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ABSTRACT
Most prior works on MARL seek to implement intra-agent complex
interactions by explicitly communicating agent actions. However,
there have only been a few efforts that examine emergence as
arising from complex ‘social’ interactions or relations based on
individual objectives and reward functions. This study is about
integrating a user-defined relational network into the MARL setup
and evaluating the effects of agent-agent relations on the generation
of emergent behaviors. Specifically, we propose a framework that
uses the notion of Reward-Sharing Relational Networks (RSRN)
to determine the relationship between agents where edge weights
determine how much one agent is invested in the success of (or
‘cares about’) another. The preliminary results indicate that reward-
sharing relational networks can effectively influence the learned
behaviors towards the imposed relational network.
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1 INTRODUCTION
Recent works in the field of Multi-Agent Reinforcement Learning
(MARL) are taking first steps towards developing a better under-
standing of interactions between artificially intelligent (AI) agents
and their resulting emergent behaviors. While several interesting
results have been generated thus far [5–7, 10], we still lack a broader
framework that formulates and solves the MARL problem and gen-
erates a subsequent theory of emergent behaviors for a network of
interacting AI agents.

We formulate the problem as a Dec-POMDP where agents are
trained using a decentralized method [2, 8] which allows agents to
co-evolve in a shared environment; hence learning becomes a col-
lective process. Moreover, while many state-of-the-art approaches
primarily focus on either cooperative or competitive behaviors, the
designed MARL framework must go beyond and allow the learned
behaviors to span the entire spectrum of social behaviors. In many
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Figure 1: Different network structures generate different
shared rewards, which are then used by the policy optimiz-
ers and produce distinct emergent behaviors.

cases, such behavior may only be possible via the implementation
of distinct reward structures for disparate agents.

To form a framework for emergent behavior, we need to better
understand how relational networks should be structured.We begin
with two insights into the nature of learning in social systems
comprised of primates (including humans) or other mammals [3].
The first insight is that individual learning occurs in social settings
[1]. Specifically, it has been shown that learning amongst primates
and other mammals is governed by whom the individuals can relate
to. Individual learning is driven by actions ranging from simple
mimicking to complex evaluative behaviors, all within the presence
of other socially-related individuals [9]. The presented work on
reward-sharing relational networks formalizes this notion within
the context of MARL.

The second insight borrows from neuroscience and indicates
that learning individuals can connect or relate to a limited number
of their counterparts [4]. This finding originates from studies of the
size of the neocortex in primate brains and its relationship to the
group size of the social systems these primates inhabit. Building on
these two insights, we propose that reward-sharing and learning in
a multi-agent system should: (a) be governed by whom an agent is
related to, and (b) be limited to a small number of relations to obtain
different types of emergent behaviors. The relational networks thus
generated are used for training the agents, and may potentially
generate distinct emergent behaviors depending on the structure
of the relational network.

2 METHODOLOGY
We define a Relationally Networked Decentralized Partially Ob-
servable Markov Decision Process (RN-Dec-POMDP) as a tuple
(S,A,O,T ,R,G), where S = {𝑆1, ..., 𝑆𝑁 }, A = {𝐴1, ..., 𝐴𝑁 }, O =

Doctoral Consortium AAMAS 2021, May 3-7, 2021, Online

1808



{𝑂1, ...,𝑂𝑁 }, and R = {𝑅1, ..., 𝑅𝑁 } are the joint set of individual
states, actions, observations, and rewards, respectively. Agents take
their actions based on their policies (in this case, deterministic)
𝜋𝑖 : 𝑂𝑖 → 𝐴𝑖 and transition to the next state according to the joint
probabilistic transition function T : S × A × S → [0, 1]. Once
an agent reaches its next state, it receives a reward 𝑟𝑖 according to
its personal reward function 𝑅𝑖 : S × A → R. The tuple element
G = (𝑉G, 𝐸G,𝑊G) represents the ordered collection of all agents
as vertices in the set𝑉G , all binary agent relations as directed edges
in the set 𝐸G , and edge weights as𝑊G . The presence of an edge
between two agents represents that they are related. The direction
of the edge from a first agent to a second agent represents that the
actions of the first agent are driven by the rewards obtained by
the second. This may be understood as the second agent sharing
rewards with the first agent, or that the first agent ‘cares about’ the
success of the related second agent. Consequently, the first agent is
likely to learn policies that benefit the other agent. Of course, the
relational network also allows for self-directed edges, so an agent’s
actions can also be driven by its own rewards. The nature of these
relationships is encapsulated in the matrix𝑊G which denotes the
weights associated with the edges. The relational network weights
can be expressed as the matrix𝑊G where its elements 𝑤𝑖, 𝑗 ∈ R
indicate how much agent 𝑖 ‘cares about’ the success of agent 𝑗 ,
based on the individual reward obtained by agent 𝑗 . Thus, actions
of agent 𝑖 may be driven in part by the individual rewards of agent
𝑗 , if these two agents are related, i.e. if𝑤𝑖, 𝑗 ≠ 0.

In our RSRN-MARL framework, agents try to maximize their
long-term shared return 𝑅𝑖 by accumulating the discounted shared
relational rewards 𝑟𝑖 across a finite horizon𝑇 as𝑅𝑖 = E

(∑𝑇
𝑘=0 𝛾

𝑘𝑟𝑖,𝑘

)
where 𝑟𝑖 represents the shared relational reward of agent 𝑖 , which
incorporates the individual rewards of all related agents (and itself)
and can be calculated using the scalarization function 𝑓 (r𝑘 ,w𝑖 ) that
maps all individual rewards r𝑘 = [𝑟1, 𝑟2, ..., 𝑟𝑁 ]⊤

𝑘
at time step 𝑘 to a

single shared relational reward value 𝑟𝑖,𝑘 for agent 𝑖 according to the
agent-specific relational weight vector w𝑖 = [𝑤𝑖,1,𝑤𝑖,2, ...,𝑤𝑖,𝑁 ].

It is possible to choose the scalarization function from several dif-
ferent alternatives, with themost commonly used choice often being
a simple weighted sum across all the individual rewards, given by
𝑟𝑖 = 𝑓s (r,w𝑖 ) =

∑𝑁
𝑗=1𝑤𝑖, 𝑗𝑟 𝑗 . However, we found that the Weighted

Product Model (WPM), given by 𝑟𝑖 = 𝑓p (r,w𝑖 ) =
∏𝑁

𝑗=1 𝑟
𝑤𝑖,𝑗

𝑗
, per-

formed much better in our experiments. The weighted product
model dramatically lowers the shared reward when even one of
the individual rewards is close to the zero. Therefore, trainers are
strictly promoted to evenly care about the related agents.

3 SIMULATION AND RESULTS
We consider the scenario where three agents try to reach three unla-
beled landmarks, i.e. they get rewarded if they reach any landmark.
Both state and action spaces are continuous and agents have been
trained using our framework by integrating the Relational Network
and Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
policy optimization algorithm [7]. To make the multi-agent environ-
ment more complex and create opportunities to observe emergent
behaviors arise, we limit the mobility of one of the agents. Specifi-
cally, Agent 3 is hindered systematically so it cannot move as fast
as other agents, and may be unable to reach a landmark within a
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Figure 2: Examples of sociology-inspired relational network
structures. An arrow directed from a first agent to a second
represents that the first agent’s actions are governed by the
rewards obtained by the second agent.
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Figure 3: (a) Individual and (b) relational rewards averaged
across 5000 test episodes, after training the agents over
500,000 episodes.

single episode. To evaluate the collective behavior of the agents,
we examine 6 different relational network configurations as shown
in Figure 2. The individual performance of each agent 𝑖 is then mea-
sured through its individual reward 𝑟𝑖 , which is determined based
on its distance to the closest landmark. We the run test episodes, as
shown in Figure 3, to evaluate both their individual and relational,
i.e. social performances.

The learned policies often include emergent behaviors not explic-
itly defined in the problem formulation. E.g., agents in a survivalist
relational networks quickly learned to go to a landmark, even push-
ing slower agents out of the way. On the other hand, agents trained
with a communitarian relational network adapt and learn to distrib-
ute their task (capturing all landmarks) according to their initial
positions and capabilities. The system exhibits emergent behav-
ior as fast-moving agents learn to assist the slow-moving agent
towards the landmark, before finding a landmark of their own.
Similar emergent behaviors manifest in authoritarian and tribal
relational networks as well.

These figures and associated videos1 help reveal insights into
how different relational networks produce distinct emergent be-
haviors, as well as the performance of individual agents.
1Videos are available at sites.google.com/view/marl-rsrn
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