organization. It includes a notifica-
tion policy and one or more handling policies.Notification Policy
specifies when the exception must be raised. It includes a throw-
ing goal, enabled when such circumstances hold and an exception
type encoding the kind of information to be produced. Handling
Policy specifies a way in which the exception must be handled,
once the needed information is available. It includes a catching goal
and specifies when such goal is to be enabled. Throwing Goal
1The full code of Moise extended with exception handling, together with some exam-
ples, is available at http://di.unito.it/moiseexceptions.

denotes the organizational goal of raising the exception, i.e., it will
make the agent that is responsible for it to provide the information
that is needed for recovery. Catching goal captures the course of
action to handle the exception and remediate. Its aim is to restore
the execution of the scheme after an exception is raised. Throw-
ing goals and catching goals specialize the goal specification and
are incorporated into mission just like standard ones. As a result,
missions become a tool to distribute the responsibilities, not only
concerning the normal execution, but also for the management of
exceptional situations. Policies, in turn, delimit the scope of such
responsibilities, specifying when and how they are to be discharged.

To illustrate, we rely on the building-a-house example, origi-
nally introduced in [6]. Here, the organizational goal is to build a
house on a plot in a dynamic environment, where robustness of
the organization coordinating the building of the house is impor-
tant. Achievement involves the coordination of multiple companies
executing the various subgoals, part of which can be executed in
parallel, while part depends on others. For instance, site prepara-
tion must be completed before any other step. Should the agent in
charge of it face a failure in the fulfillment of its responsibility, the
whole house construction could not proceed. We can, then, extend
the functional specification of the organization with the following
recovery strategy, targeting a failure in the achievement of goal
site_prepared:

1 <recovery -strategy id="rs1">

2 <notification -policy id="np1">

3 <condition type="goal -failure">

4 <condition -argument id=" target" value=" site_prepared" />

5 </condition >

6 <exception -type id=" site_preparation_exception">

7 <exception -argument id=" errorCode" arity ="1" />

8 </exception -type >

9 <goal id=" notify_site_preparation_problem" />

10 </notification -policy >

11 <handling -policy id="hp1">

12 <condition type=" always" />

13 <goal id=" handle_site_problem">

14 <plan operator =" parallel">

15 <goal id=" inspect_site" />

16 <goal id=" notify_affected_companies" />

17 </plan >

18 </goal >

19 </handling -policy >

20 </recovery -strategy >

Notification policy np1 specifies that, should a goal failure con-
cerning site_prepared occur (see the condition at Lines 3-5),
the throwing goal notify_site_preparation_problem is to be
enabled. Its purpose is to make the agent responsible for it pro-
vide the information needed for recovery. To this end, an excep-
tion type site_preparation_exception (Lines 6-8) specifying an
errorCode is defined. Handling policy hp1, in turn, expresses what
needs to be done to solve the site preparation exception, once it has
been raised and the error code provided. In this case, the catching
goal is a complex one (Lines 13-18): the site should be inspected
and, at the same time, the other companies involved in the house
construction notified. It’s worth noting that agents in charge of
these goal will likely leverage the information provided beforehand
to achieve them. Site inspection, e.g., will be performed in differ-
ent ways in case the error code denotes a flooding rather than the
finding of archaeological remains. Corrective actions undertaken
by the agents will be different, as well.

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1753

http://di.unito.it/moiseexceptions


REFERENCES
[1] 2010. ISO/IEC/IEEE International Standard - Systems and software engineering –

Vocabulary. ISO/IEC/IEEE 24765:2010(E) (Dec 2010), 1–418. https://doi.org/10.
1109/IEEESTD.2010.5733835

[2] Matteo Baldoni, Cristina Baroglio, and Roberto Micalizio. 2020. Fragility and
Robustness in Multiagent Systems. In Post-Proc. of the 8th International Workshop
on Engineering Multi-Agent Systems, EMAS 2020, Revised Selected Papers (LNAI,
12589), C. Baroglio, J. F. Hubner, and M. Winikoff (Eds.). Springer, Auckland, New
Zealand, 61–77. https://doi.org/10.1007/978-3-030-66534-0_4

[3] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2020.
Is Explanation the Real Key Factor for Innovation?. In Proc. of Italian Workshop on
Explainable Artificial Intelligence, XAI.it 2020, C. Musto, D. Magazzeni, S. Ruggieri,
and G. Semeraro (Eds.), Vol. 2742. CEUR, Workshop Proceedings, Online Event,
Italy, 87–95. http://ceur-ws.org/Vol-2742/

[4] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2021.
Robustness based on Accountability in Multiagent Organizations. In Proc. of 20th
International Conference on Autonomous Agents and Multiagent Systems, Engi-
neering Multiagent Systems Track, AAMAS 2021, U. Emdriss, A. Nowé, F. Dignum,
and A. Lomuscio (Eds.). IFAAMAS, Richland, SC, Online.

[5] B. Bauer, J.P. Müller, and J. Odell. 2001. Agent UML: A formalism for specifying
multiagent software systems. Software Engineering and Knowledge Engineering
11, 3 (2001), 207–230.

[6] Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and Andrea
Santi. 2013. Multi-agent Oriented Programming with JaCaMo. Sci. Comput.
Program. 78, 6 (2013), 747–761. https://doi.org/10.1016/j.scico.2011.10.004

[7] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. 2004. Tropos: An Agent-Oriented Software Development Methodol-
ogy. Autonomous Agents and Multi-Agent Systems 8, 3 (2004), 203–236. https:
//doi.org/10.1023/B:AGNT.0000018806.20944.ef

[8] Amit K. Chopra and Munindar P. Singh. 2016. From social machines to social
protocols: Software engineering foundations for sociotechnical systems. In Proc.
of the 25th Int. Conf. on WWW.

[9] Amit K. Chopra and Munindar P. Singh. 2018. Sociotechnical Systems and Ethics
in the Large. In AIES ’18: Proceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society. ACM, 48–53.

[10] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. 1993. Goal-directed
requirements acquisition. Science of Computer Programming 20, 1 (1993), 3 – 50.
https://doi.org/10.1016/0167-6423(93)90021-G

[11] Chrysanthos Dellarocas and Mark Klein. 2000. An experimental evaluation of
domain-independent fault handling services in open multi-agent systems. In
Proceedings Fourth International Conference on MultiAgent Systems. IEEE, 95–102.

[12] Christophe Feltus. 2014. Aligning Access Rights to Governance Needs with the
Responsability MetaModel (ReMMo) in the Frame of Enterprise Architecture. Ph.D.
Dissertation. University of Namur, Belgium.

[13] Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. 2005. A Model-
based Approach for Robustness Testing. In Proceedings of the 17th IFIP TC6/WG
6.1 International Conference on Testing of Communicating Systems (Montreal,

Canada) (TestCom’05). 333–348.
[14] John B. Goodenough. 1975. Exception Handling Design Issues. SIGPLAN Not. 10,

7 (July 1975), 41–45. https://doi.org/10.1145/987305.987313
[15] John B. Goodenough. 1975. Exception Handling: Issues and a Proposed Notation.

Commun. ACM 18, 12 (Dec. 1975), 683–696. https://doi.org/10.1145/361227.
361230

[16] John B. Goodenough. 1975. Structured Exception Handling. In Proceedings of the
2nd ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(Palo Alto, California) (POPL ’75). Association for Computing Machinery, New
York, NY, USA, 204–224. https://doi.org/10.1145/512976.512997

[17] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. AUniversalModular ACTOR
Formalism for Artificial Intelligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence (Stanford, USA) (IJCAI’73). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 235–245.

[18] Jomi F. Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. 2010. In-
strumenting multi-agent organisations with organisational artifacts and agents.
Autonomous Agents and Multi-Agent Systems 20, 3 (1 5 2010), 369–400.

[19] Jomi F. Hübner, Jaime S. Sichman, and Olivier Boissier. 2007. Developing Organ-
ised Multiagent Systems Using the MOISE+ Model: Programming Issues at the
System and Agent Levels. Int. J. Agent-Oriented Softw. Eng. 1, 3/4 (2007), 370–395.
https://doi.org/10.1504/IJAOSE.2007.016266

[20] M. Klein and Chrysanthos Dellarocas. 1999. Exception handling in agent systems.
In AGENTS ’99.

[21] Mark Klein and Chrysanthos Dellarocas. 2000. A knowledge-based approach to
handling exceptions in workflow systems. Computer Supported Cooperative Work
(CSCW) 9, 3-4 (2000), 399–412.

[22] Eric Platon. 2007. Modeling exception management in multi-agent systems. Ph.D.
Dissertation. Université Pierre et Marie Curie, France.

[23] Eric Platon, Nicolas Sabouret, and Shinichi Honiden. 2007. Challenges for Excep-
tion Handling in Multi-Agent Systems. In Software Engineering for Multi-Agent
Systems V, Ricardo Choren, Alessandro Garcia, Holger Giese, Ho-fung Leung,
Carlos Lucena, and Alexander Romanovsky (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 41–56.

[24] Eric Platon, Nicolas Sabouret, and Shinichi Honiden. 2007. A Definition of
Exceptions in Agent-Oriented Computing. In Engineering Societies in the Agents
World VII, Gregory M. P. O’Hare, Alessandro Ricci, Michael J. O’Grady, and Oğuz
Dikenelli (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 161–174.

[25] Eric Platon, Nicolas Sabouret, and Shinichi Honiden. 2008. An architecture for
exception management in multiagent systems. International Journal of Agent-
Oriented Software Engineering 2, 3 (2008), 267–289.

[26] Ian Sommerville. 2007. Models for Responsibility Assignment. Springer London,
London, 165–186.

[27] Ian Sommerville, Tim Storer, and Russell Lock. 2009. Responsibility modelling
for civil emergency planning. Risk Management 11, 3 (2009), 179–207.

[28] LeendertW. N. van der Torre and Yao-Hua Tan. 1999. Contrary-to-duty reasoning
with preference-based dyadic obligations. Ann. Math. Artif. Intell. 27, 1-4 (1999),
49–78. https://doi.org/10.1023/A:1018975332469

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1754

https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1007/978-3-030-66534-0_4
http://ceur-ws.org/Vol-2742/
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.1145/987305.987313
https://doi.org/10.1145/361227.361230
https://doi.org/10.1145/361227.361230
https://doi.org/10.1145/512976.512997
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1023/A:1018975332469

	Abstract
	1 Introduction
	2 Responsibility in Exception Handling
	3 Extending JaCaMo
	References



