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ABSTRACT

Through social interactions, humans and machines can express their
intents, acknowledge each other’s, and coordinate with one another
to arrive at a joint decision. These interactions can also help achieve
goals beyond just task performance. They can help build trust
between interactants, which is crucial for effective collaborations.
My work aims to i) develop frameworks for social interaction in
human-agent joint decision-making and ii) implement artificial
agents that improve joint decisions while considering the social and
interpersonal implications of their actions. In this extended abstract,
I describe past and current work and propose future directions for
my dissertation.
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1 INTRODUCTION

Decision support systems and algorithm-in-the-loop [6] decisions
are appealing to many in various domains. However, an algorith-
mic output may not be enough for synergistic decision-making
with humans partners [5]. These one-off suggestions offer limited
interaction opportunities for people to deliberate on decisions with
the machine. Hence, we explore leveraging back-and-forth social
interactions between humans and agents to make joint decisions.

Increased interactivity can help humans make better decisions
with artificial systems. For instance, Elmalech et al. [3]’s work
showed that providing incorrect answers that matched human
intuition at first resulted in higher receptivity of correct answers,
later on, improving average performance over time.

Equipping artificial agents with social roles and capabilities is
well-motived in prior work. Artificial agents can serve the social
purpose of providing emotional support [9]. Social capabilities offer
an opportunity to recover from failures and misunderstandings [7,
13]. Social interactions can also signal a sense of benevolence, one
of the core pillars of trustworthiness Mayer et al. [12]. In Bickmore
and Cassell [1]’s paper, their embodied conversational agent used
small talk as a politeness strategy to build trust.
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Trust between partners is integral to effective collaboration.
Much like trust between humans, human’s trust in machines are
based on the machine’s ability and the alignment of their intents,
motivations, and principles Lee and See [11], Mayer et al. [12]. The
latter dimensions become more salient as people may not fully
understand the capabilities of increasingly complex systems Lee
and See [11].

Against this background, we frame joint decision-making be-
tween humans and agents as a constant negotiation of goals and
intents while adhering to social norms to maintain relationships.
The human and agent both communicate their sets of goals. If
there are misalignments in priorities of goals, partners can resolve
them and reach an agreement on a shared decision. This process of
resolution requires negotiations built on social interactions. Com-
municating, negotiating, and building consensus are essential parts
of the joint decision-making process.

2 PRIOR AND ONGOING WORK

Our previous study [10] illustrates how failing to negotiate goals,
roles, and strategy, as well as to socially interact are detrimental to
collaboration. Often, participants lost trust in the robot that failed
to express its priorities and negotiate. They were subsequently
more reluctant to accept the robot’s recommendations. For example,
we observed disagreements over trade-offs when the human and
the robot prioritized different goals. Participants also projected
maladjusted intent behind the robot’s actions, believing that it
dismissed them. One noted that although they thought that the
robot was making better decisions, they would not want to work
with the robot again because they believed it was ignoring their
thoughts.

In more recent work [8], we implement an agent that tries to
improve the quality of the joint decision while also mitigating
frustrations when conflicts arise in negotiations. To demonstrate,
we develop a computational framework that models the back-and-
forth interactions between the human and the agent. While both the
human and agent can suggest, reject, or interchange any options
from shortlist, the goal is to reach a consensus on what they think
is the optimal decision.

The agent incorporates a type of social ritual in its actions called
face-work[4]. Disagreements and harsh criticisms may cause an-
other to suffer a loss of face. To prevent such face-threatening
acts [2], the artificial agent may try to compromise with the hu-
man’s preferences instead of arguing its own. This behavior can
happen even at the expense of task performance. The intuition
is that an artificial agent might prefer a suboptimal move if the
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optimal one has the possibility of ensuing negative emotions that
can break a feeling of trust.

Based on this intuition, we present an artificial agent that ac-
counts for face-work in our interaction framework: choosing moves
that maximize decision quality unless the same action is a direct
face-threat. The artificial agent thus has two goals. One is to im-
prove joint performance. Another, to maintain a good relationship
with the human by considering the interpersonal implications of its
actions. In this particular scenario, we devise a rule-based method
for shifting between the two goals. With our on-going work, we
ran experiments with humans to evaluate the framework and the
agent behavior.

3 FUTURE PROPOSED WORK

Moving forward, I hope to continue to work on improving joint
decision-making experiences with artificial agents. Specifically, I
propose three future directions for my dissertation.

First, I propose to design intuitive and efficient behaviors for
artificial agents to communicate their intentions in negotiations
with humans. Clear and expressive capabilities like gestures or
explanations can benefit negotiations in decision-making. In partic-
ular, clear communication is vital for agents within consequential
decision domains such as collaborative search and rescue (SAR)
teams or human interactions with autonomous vehicles.

Second, I propose to improve the agent’s abilities to select actions
that achieve performance and social goals. Instead of the initial
rule-based method, agents could use machine learning methods to
determine their best course of action. Additionally, agents could
make additional inferences or predictions about the human to in-
form themselves. For instance, the agent might predict humans’
receptivity towards its suggestion based on the inferred underlying
order of priorities. They could also weigh the effectiveness of social
actions to determine the best policy for agent interventions.

Third, much like performance and social goals, I intend to in-
corporate ethical consideration in choosing agent actions. Ethical
principles can guide the design of agent behaviors. There could
be specifications and rules for essential principles that agents to
adhere to. If rules include competing ethical concerns, the appropri-
ateness of each rule should depend on the domain or the situation.
For example, in some cases, it might be irresponsible of the agent
to not offer an optimal suggestion when it has one. Agents might
not want to manipulate humans who might have to be accountable
for their own decisions. In others, good intentions or outcomes
(e.g. saving a collaborator’s face, improving quality over time) may
potentially be worth the deceptive social maneuver. However, if
machines are transparent about their social intentions, they could
be perceived as overly calculating. Also, there could be a difference
in the level of persuasiveness or manipulation that is appropriate
depending on how amenable or stubborn the person is.

4 CONCLUSION

My work formalizes a framework for human-agent joint decision-
making to coordinate preference and priorities while considering
performance, interpersonal and social outcomes. The framework
will help design social interactions that communicate the agent’s
intent, incorporate human preferences, and adjust the agent’s next
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set of behaviors. Through iterative modeling, designing, prototyp-
ing, and testing of agent algorithms and interventions, I hope to
improve its social capabilities and, in turn, the social experience of
human-agent joint decision-making.
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